
Sujata Ghosh and R. Ramanujam: M4M9
EPTCS 243, 2017, pp. 23–40, doi:10.4204/EPTCS.243.2

Deterministic Temporal Logics and Interval Constraints

Kamal Lodaya
The Institute of Mathematical Sciences, CIT Campus, Chennai 600113∗

Paritosh K. Pandya
Tata Institute of Fundamental Research, Colaba, Mumbai 400005

Temporal logics have gained prominence in computer science as a property specification language for
reactive systems. There is even an IEEE standard temporal logic supported by a consortium of Electronic
Design Tool developers. Such systems maintain ongoing interaction between the environment and the
system and their specification requires formulating constraints on the sequence of steps performed by the
system. Unlike Classical logics which explicitly use variables to range over time points, temporal logics,
which are rooted in tense logics, provide a variable-free approach which deals with time implicitly, using
modalities. The work on temporal logic for specifying and proving concurrent programs began with
Pnueli’s initial identification of this logic for reactive systems [Pnu77]. Lamport also used temporal
logic to reason about properties of distributed systems [Lam80].

We work in the setting of finite and infinite words over a finite alphabet. A diverse set of modalities
can be formulated to give different temporal logics. However, over time, the linear temporal logic LTL
has emerged as a standard formulation. A major driver for this choice is its economy of operators while
being expressive; it just uses modalities U and S. The classical result of Kamp showed that the LTL
logic is expressively complete with respect to FO-definable properties of words [Kamp68]. Moreover, as
shown by Sistla and Clarke, the logic has elementary PSPACE-complete satisfiability [SC85]. Yet another
class of temporal logics which provides very natural form of specification are the interval temporal logics.
However, their high satisfaction complexity has prevented their widespread use.

It can be seen from these developments that the concerns for expressive power of the temporal logic
and its algorithmic complexity have been major drivers. They directly affect the usability of model
checking tools developed. Several fragments/variants of LTL have been explored to improve its usabil-
ity. For example, the industry standard PSL/Sugar adds regular expressions to LTL. Various forms of
counting constructs allowing quantitative constraints to be enforced have also been added to LTL and to
interval temporal logics. At the same time, keeping algorithmic complexity in mind, fragments of LTL
such as TL[F,P] with low satisfaction complexity have been explored [EVW02, WI09]. But there are
other possibilities.

One less-known such theme is that of “deterministic logics”. In our own experience, while im-
plementing a validity checker for an interval temporal logic over word models, we found marked im-
provements in efficiency when nondeterministic modal operators were replaced by deterministic or un-
ambiguous ones [KP05]. This led to our interest in results on unambiguous languages, initiated by
Schützenberger [Sch76]. In a subsequent paper [LPS08] we learnt that these could also be thought of
as boolean combinations of deterministic and co-deterministic products over a small class, the piecewise
testable languages. We expanded the scope of our work to studying determinism and guarding in modali-
ties at all levels of temporal, timed and first-order logics. This tutorial is a presentation of temporal logics
with deterministic as well as guarded modalities, their expressiveness and computational efficiency.

∗The author is affiliated to Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094.

http://dx.doi.org/10.4204/EPTCS.243.2

24 Deterministic Temporal Logics and Interval Constraints

In Section 1, we begin with deterministic modalities at the lowest level, using a couple of represen-
tative logics, and then we recursively build higher guarded deterministic modalities all the way to full
temporal logic. These ideas were initiated by Kröger [Krö84]. We cannot claim that the deterministic
modalities are the ones which will be preferred at the level of specification. Linear temporal logic LTL
continues to be widely used. What do its “nondeterministic” modalities buy for the user? In Section 2 we
show that the introduction of guarded constraints specifying counting and simple algebraic operations
over an interval, arguably an important part of specifying properties, at low modal depth, already reaches
high levels of full temporal logic, while retaining elementary decidability.

Temporal logics When talking of languages (over finite and infinite words), modal logics specialize
to temporal logics. Words are nothing but rooted coloured linear orders where positions in the words
denote possible worlds. Classically, modalities F,P,X,Y,U,S are widely used. Their semantics is given
below.

Let w∈ A+∪Aω be a word (finite or infinite). Let dom(w) denote the set of positions in the word, e.g.
dom(aba) = {1,2,3}, and for an infinite word dom(w) = N. We define the semantics of linear temporal
logic operators below.

w, i |= a iff a ∈ w[i]
w, i |= Xφ iff i+1 ∈ dom(w) and w, i+1 |= φ

w, i |= Yφ iff i−1 ∈ dom(w) and w, i−1 |= φ

w, i |= Fφ iff for some m > i : w,m |= φ

w, i |= Pφ iff for some m≤ i : w,m |= φ

w, i |= φ U ψ iff for some m > i : w,m |= ψ and for all i < l < m : w, l |= φ

w, i |= φ S ψ iff for some m < i : w,m |= ψ and for all m < l < i : w, l |= φ

We also have defined operators Gφ = ¬F¬φ and Hφ = ¬P¬φ. We remark that the operators U and S as
well as the derived F and P operators used in this tutorial are all “strict”.

Let OPS be a set of temporal operators. Then, T L[OPS] defines temporal logic formulae using only
the operators from OPS and the boolean connectives. An interesting question is about the expressive
power of such a logic T L[OPS] for various choices of OPS. For example, operators F,P,X,Y can be
defined using U,S. Hence T L[F,P,X,Y,U,S]≡ T L[U,S].

1 Deterministic Logics and Unambiguous Star-free Langauges

Schützenberger first studied Unambiguous star-free regular languages (UL) [Sch76] and gave an alge-
braic characterization for UL. Since then, several diverse and unexpected characterizations have emerged
for this language class: ∆2[<] in the quantifier-alternation hierarchy of first-order definable languages
[PW97], the two-variable fragment FO2[<] [TW03] (without any restriction on quantifier alternation),
and Unary Temporal Logic TL[F,P] [EVW02] are some of the logical characterizations that are well
known. Investigating the automata for UL, Schwentick, Thérien and Vollmer [STV02] defined Partially
Ordered 2-Way Deterministic Automata (po2dfa) and showed that these exactly recognize the language
class UL. Weis and Immerman have characterized UL as a boolean combination of “rankers” [WI09]. A
survey paper [DGK08] describes this language class and its characterizations.

We go back to Schützenberger’s definition. A monomial over an alphabet A is a regular expression
of the form A∗0a1 · · ·anA∗n, where Ai ⊆ A and ai ∈ A. By definition, UL is the subclass of star-free regular
languages which may be expressed as a finite disjoint union of unambiguous monomials: every word
that belongs to the language, may be unambiguously parsed so as to match a monomial. The uniqueness

Kamal Lodaya and Paritosh K. Pandya 25

with which these monomials parse any word is the characteristic property of this language class. We
explore a similar phenomenon in logics by introducing the notion of Deterministic Temporal Logics.

Given a modality M of a temporal logic that is interpreted over a word model, the accessibility
relation of M is a relation which maps every position in the word to the set of positions that are accessible
by M. In case of interval temporal logics, the relation is over intervals instead of positions in the word
model. The modality is deterministic if its accessibility relation is a (partial) function. A logic is said to
be deterministic if all its modalities are deterministic. Hence, deterministic logics over words have the
property of Unique Parsability stated below.
Definition 1 (Unique Parsability) In the evaluation of a temporal logic formula over a given word,
every subformula has a unique position (or interval) in the word at which it must be evaluated. This
position is determined by the context of the subformula.

In this section, we investigate deterministic temporal logics and their properties. We give constructive
reductions between deterministic logics with diverse modalities. We also analyze efficient algorithms
for checking their satisfiability. For simplicity we confine ourselves to languages of finite words; the
situation for languages of infinite words is not very different. We begin the study with a basic logic of
rankers TL[Xa,Ya], and investigate its satisfiability which turns out to be NP-complete. It is well known
that TL[Xa,Ya] exactly has the expressive power of UL [WI09, STV02]. We then look at deterministic
interval logic UITL± and give a polynomial-time reduction to TL[Xa,Ya]. This reduction relies on a
crucial property of ranker directionality investigated by Weis and Immerman [WI09] and others [PS13,
Shah12]. Several logics lie between these two logics and they all have the same expressive power and
NP-complete satisfaction complexity.

In order to go beyond UL, we consider a recursive extension of TL[Xa,Ya]. This deterministic logic
was proposed by Kröger and it has been called AtNext logic in literature [Krö84]. We briefly investigate
the relationship between LTL and the AtNext logic and show that both have the same expressive power.
However, the hierarchies induced by the two logics are quite different.

1.1 The logic of Rankers

We define the logic of rankers as follows.

Syntax

φ := a | > | Xaφ1 | Yaφ1 | SPφ1 | EPφ1 | φ1∨φ2 | ¬φ1 | X̃aφ1 | Ỹaφ1 | Xφ1 | Yφ1

Let EPφ = ¬X> ⊃ φ be a derived operator. For convenience, we have defined TL[Xa,Ya] with many
modalities. It can be shown (see [Shah12]) that it is sufficient to have only Xa, Ya and EP modalities; all
other operators can be eliminated giving an equivalent formula.

Let Size(φ) denote size (i.e. number of operators and atomic formulae) occurring in φ.

Semantics Given word w ∈ A+ and i ∈ dom(w) we have
w, i |=>

w, i |= Xaφ iff ∃ j > i . w[j] = a and ∀i < k < j.w[k] 6= a and w, j |= φ.
w, i |= Yaφ iff ∃ j < i . w[j] = a and ∀ j < k < i.w(k[k]eqa and w, j |= φ.
w, i |= X̃aφ iff ∃ j ≥ i . w[j] = a and ∀i≤ k < j.w[k] 6= a and w, j |= φ.
w, i |= Ỹaφ iff ∃ j ≤ i . w[j] = a and ∀ j < k ≤ i.w[k] 6= a and w, j |= φ.

The language accepted by a TL[Xa,Ya] formula φ is given by L(φ) = {w | w,1 |= φ}.

26 Deterministic Temporal Logics and Interval Constraints

Example 1 Consider the LT L formula G(a⇒Fb). This is equivalent to TL[Xa,Ya] formula¬EP(Ya¬Xb>).

Example 2 Consider the Unambiguous monomial {a,c,d}∗ ·c · {a}∗ ·b · {a,b,c,d}∗. Then, its language
is equivalent to the language of TL[Xa,Ya] formula XbYc¬(XdXb¬YbT).

Definition 2 (Ranker [WI09]) A ranker is a TL[Xa,Ya] formula which does not use boolean operators
¬,∧,∨ and it only has atomic formula > (i.e. the use of atomic proposition a is not allowed).

For example, EP(YaX>) is a ranker.
A ranker RK (also called a turtle program [STV02]) performs scans over a word w which end at a

position in the word or the scan fails. The outcome of scan (i.e. last position) is denoted by `Posw(RK)∈
dom(w)∪{⊥} where ⊥ denotes the failure of the scan. Note that the ranker search always starts at the
initial position in the word. Thus, `Posw(RK) = Pos(w,1,RK) where

Pos(w, i,>) = i
Pos(w, i,SP(RK)) = Pos(w,1,RK)

Pos(w, i, X̃a(RK)) = Pos(w, j,RK) if j ≥ i∧w[j] = a and ∀i≤ k < j : w[k] 6= a
Pos(w, i, X̃a(RK)) =⊥ if ∀ j. j ≥ i⇒ w[j] 6= a
Pos(w, i,Xa(RK)) = Pos(w, j,RK) if j > i∧w[j] = a and ∀i < k < j : w[k] 6= a
Pos(w, i,Xa(RK)) =⊥ if ∀ j. j > i⇒ w[j] 6= a
Pos(w, i,X(RK)) = Pos(w, i+1,RK) if i+1 ∈ dom(w)
Pos(w, i,X(RK)) =⊥ if i+1 /∈ dom(w)

The remaining cases are similar and omitted.
Consider a formula φ and its subformula β occurring in context α[−], i.e. φ = α[β]. We shall call

such α[β] as a subterm. With each subterm, we associate a ranker denoted Ranker(α[]) which identifies
the unique position in word where subformula β needs to be evaluated. This ranker does not depend on
the subformula β but only on the context α[]. We give rules for calculating the Ranker of a subterm.

Ranker([]) = SP>
Ranker(α(OP[])) = RK(OP>) where Ranker(α[]) = RK> and

OP ∈ {Xa,Ya, X̃a,Ỹa,X,Y,SP,EP}
Ranker(α(β1∨ [])) = Ranker(α(β1∧ [])) = Ranker(α[])
Ranker(α(¬[])) = Ranker(α[])

The main lemma below relates truth of atomic formulae at their ranker positions to the truth of the
whole formula.

Lemma 1 (unique parsing) Let φ be a formula of TL[Xa,Ya] and let ti = αi[βi] for 1 ≤ i ≤ k be all its
subterms such that each βi is an atomic formula (of the form a or>). Consider the witness propositional
formula W obtained by replacing each such subformula by propositional letter pi, and by omitting all
the temporal operators but keeping all the boolean operators. Also, for any w ∈ A+ let µw be a valuation
assiging pi = true iff `Posw(Ranker(αi[]) = j 6= ⊥∧w[j] |=prop βi. Thus, valuation µ records whether
atomic formula βi holds at its ranker position. Then, w,1 |= φ iff µ |=prop W.

Example 3 Consider formula φ = EP(Ya(¬Xb> ∨ Xc)). Then, we have atomic subformulae (occur-
rences) β1 = > and β2 = c with corresponding rankers RK1 = EP(YaXb>) and RK2 = EP(YaX>). The
witness propositonal formula is W is (¬p1∨ p2). Consider a word w = abadbc. Then, `Posw(RK1) = 5
and `Posw(RK2) = 4. Hence µw(p1) = true and µw(p2) = false. It is easy to see that µw 6|=W. It is also
clear that w,1 6|= φ.

Kamal Lodaya and Paritosh K. Pandya 27

Corollary 2 Checking whether w,1 |= φ can be carried out in time |w|× |φ|3.

Proof. Given the word, checking whether an atomic formula is true or false at its ranker position can be
done in time |w|× |φ|. Number of such atomic formulae are linear in the size of |φ|. This determines µw.
Given µw, evaluating the propositional formula W which is atmost of size |φ| will take time at most linear
in size of φ. �

We now establish a small model property for logic TL[Xa,Ya].

Lemma 3 Let φ be a formula of TL[Xa,Ya]. If φ is satisfiable then there exists w with length |w|= Size(φ)
such that w,1 |= φ.

Proof. Let Rankerset(φ) denote the set of rankers associated with each subterm of φ. It is clear
that size of Rankerset(φ) is at most Size(φ). We now define all the positions which are character-
ized by rankers. Since ranker scan starts at position 1, this is always included in our set. Consider
Rankerset posw(φ) = {`Posw(RK) | RK ∈ Rankerset(φ)}∪{1}−{⊥}. Let v = w ↓ Rankerset posw(φ)
denote the word obtained by removing letters not at positions in Rankerset posw(φ). Hence size of v
is at most Size(φ). Also let f : dom(w)→ dom(v) give the mapping of an undeleted position in w
to its corresponding position in v. Then, it is easy to see that f (`Posw(RK)) = `Posv(RK) for each
RK ∈ Rankerset posw(φ). This can formally be proved by induction on the length of the ranker. From
this and Lemma 1 it is clear that w,1 |= φ iff v,1 |= φ. Thus, φ has a linear sized model if it has a
model. �

Theorem 4 Satisfiability of TL[Xa,Ya] is NP-complete.

Proof. By Lemma 3, we can nondeterministically guess a small word of size linear in size of φ. Note
that number of bits needed to represent this is |φ|log|φ| since alphabet cannot be larger than the size of φ.
Checking that w,1 |= φ can be done in time polynomial in w and φ by Corollary 2. Thus, satisfiability is
in NP. Since logic TL[Xa,Ya] includes propositional formulae, its satisfiability is also NP-hard. �

1.2 Deterministic Interval Logic UITL±

Now we consider a seemingly much more powerful deterministic interval temporal logic UITL± (based
on a logic in [LPS10]). We show that this logic can be reduced to TL[Xa,Ya] in polynomial time preserv-
ing models. This reduction also makes use of rankers and an additional critical property called ranker
directionality.

In this section, we introduce the logic UITL± and show that it is no more expressive than UL, by giv-
ing an effective conversion from UITL± formulas to their corresponding language-equivalent TL[Xa,Ya]
formula. The conversion is similar to the conversion from UITL to TL[Xa,Ya], as given in [DKL10].

1.2.1 UITL±: Syntax and Semantics

The syntax and semantics of UITL± are as follows:

D ::=> | a | d e | unit | SPφ | EPφ | D1FaD2 | D1LaD2 | D1F+
a D2 | D1L−a D2 |

⊕D1 | 	D1 | ⊕D1 | 	D1 | D1∨D2 | ¬D

Let w be a nonempty finite word over A and let dom(w) = {1, . . . , |w|} be the set of positions. Let
INTV (w) = {[i, j] | i, j ∈ dom(w), i ≤ j} ∪ {⊥} be the set of intervals over w, where ⊥ is a special
symbol to denote an undefined interval. For an interval I, let l(I) and r(I) denote the left and right
endpoints of I. Further, if I = ⊥, then l(I) = r(I) = ⊥. The satisfaction of a formula D is defined over

28 Deterministic Temporal Logics and Interval Constraints

intervals of a word model w as follows.

w, [i, j] |=> iff [i, j] ∈ INTV (w) and [i, j] 6=⊥
w, [i, j] |= d e iff i = j
w, [i, j] |= unit iff j = i+1
w, [i, j] |= SPφ iff w, [i, i] |= φ

w, [i, j] |= EPφ iff w, [j, j] |= φ

w, [i, j] |= D1FaD2 iff for some k : i≤ k ≤ j. w[k] = a and
(for all m : i≤ m < k.w[m] 6= a) and w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1LaD2 iff for some k : i≤ k ≤ j. w[k] = a and
(for all m : k < m≤ j.w[m] 6= a) and w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1F+
a D2 iff for some k : k ≥ j. w[k] = a and

(for all m : i≤ m < k.w[m] 6= a) and w, [i,k] |= D1 and w, [j,k] |= D2
w, [i, j] |= D1L−a D2 iff for some k : k ≤ i. w[k] = a and

(for all m : k < m≤ j.w[m] 6= a) and w, [k, i] |= D1 and w, [k, j] |= D2
w, [i, j] |=⊕D1 iff i < j and w, [i+1, j] |= D1
w, [i, j] |=	D1 iff i < j and w, [i, j−1] |= D1
w, [i, j] |=⊕D1 iff j < |w| and w, [i, j+1] |= D1
w, [i, j] |=	D1 iff i > 1 and w, [i−1, j] |= D1

The language L(φ) of a UITL± formula φ is given by L(φ) = {w | w, [1, |w|] |= φ}. Define dAe =
d e ∨ unit ∨ ¬

∨
b6∈A

(⊕	 (>Fb>)). Hence, w, [i, j] |= dAe if and only if ∀i < k < j . w[k] ∈ A.

Example 4 The language of unambiguous monomial {a,c,d}∗ · c · {a}∗ · b · {a,b,c,d}∗. given earlier
may be specified by the UITL± formula (> Lc dae) Fb >). On the other hand, the formula φ = (>Lb(¬d¬ce))La>
states that between last a and its previous b there is at least one c.

1.2.2 Ranker Directionality

Given a ranker and a word, it is possible to define by a TL[Xa,Ya] formula whether we are to the left or
right of the ranker’s characteristic position. This is called ranker directionality. This property of rankers
was investigated by Weis and Immerman [WI09] and Dartois, Kufleitner, Lauser [DKL10].

For a ranker formula ψ, we can define TL[Xa,Ya] formulae P<(ψ), P≤(ψ), P>(ψ), P≥(ψ) satisfy-
ing the following lemma.

Lemma 5 (Ranker Directionality) ∀w ∈ A+ and ∀i ∈ dom(w), if `Posw(ψ) 6=⊥, then

• w, i |= P<(ψ) iff i < `Posw(ψ)

• w, i |= P≤(ψ) iff i≤ `Posw(ψ)

• w, i |= P>(ψ) iff i > `Posw(ψ)

• w, i |= P≥(ψ) iff i≥ `Posw(ψ)

Moreover, the Size of these formulae are linear in size of ψ.

Kamal Lodaya and Paritosh K. Pandya 29

We give the construction of these formulae below and we omit the proof of above lemma which can
be found in [DKL10, PS13, Shah12].

ψ P<(ψ) P≤(ψ) P>(ψ) P≥(ψ)
φSP> ⊥ Atfirst ¬Atfirst >
φEP> ¬Atlast > ⊥ Atlast
φX̃a> Xa(P≤(ψ)) Ha∨ (YaP<(φ>)) YaP≥(φ>) Ga∨XaP>(ψ)

φXa> Xa(P≤(ψ)) Ha∨ (YaP≤(φ>)) YaP>(φ>) Ga∨XaP>(ψ)

φỸa> XaP≤(φ>) Ha∨ (YaP<(ψ)) YaP≥(ψ) Ga∨XaP>(φ>)
φYa> XaP<(φ>) Ha∨ (YaP<(ψ)) YaP≥(ψ) Ga∨XaP≥(φ>)
φX> P≤(φ>) Atfirst ∨ YP≤(φ>) YP>(φ>) P>(φ>)
φY> XP<(φ>) P<(φ>) P≥(φ>) Atlast ∨

XP≥(φ>)

1.2.3 Reducing UITL± to TL[Xa,Ya]

Logic UITL± is a deterministic logic and the Unique Parsing property holds for its subformulas. Hence,
for every UITL± subformula ψ, and any word w, there is a unique interval Intvw(ψ) within which
ψ needs to be evaluated. Further, if subformula ψ has as its major connective a “chop” operator
(Fa,La,F+

a ,L−a ,⊕,	,⊕,), then there is a unique chop position cPosw(ψ). If such an interval or chop
position fails to exist in the word, then we return ⊥. The Intvw(ψ) and cPosw(ψ) for any subformula ψ

depend on its context and rankers characterizing these positions can be inductively defined as follows.
For every UITL± subformula ψ of φ, we define rankers LIntv(ψ) and RIntv(ψ), such that Lemma 6

holds. LIntv(ψ) and RIntv(ψ) are rankers whose characteristic positions define end points of Intvw(ψ)
respectively.

Definition 3 (Composition) Let RK be a ranker and φ be a formula of TL[Xa,Ya]. Then, RK;φ denotes
formula RK[>/φ]. For example, EP(YaX1>);φ = EP(YaX1φ).

Note that if φ is a ranker then RK;φ is also a ranker.

Lemma 6 Given a UITL± subterm ψ of a formula φ, and any w∈ A+ such that Intvw(ψ),cPosw(ψ) 6=⊥,

• `Posw(LIntv(ψ)) = l(Intvw(ψ))

• `Posw(RIntv(ψ)) = r(Intvw(ψ))

The required formulas LIntv(ψ),RIntv(ψ) may be constructed by induction on the depth of occurrence of
the subformula ψ as below. The correctness of these formulas is apparent from the semantics of UITL±

formulas, and we omit the detailed proof (see [Shah12]).

• If ψ = φ, then LIntv(ψ) = SP>, RIntv(ψ) = EP>
• If ψ = SP D1 then LIntv(D1) = RIntv(D1) = LIntv(ψ)

• If ψ = EP D1 then LIntv(D1) = RIntv(D1) = RIntv(ψ)

• If ψ = D1FaD2 then
LIntv(D1) = LIntv(ψ), RIntv(D1) = LIntv(ψ) ; X̃a>,
LIntv(D2) = LIntv(ψ) ; X̃a>, RIntv(D2) = RIntv(ψ)

• If ψ = D1F+
a D2 then

LIntv(D1) = LIntv(ψ), RIntv(D1) = RIntv(ψ) ; X̃a>,
LIntv(D2) = RIntv(ψ), RIntv(D2) = RIntv(ψ) ; X̃a>

30 Deterministic Temporal Logics and Interval Constraints

• If ψ = D1LaD2 then
LIntv(D1) = LIntv(ψ), RIntv(D1) = RIntv(ψ) ; Ỹa>,
LIntv(D2) = RIntv(ψ) ; Ỹa>, RIntv(D2) = RIntv(ψ)

• If ψ = D1L−a D2 then
LIntv(D1) = LIntv(ψ) ; Ỹa>, RIntv(D1) = LIntv(ψ),
LIntv(D2) = LIntv(ψ) ; Ỹa>, RIntv(D2) = RIntv(ψ)

• If ψ =⊕D1 then LIntv(D1) = LIntv(ψ) ; X>, RIntv(D1) = RIntv(ψ)

• If ψ =⊕D1 then LIntv(D1) = LIntv(ψ), RIntv(D1) = RIntv(ψ) ; X>
• If ψ =	D1 then LIntv(D1) = LIntv(ψ), RIntv(D1) = RIntv(ψ) ; Y>
• If ψ =	D1 then LIntv(D1) = LIntv(ψ) ; Y>, RIntv(D1) = RIntv(ψ)
Now we can give a model preserving transformation.

Theorem 7 Given any UITL± formula φ of size n, we can construct in polynomial time a language-
equivalent TL[Xa,Ya] formula Trans(φ), whose size is O(n2). Hence, satisfiability of UITL± is NP-
complete.
Proof. For any subformula ψ of φ, we construct a corresponding TL[Xa,Ya] formula Trans(ψ). The
conversion uses the following inductive rules. Then, it is easy to see that Trans(ψ) is language equivalent
to φ (see [Shah12] for proof).
• If ψ = SP D1 or EP D1 then Trans(ψ) = LIntv(D1) ; Trans(D1)

• If ψ = D1FaD2, then Trans(ψ) = [(LIntv(ψ); X̃a>) ; P≤(RIntv(ψ))]∧Trans(D1)∧Trans(D2)

• If ψ = D1LaD2, then Trans(ψ) = [(RIntv(ψ);Ỹa>) ; P≥(LIntv(ψ))]∧Trans(D1)∧Trans(D2)

• If ψ = D1F+
a D2, then Trans(ψ) = [(LIntv(ψ); X̃a>) ; P≥(RIntv(ψ))]∧Trans(D1)∧Trans(D2)

• If ψ = D1L−a D2, then Trans(ψ) = [(RIntv(ψ);Ỹa>) ; P≤(LIntv(ψ))]∧Trans(D1)∧Trans(D2)

• If ψ =⊕D1, then Trans(ψ) = [(LIntv(ψ);X>) ; P≤(RIntv(ψ))] ∧ Trans(D1)

• If ψ =	D1, then Trans(ψ) = [(RIntv(ψ);Y>) ; P≥(LIntv(ψ))] ∧ Trans(D1)

• If ψ =⊕D1, then Trans(ψ) = [(RIntv(ψ);X>)] ∧ Trans(D1)

• If ψ =	D1, then Trans(ψ) = [(LIntv(ψ);Y>)] ∧ Trans(D1)

• Trans(D1∨D2) = Trans(D1)∨Trans(D2)

• Trans(¬D1) = ¬Trans(D1)

�

1.3 AtNext Logic

Logic TL[Xa,Ya] exactly characterizes the language class UL. The previous section shows that several
deterministic logics can be translated to TL[Xa,Ya] in polynomial time using the rankers and ranker
directionality. Thus, there is robust connection between UL, deterministic modalities and efficient NP-
complete satisfiability.

In this section, we consider a recursive (hierarchical) extension of TL[Xa,Ya] which is deterministic
but much more expressive, Recursive Temporal Logic (TL[Xφ,Yφ]) with the recursive and determinis-
tically guarded Next and Prev modalities. The logic TL[Xφ,Yφ] was defined by Kröger [Krö84], with
“at-next” and “at-prev” modalities and shown to be expressively equivalent to LTL.

Kamal Lodaya and Paritosh K. Pandya 31

Definition 4 (Syntax) φ :=> | a | Xφφ | Yφφ | φ∨φ | ¬φ

When interpreted over a word w and at a position i in w, the semantics of the X and Y operators is given
by:

• w, i |= Xφψ iff ∃ j > i . w, j |= φ∧ψ and ∀i < k < j . w,k 6|= φ

• w, i |= Yφψ iff ∃ j < i . w, j |= φ∧ψ and ∀ j < k < i . w,k 6|= φ

Given a TL[Xφ,Yφ] formula φ, we may define the recursion depth rd(φ) using the following rules:

• If φ = a or φ =>, rd(φ) = 0.

• If φ = φ1∨φ2, rd(φ) = max(rd(φ1),rd(φ2))

• If φ = ¬φ1, rd(φ) = rd(φ1)

• If φ = Xζψ or φ = Yζψ, then rd(φ) = max(rd(ζ)+1,rd(ψ))

We denote by TL[Xφ,Yφ]
k formulae with maximum recursion depth k. Note that there is no restriction on

nesting depth of modalities. It is clear that TL[Xφ,Yφ]
1 = TL[Xa,Ya].

Example 5 Consider the TL+[Xφ,Yφ] formula φ = Xψ1Yψ2> where ψ1 = a∧Yb>∧Xc> and ψ2 = XcHb.
When we evaluate φ over the word w = ccaccbccabbcacc, Posw(φ) = 1. The first position in the word
where ψ1 holds is 9 hence Posw(Yψ2>) = 9. Finally, the last position before 9 where ψ2 holds is 4. Hence
w ∈ L(φ).

A closer look at the semantics of TL[Xφ,Yφ] and LTL allows us to see that the deterministic until
and since modalities are in fact not very different from the until (U) and since (S) modalities of LTL.
Translations between them may be achieved using translation functions α and β as described below.

Lemma 8 T L[U,S]k ≤ TL[Xφ,Yφ]
k. Hence, TL[Xφ,Yφ] ≡ LTL ≡ FO[<].

Proof. Let the translation functions which preserve boolean operations be defined as follows.

• α(φ U ψ) ≡ Xα[(¬φ)∨ψ] α(ψ)

• β(Xφψ) ≡ [β(¬φ)]U [β(φ∧ψ)]

The since modalities may be translated in a similar manner. Then, it is easy to show by induction on the
depth of formulae that

• for any LTL formula, w, i |= φ iff w, i |= α(φ).

• for any TL[Xφ,Yφ] formula ψ, w, i |= ψ iff w, i |= β(ψ).

Note that for φ ∈ LTLk we have α(φ) ∈ TL[Xφ,Yφ]
k. Also, note that it is straightforward to translate

TL[Xφ,Yφ] formulae into FO[<] formulae with one free variable x. �
We remark here that Simoni Shah has recently come up with a form of alternating automata called
RecPO2DFA such that TL[Xφ,Yφ]

k exactly corresponds to RecPO2DFAk. Thus, there is a clean automaton
characterization for the AtNext hierarchy. We also remark that languages Stairk = A∗(ac∗)kaA∗ defined
by Etessami and Wilke [EW00] are specified by TL[Xφ,Yφ]

2 formula Xψ where ψ = ¬Xa∨ca∧Xa∨ca∧
. . .Xa∨ca with k occurrences of X . See [PS15] for details.

Finally, the following theorem relates the At-Next Hierarchy to the Quantifier-Alternation Hierarchy
of Thomas [Tho82].

Theorem 9 (Borchert and Tesson [BT04, PS15]) TL[Xφ,Yφ]
k ⊆ ∆k+1[<].

32 Deterministic Temporal Logics and Interval Constraints

We do not give a proof of this here. See [BT04] for a proof outline. Explicit translations from TL[Xφ,Yφ]
k

to formulae of Σk+1[<] as well as Πk+1[<] are given in [PS15].
Now we consider a subset of TL[Xφ,Yφ] called TL+[Xφ,Yφ].

Definition 5 (Syntax) ψ := a | φ | ψ∨ψ | ¬ψ, where a ∈ A and
φ :=> | SPφ | EPφ | Xψφ | Yψφ

The formula in example 5 is actually a formula of TL+[Xφ,Yφ].
In the above syntax the φ formulae are called the recursive rankers of TL+[Xφ,Yφ]. The main restric-

tion is that rankers cannot use boolean operators or the atomic proposition a except through recursive
subformulae. The recursive rankers satisfy an important property of convexity as stated below.

Lemma 10 (Convexity [PS13]) For any recursive ranker formula φ, and any word w∈ A+, if there exist
i, j ∈ dom(w) such that i < j and w, i |= φ and w, j |= φ, then ∀i < k < j, we have w,k |= φ.

Simoni Shah [Shah12, PS13] has shown the following result.

Lemma 11 TL+[Xφ,Yφ] ≡ TL[Xa,Ya]

Proof. Any TL[Xa,Ya] formula can be syntactically normalized to equivalent boolean combination of
rankers, and hence TL[Xa,Ya]⊆ TL+[Xφ,Yφ].

For the converse, we only give a reduction from TL+[Xφ,Yφ] to TL[F,P] which is known to be expres-
sively equivalent to TL[Xa,Ya] [EVW02, DGK08]. For any ψ ∈ TL+[Xφ,Yφ], we will construct TL[F,P]
formulas At(ψ) such that ∀w ∈ A+ we have w, i |= At(ψ) iff w, i |= ψ. The construction is by induc-
tion on the structure of ψ (and its rankers φ). Define At(a) = a, At(>) = > and At(B(φ1, . . .φm)) =
B(At(φ1), . . .At(φm)). It is easy to see that w, j |= At(B(φ1, . . .φm)) iff w, j |= B(φ1, . . .φm).

Now, we give the reduction for recursive ranker formulae φ. The figure below (from [PS13]) depicts
convexity of φ = Xψφ2. It shows the positions where φ holds in a word w. Note that there is only one
convex interval where φ2 holds. φ holds at positions where F(φ2∧ψ) is true but no future position has

ψ∧¬φ2∧Fφ2. Thus:
At(Xψ1(φ2)) = F[At(ψ1)∧At(φ2)] ∧ ¬F[At(ψ1)∧¬At(φ2)∧FAt(φ2))],
At(Yψ1(φ2)) = P[At(ψ1)∧At(φ2)] ∧ ¬P[At(ψ1)∧¬At(φ2)∧PAt(φ2))].

�

φ = Xψ1φ2[]
wl l l l l l l l l l l

ψ1 ψ1 ψ1 ψ1 ψ1 ψ1
[]φ2

2 Interval Constraints

In the previous section we studied various deterministic and deterministically guarded temporal logics.
It was seen that these allow efficient algorithms and decision procedures compared to full LTL. In this
section we retain the “unary” flavour of these logics but we expand its scope to gain expressiveness.
More precisely we consider a unary temporal logic BLinTL where the binary Until and Since modalities
of LTL are guarded by interval constraints on the left, allowing counting or simple algebraic operations,
forming guarded unary operators g U φ and g S φ. The techniques are borrowed from full LTL, and the
complexity of decision procedures jumps to that of LTL. In fact it is one exponent more when using
binary notation (as is also the case for LTL). The analogues of “rankers” or “turtle programs” remain to
be discovered in this setting.

Kamal Lodaya and Paritosh K. Pandya 33

We do not have precise expressiveness results for most of these logics. What is perhaps surprising is
that BLinTL, even though unary, has formulae which reach all levels of the Until/Since hierarchy for LTL
of Thérien and Wilke [TW03] as well as the dot depth hierarchy for starfree expressions of Cohen, Brzo-
zowski and Knast [CB71, BK78] and the quantifier alternation hierarchy for first-order logic of Thomas
[Tho82]. Thus it is quite an expressive, yet succinct logic. Emerson and Trefler argued for introducing
counting in binary into temporal logic using a starfree expression syntax [ET97]. BLinTL is moreover
elementarily decidable, a line of work we have been following [LPS08, LPS10, LS10, KLPS16].

We define some families of constraints below: respectively, simple, modulo counting, group count-
ing, threshold, linear and ordered group constraints, for some of which we consider boolean closure also.
The constraints with groups are generalizations of those dealing with integers.

Let B,Bi ⊆ A, let ci ∈ Z, t,u ∈ N. For q ∈ N \ {0,1}, we write [q] for {0, . . . ,q− 1}. We also let
G = {h1, . . . ,hk,0} be a finite group written additively, with its elements enumerated in a linear order.
We assume that the name G identifies the group and this ordering, its description does not enter our
syntax. We also consider a finitely generated discretely ordered abelian group O with l,m ∈O, such that
F = {g1, . . . ,gk,0} fixes a linear order over its generators and the identity element.

sg ::= #B = 0
modg ::= Σici#Bi ∈ R mod q, where R⊆ [q]
grpg ::= ΣG(c1#B1, . . . ,ck#Bk) ∈ H, where H ⊆ G
thrg ::= t ∼ #B | #B∼ u | t ∼ #B∼′ u, where ∼,∼′ in {<,≤}
ling ::= modg | thrg
ogpg ::= l ∼ ΣO(c1#B1, . . . ,ck#Bk)∼′ m
bsg ::= sg | bsg1∧bsg2 | ¬bsg | bsg1∨bsg2
btg ::= thrg | btg1∧btg2 | ¬btg | btg1∨btg2
bg ::= ling | bg1∧bg2 | ¬bg | bg1∨bg2

For a modulo counting constaint, if R is a singleton {r} we write Σici#Bi ≡ r. For a threshold counting
constraint, if t = u we write #B = t.

Given a word w∈ A+ and x,y∈ dom(w), let #B(w,x,y) denote the number of occurrences of letters in
B positions x to y inclusive. Also, given group G, define G(w,z) = c jh j (and O(w,z) = c jg j, respectively)
if w[z] ∈ B j \ (B1 ∪ ·· · ∪B j−1) for 1 ≤ j ≤ k, and otherwise zero (the identity element) if w[z] /∈ (B1 ∪
·· ·∪Bk). We say:

w, [x,y] |= Σici#Bi ∈ R mod q iff Σici#Bi(w,x+1,y−1) ∈ R mod q
w, [x,y] |= ΣG(c1#B1, . . . ,ck#Bk) ∈ H iff Σ

y−1
z=x+1G(w,z) ∈ H

w, [x,y] |= t ∼ #B∼′ u iff t ∼ #B(w,x+1,y−1)∼′ u
w, [x,y] |= l ∼ ΣO(c1#B1, . . . ,ck#Bk)∼′ m iff l ∼ Σ

y−1
z=x+1O(w,z)∼′ m

This can be extended to boolean guards as usual.
Our logic BLinTL over A has the following syntax, where the Until and Since (U,S) modalities of

LTL are used in a unary fashion.

φ ::= a | ¬φ | φ∨φ | bg U φ | bg S φ

Given a word w ∈ A+ and position i ∈ dom(w), the semantics of a BLinTL formula is given below.
Boolean operators have the usual meaning. The same definitions would work for infinite words, which

34 Deterministic Temporal Logics and Interval Constraints

are more usual as models for temporal logics.

w, i |= a iff w[i] = a
w, i |= bg U φ iff ∃ j > i. w, [i, j] |= bg and w, j |= φ

w, i |= bg S φ iff ∃ j < i. w, [j, i] |= bg and w, j |= φ

Size Size |φ| of a formula φ and modal depth are defined as usual. Constants are encoded in binary
and size of a set of letters B is the number of elements in B. Thus, |(¬(#{b,c} > 1)∧ #a = 17)U a| is
max(|¬#{b,c}> 1|, |#a = 17|)+1, which works out to max(2,dlog2 17e)+1 = 6.

Abbreviations We shall use the abbreviation BUφ for (#(A−B) = 0)Uφ. Also, Fφ = AUφ = trueUφ,
Gφ = ¬F¬φ, Xφ = /0 U φ = false U φ. For a guard g, the formula Now g = g S (¬Ytrue) gives the current
velaue of a guard evaluated from the first position of the word. For initializing and updating guards, we
use:

• If g is Σici#Bi ≡ r mod q, then g(0) is Σici#Bi ≡ 0 mod q and g+ c j is Σici#Bi ≡ r+ c j mod q.

• If g is ΣG(c1#B1, . . . ,ck#Bk) = h, then the guard g(0) is ΣG(c1#B1, . . . ,ck#Bk) = 0 and the guard
g+h′ (we will use h′ = c jh j below) is ΣG(c1#B1, . . . ,ck#Bk) = h+h′.

• If g is #B∼ v and a ∈ A, then g−a is #B∼ v−1 if a ∈ B, and g otherwise.

Sublogics

• Logic BThTL is a subset of BLinTL where modalities use only threshold constraints btg U φ and
btg S φ.

• Logic BInvTL is subset of BThTL where modalities use boolean combinations of simple constraints
bsg U φ and bsg S φ.

• Logic InvTL is subset of BInvTL where modalities use only simple constraints sg U φ and sg S φ.

• Logic InvModTL is a subset of BLinTL where modalities use only simple and modulo counting
constraints sg U φ,modg U φ and sg S φ,modg S φ.

We note that Unary LTL[F,P,X,Y] is a subset of BThTL. The guard #A = u expresses the u+ 1-
iterated Next operator Xu. Since n is written in binary this gives an exponential succinctness to this logic
over LTL[F,P,X,Y].

Examples The formula (#b ≡ 1 mod 3)U ((#a ≡ 0 mod 2)U¬Xtrue) says that every word has 3n+ 1
occurrences of the letter b, for some n ≥ 0, followed by an even number of occurrences of the letter a,
excluding the last letter on the word. Such modulo counting is not expressible in LTL or first-order logic
[Wol83]. Notice that the syntax allows nesting U (and S) modalities on the right but not on the left.

Several interesting languages not in LTL[F,P,X,Y] can be specified in BThTL.
The language Stairk which specifies k occurrences of the letter a without any intermediate occur-

rences of letter b [EW00] is specified by the formula F(a∧ (#b = 0∧#a = k−2)U a).
The formula G(b∧ (c U b)⊃ P(a∧ (c S a))) defines language U2 in InvTL (a simpler version appears

in [LPS10]), which specifies over a 3-letter alphabet that if a word has an occurrence of two b’s without
an a between them, then it must be preceded by an occurrence of two a’s without a b between them.

One can also define expressively equivalent two-variable fragments of first-order logic corresponding
to the classes of interval constraints, as in our earlier work [KLPS16], but we do not pursue this here.

Kamal Lodaya and Paritosh K. Pandya 35

2.1 Expressiveness

Given logics L1 and L2 over finite words, we can relate them by their expressive powers. We use L1 ⊆ L2
if for ∀φ∈ L1∃ψ∈ L2.(w |= φ iff w |=ψ). We use L1≡ L2 if L1⊆ L2 and L2⊆ L1. The next two theorems
show that Boolean operations over threshold and modulo counting constraints can be eliminated. In fact
threshold counting can be reduced to invariant counting or to modulo counting. In our earlier paper
[KLPS16], we used the first reduction as the basis for a decision procedure. Here we use the second
theorem as the basis for our decision procedure.

Theorem 12 BThTL ≡ InvTL.

Proof. Threshold constraints #B≥ 0 and # /0 = 0 can be replaced by true, #A = 0 by false. Also multiple
upper bounds and lower bounds on the same set of letters can be combined, for example replacing
(#B ≥ t1 ∧ #B ≥ t2) by #B ≥ max(t1, t2). We also remove obviously contradictory conjunctions. To
eliminate negations, we have:

¬(#B≥ t)≡ #B < t, ¬(#B≤ u)≡ #B > u, ¬(t ≤ #B≤ u)≡ (#B < t)∨ (#B > u).

Only one of the disjuncts above can hold for all prefixes, since the count of a letter cannot jump from
below t to above u. (If t > u comes from another conjunct inside the negation, both disjuncts hold since
we have a tautology.) This generalizes for a non-tautological disjunction of threshold constraints η1,η2
to:

(η1∨η2)U φ ≡ (η1 U φ) ∨ (η2 U φ)

We will not specify mirror image rules for the past modalities here and below. As usual, the boolean
conditions can be put in disjunctive normal form. Applying these rules we can obtain bg≡

∨
CN where

CN is conjunction of simple threshold constraints g.
Finally, let us consider a BThTL constraint of the form #B≤ u which has been brought to this form.

This can be replaced by #B = 0∨ . . .∨#B = u, and the disjunctions can be moved outside the modalities.
With all this, we obtain bg U ψ ≡

∨
(NCN U ψ) where NCN is a conjunction of equality and lower

bound constraints, each set of letters B occurring in at most one constraint. NCN = AC∪BC∪CC where
AC are constraints of the form #B = 0, BC are constraints of the form #B = c with c > 0 and CC are
constraints of the form #B≥ c with c > 0. We have:

(AC∪BC∪CC)Uψ ≡
∨

a∈(BC∪CC)−AC
(AC = 0∪BC = 0∪CC = 0)U(a∧(AC∪BC−a∪CC−a)Uψ)

By repeated application of the above rule, we can get an equivalent formula where all the constraints
AC are conjunctions of the form #Bi = 0. This is equivalent to a single constraint #∪Bi = 0. A similar
reduction can be carried out for the past modalities. Hence, BThTL⊆ InvTL.

Starting with a BThTL formula, the reduction gives rise to an exponential (in product of constant c
and alphabet size m) blowup in modal depth of the formula, since updating by an occurrence of a changes
#B = c+ 1 to #B = c for a ∈ B. Starting with BInvTL, the modal depth increases by one for each letter
of alphabet, since updating by an occurrence of a in B changes #B > 0 and #B = 0 to true. Hence modal
depth blows up by the size of the alphabet. �

Corollary 13 ([KLPS16]) The satisfiability of BThTL is complete for EXPSPACE.

36 Deterministic Temporal Logics and Interval Constraints

Proof. The transation above gives an exponential-sized formula, which is easily translated into the syntax
of LTL. By the decision procedure for LTL [SC85], this gives an EXPSPACE upper bound. Since the
Counting Next and Future modalities (Xu,F) of LTL (with u in binary) are definable, EXPSPACE is also a
lower bound [AH94, ET97]. �

Theorem 14 BLinTL ≡ InvModTL.

Proof. Modulo and threshold counting requirements for guarded Until formulas can be reduced to check-
ing global counters—constraint values Now g counted “from the beginning”. This is shown in the
tautologies below. The first line reduces modulo counting formulae, after that we reduce threshold to
modulo counting. The right hand formulae below have size multiplied by a factor of q or u, so they are
exponential in the binary representation of q,u≥ 2 or t ≥ 1.

(Σici#Bi ≡ r mod q)U φ⇔
∨

r0∈[q]
(Now Σici#Bi ≡ r0 mod q)∧F(φ∧ (Now Σici#Bi ≡ r0 + r mod q)

(#B < u)U φ⇔
∨

r0∈[u]
(Now #B≡ r0 mod u)∧¬(Now #B≡ r0 mod u)U φ

(#B = u−1)U φ⇔∨
r0∈[u]

(Now #B≡ r0 mod u)∧¬(Now #B≡ r0 mod u)U (φ∧ (Now #B≡ r0−1 mod u))

(t ≤ #B)U φ⇔ (#B = t)U (Fφ)

(t ≤ #B < u)U φ⇔
∨

r0∈[u]
(Now #B≡ r0 mod u)∧

¬(Now #B≡ r0 + t mod u)U ((Now #B≡ r0 + t mod u)∧¬(Now #B≡ r0 mod u)U φ)

Now observe that for modulo (and group) counting constraints one can perform the boolean operation
on the specified elements R or H. For different moduli, we have to take least common multiples of the
quotients leading to a polynomially larger formula. (For different groups, we have to take products.) �

In each case above, only one of the right hand disjuncts can hold. At a given point in a model,
it is possible that both (#a = 10)U φ and (#a = 5)U φ hold, but the value r of the global a-counter
Now #a≡ r mod u is unique. We will use this below.

2.2 Subformulas and the formula automaton

Fix a formula α0. The Fischer-Ladner closure of a formula α0 [FL79] is constructed as usual, some of
the clauses below are based on the global counter tautologies in Theorem 14.

1. α0 is in the closure.

2. If φ is in the closure, ¬φ is in the closure. We identify ¬¬φ with φ.

3. If φ∨ψ, φ U ψ and φ S ψ are in the closure, so are φ and ψ.

4. The closure of a set with (Σici#Bi ∈ R mod q)U φ includes:
F(φ∧Now Σici#Bi ≡ r mod q) and Now Σici#Bi ≡ r mod q, for every r in [q].

5. The closure of a set with (ΣG(c1#B1, . . . ,ck#Bk) ∈ H)U φ includes:
F(φ∧Now ΣG(c1#B1, . . . ,ck#Bk) = h) and Now ΣG(c1#B1, . . . ,ck#Bk) = h, for every h in G.

6. The closure of a set with (t ≤ #B < u)U φ includes:
(¬(Now #B≡ r mod u)U (Now #B≡ r mod u)∧F(φ∧Now #B≡ s mod u),
F(φ∧Now #B≡ s mod u) and Now #B≡ s mod u, for every r and s in [q].

Kamal Lodaya and Paritosh K. Pandya 37

Unlike the usual linear size for LTL, since the constants ci, R,r,s,q, H,h, t,u, l,o,m are written in
binary notation, the closure of a modulo or group counting formula α0 is exponential in the size of α0.
In the case of a threshold formula the closure is O(2|α0|2).

A state (sometimes called an atom) is a maximal Hintikka set of formulae from the Fischer-Ladner
closure of α0. Gabbay, Hodkinson and Reynolds [GHR94] use the more classical notion of a k-type
(Hintikka set with formulas upto modal depth k). Assume an enumeration of formulae in the state.
Instead of using an explicit indexing, we loosely use the formula φ as though it uniquely identifies a
particular formula of the form g U φ or g S φ.

For every constraint, only one of the exponentially many global counter formulae with modulus value
r in [q], or with group element value h in G, can hold in a state. Hence the number of states, although it
has a subset of the closure of α0 which is already exponential in the size of α0, grows only exponentially
with the size of α0 even though the modulo and group counting constants are represented in binary
[LS10, Sree13]. So a state can be represented using space polynomial in the size of α0.

Next we define a transition relation from state s1 to state s2. Suppose g U φ is in s2, we specify the
requirements on s1, and if it is in s1, then the requirements on s2. Looking at the requirements below, it is
easy to derive the mirrored requirements for gSφ. Assume without loss of generality that all subalphabets
Bi mentioned in the guard g are disjoint from each other.

1. If g is Σici#Bi ≡ r mod q and if a ∈ B j for some j is in s2, then:

• g U φ in s2 implies (g+ c j)U φ in s1;
• g U φ in s1 implies (g− c j)U φ in s2.

2. If g is ΣG(c1#B1, . . . ,ck#Bk) = h and if a ∈ B j for some j is in s2, then:

• g U φ in s2 implies (g+ c jh j)U φ in s1;
• g U φ in s1 implies (g− c jh j)U φ in s2.

3. If g is a threshold constraint #B = 0 and if a ∈ B is in s1, then g U φ in s1 implies φ in s2.

4. In each case above, if the alphabetic precondition is not satisfied, depending on whether it was
assumed to be in s2 or s1, then g U φ is required to be in s1 or s2 respectively.

5. In each case of modulo constraint g above, if φ is in s2, then g(0) is in s1.

Since there are exponentially many states, each state as well as the transition relation of an exponen-
tial size formula automaton can be represented in polynomial space.

2.3 Decision problems

For the unary LTL[F,P], Ono and Nakamura [ON80] use the convexity of the Future and Past (F,P)
modalities to derive that only polynomially many distinct states need appear on a path to witness the
satisfaction of the modalities, and hence that its satisfiability and model checking problems are decid-
able in NP. Sistla and Clarke, and Lichtenstein and Pnueli [SC85, LP85] showed that the satisfiability
problem for LTL is in PSPACE (see also the monograph [GHR94] for an analysis based on types), since
a nondeterministic algorithm can guess the states and verify transitions between consecutive states to
find an accepting path. The “automaton” formulation made it easier to analyze logics on infinite words
[VW94, VW08].

Theorem 15 The satisfiability problem for BLinTL is in EXPSPACE.

38 Deterministic Temporal Logics and Interval Constraints

Proof. The formula automaton has exponentially many states. An accepting path may require going
through an entire range of global counter values, and with several such counters operating. Hence an
accepting path has to be guessed, written down and verified. This can be done in EXPSPACE. Corollary 13
showed that the sublogic BThTL is already EXPSPACE-hard. �

Corollary 16 The model checking problem for BLinTL is PSPACE in the size of the model and EXPSPACE

in the size of the formula.

Proof. Let α0 be a formula and K a Kripke structure. The above argument shows that for formula ¬α0
there is an exponential size formula automaton M(¬α0). Verifying K |= α0 is equivalent to checking
whether the intersection of the languages corresponding to K and M(¬α0) is nonempty. This can be
done by a nondeterministic algorithm which uses space logarithmic in the size of both the models. Since
M(¬α0) is exponentially larger than α0 we get the upper bounds in the statement of the theorem, using
Savitch’s theorem. The lower bounds are already known for Counting LTL [LMP10]. �

2.4 Extensions

Infinite words We note that our arguments are not affected by whether we consider finite or infinite
word models. Hence our results carry over to the usual LTL setting of infinite words.

Finite group counting constraints We gave some details for the group counting constraints and it is
easy to see that the results also hold when we add group counting constraints to BLinTL. If we have a
purely group counting logic without any threshold constraints, we can use the algebraic fact that a finite
group has a generating set of logarithmic size to obtain a PSPACE complexity with the syntax changed to
refer to generators. These and other details are studied in a PhD thesis [Sree13].

Finitely generated ordered group constraints Why did we not pursue our more ambitious logic with
constraints over a finitely generated and discretely ordered group?

Theorem 17 (Laroussinie, Meyer and Petonnet [LMP10]) The satisfiability and model checking prob-
lems are undecidable for the logic with ordered group constraints.

Proof. The presence of the integer constants ci ∈ Z allows easy programming of the increment and
decrement operations of a two-counter machine. Hence the halting problem for these machines can be
reduced to the satisfiability problem for the logic with ordered group constraints, even over Z. �

Branching time Our approach extends to CTL with counting constraints, studied by Emerson, Mok,
Sistla and Srinivasan [EMSS92] and Laroussinie, Meyer and Petonnet [LMP13]. The formula tree au-
tomaton constructed uses states as above but a transition relation connects a state to several states, the
arity is determined by the number of existential U/S requirements in a state [JW95, VW08]. We can
prove that satisfiability is in 2EXPTIME. [LMP13] obtained this upper bound by an exponential trans-
lation to ordinary CTL (with satisfiability in EXPTIME [Eme90]) and a lower bound by describing an
Alternating EXPSPACE Turing machine.

Acknowledgements The authors would like to thank Simoni Shah and A.V. Sreejith, and acknowledge
that a portion of the work surveyed here is drawn from their Ph.D. theses and associated papers.

Kamal Lodaya and Paritosh K. Pandya 39

References

[AH94] Rajeev Alur and Thomas Henzinger. A really temporal logic, J. ACM 41.1, Jan 1994, 181–203.

[BMT99] Augustin Baziramwabo, Pierre McKenzie and Denis Thérien. Modular temporal logic, Proc. 14th LICS,
Trento (IEEE, 1999), 344–351.

[BT04] Bernd Borchert and Pascal Tesson. The atnext/atprevious hierarchy on the starfree languages, Tech-
nical ReportWSI-2004-11 (Univ. Tübingen, 2004).

[BK78] Janusz Brzozowski and Robert Knast. The dot-depth hierarchy of star-free languages is infinite, J.
Comp. Syst. Sci. 16.1, 1978, 37–55.

[CB71] Rina Cohen and Janusz Brzozowski. Dot-depth of star-free events, J. Comp. Syst. Sci. 5.1, 1971, 1–16.

[DKL10] Luc Dartois, Manfred Kufleitner and Alexander Lauser. Rankers over infinite words, Proc. 14th DLT,
London (Canada) (Yuan Gao, Hanlin Lu, Shinnosuke Seki and Sheng Yu, eds.), LNCS 6224, 2010,
303–314.

[DGK08] Volker Diekert, Paul Gastin and Manfred Kufleitner. First-order logic over finite words, Int. J. Found.
Comp. Sci. 19, 2008, 513–548.

[Eme90] E. Allen Emerson. Temporal and modal logic, in Handbook of TCS B (Jan van Leeuwen, ed.) (Else-
vier, 1990), 995–1072.

[EMSS92] E. Allen Emerson, Aloysius K. Mok, A. Prasad Sistla and Jai Srinivasan. Quantitative temporal reason-
ing, Real-time Syst. 4.4, 1992, 331–352.

[ET97] E. Allen Emerson and Richard Trefler. Generalized quantitative temporal reasoning: an automata the-
oretic approach, Proc. 7th Tapsoft, Lille (Michel Bidoit and Max Dauchet, eds.), LNCS 1214, 1997,
189–200.

[EW00] Kousha Etessami and Thomas Wilke. An until hierarchy and other applications of an Ehrenfeucht-
Fraı̈ssé game for temporal logic, Inform. Comput. 160.1-2, 2000, 88–108.

[EVW02] Kousha Etessami, Moshe Vardi and Thomas Wilke. First-order logic with two variables and unary
temporal logic. Inform. Comput. 179.2, 2002, 279–295.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs. J. Comp.
Syst. Sci. 18.2, 1979, 194–211.

[GHR94] Dov M. Gabbay, Ian Hodkinson and Mark Reynolds. Temporal logic 1 (Oxford Univ, 1994).

[JW95] David Janin and Igor Walukiewicz. Automata for the modal mu-calculus and related results, Proc. 20th
MFCS, Prague (Jirı́ Wiedermann and Petr Hájek, eds.), LNCS 969, 1995, 552–562.

[Kamp68] Johan Anthony Willem Kamp. Tense logic and the theory of linear order, PhD thesis (UCLA, 1968).

[KLPS16] Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya and Howard Straubing. Two-variable logic with a
between relation, Proc. 31st LICS, New York (Martin Grohe, Eric Koskinen and Natarajan Shankar,
eds.) (ACM-IEEE, 2016), 106–115.

[KP05] S.N. Krishna and Paritosh K. Pandya. Modal strength reduction in quantified discrete duration calcu-
lus, Proc. FSTTCS, Hyderabad (R. Ramanujam and S. Sen, eds.), LNCS 3821, 2005, 444–456.

[Krö84] Fred Kröger. A generalized nexttime operator in temporal logic, J. Comp. Syst. Sci. 29.1, 1984, 80–98.

[Kuf07] Manfred Kufleitner. Polynomials, fragments of temporal logic and the variety DA over traces, Theoret.
Comp. Sci. 376, 2007, 89–100.

[Lam80] Leslie Lamport. “Sometime” is sometimes “Not Never”: On the temporal logic of programs, 7th ACM
POPL, Las Vegas (Paul Abrahams, Richard Lipton and Stephen Bourne, eds.) (ACM, 1980), 174–185.

[LMP10] François Laroussinie, Antoine Meyer and Eudes Petonnet. Counting LTL, Proc. 17th TIME, Paris
(Nicolas Markey and Jef Wijsen, eds.) (IEEE, 2010), 51–58.

[LMP13] François Laroussinie, Antoine Meyer and Eudes Petonnet. Counting CTL, Log. Meth. Comp. Sci.
9.1:03, 2013, 1–34.

40 Deterministic Temporal Logics and Interval Constraints

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy their linear
specification, Proc. 12th POPL, New Orleans (Mary Van Deusen, Zvi Galil and Brian Reid, eds.)
(ACM, 1985), 97–107.

[LPS08] Kamal Lodaya, Paritosh K. Pandya and Simoni S. Shah. Marking the chops: an unambiguous temporal
logic, Proc. 5th IFIP TCS, Milano (G. Ausiello, J. Karhumäki, G. Mauri and L. Ong, eds.), IFIP Series
273 (Springer, 2008), 461–476.

[LPS10] Kamal Lodaya, Paritosh Pandya and Simoni S. Shah. Around dot depth two, Proc. 14th DLT, London
(Canada) (Yuan Gao, Hanlin Lu, Shinnosuke Seki and Sheng Yu, eds.), LNCS 6224, 2010, 303–314.

[LS10] Kamal Lodaya and A.V. Sreejith. LTL can be more succinct, Proc. 8th ATVA, Singapore (Ahmed Boua-
jjani and Wei-Ngan Chin, eds.), LNCS 6252, 2010, 245–258.

[ON80] Hiroakira Ono and Akira Nakamura. On the size of refutation Kripke models for some linear modal
and tense logics, Studia Logica 39.4, 1980, 325–333.

[PS13] Paritosh K. Pandya and Simoni S. Shah. Deterministic logics for UL, Proc. 10th ICTAC, Shanghai
(Zhiming Liu, Jim Woodcock and Huibiao Zhu, eds.), LNCS 8049, 2013, 301–318.

[PS15] Paritosh K. Pandya and Simoni S. Shah. Recursion hierarchy for FO-definable languages. (Draft
report, Tata Institute of Fundamental Research, 2015).

[PW97] Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous products, Theory Comp. Syst.
30, 1997, 383–422.

[Pnu77] Amir Pnueli. The temporal logic of programs, Proc. 18th FOCS, Providence (IEEE, 1977), 301–318.
[Sch76] Marcel-Paul Schützenberger. Sur le produit de concaténation non ambigu, Semigroup Forum, 13,

1976, 47–75.
[STV02] Thomas Schwentick, Denis Thérien and Heribert Vollmer. Partially-ordered two-way automata: a new

characterization of DA, Proc. DLT ’01, Vienna (W. Kuich, G. Rozenberg and A. Salomaa, eds.), LNCS
2295, 2002, 239–250.

[Shah12] Simoni S. Shah. Unambiguity and timed languages. PhD thesis (TIFR, 2012).
[SC85] A. Prasad Sistla and Edmund Clarke. The complexity of propositional linear temporal logics, J. ACM

32.3, 1985, 733–749.
[Sree13] A.V. Sreejith. Regular quantifiers in logics. PhD thesis (Homi Bhabha National Institute, 2013).
[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one quantifier alter-

nation, Proc. 30th STOC, Dallas (Jeffrey Vitter, ed.) (ACM, 1998), 234–240.
[TW03] Denis Thérien and Thomas Wilke. Nesting until and since in temporal logic, Theory Comp. Sys. 37.1,

2003, 111–131.
[Tho82] Wolfgang Thomas. Classifying regular events in symbolic logic, J. Comput. Syst. Sci. 25.3, 1982,

360–376.
[VW94] Moshe Vardi and Pierre Wolper. Reasoning about infinite computations, Inform. Comput. 115.1, 1–37,

1994.
[VW08] Moshe Vardi and Thomas Wilke. Automata: from logics to algorithms, in Logic and automata: history

and perspectives (Jörg Flum, Erich Grädel and Thomas Wilke, eds.) (Amsterdam Univ, 2008), 629–
736.

[WI09] Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for FO2 on words,
Log. Meth. Comp. Sci. 5.3:3, 2009, 1–23.

[Wol83] Pierre Wolper. Temporal logic can be more expressive, Inform. Contr. 56.1-2, 1983, 72–93.

	1 Deterministic Logics and Unambiguous Star-free Langauges
	1.1 The logic of Rankers
	1.2 Deterministic Interval Logic UITL
	1.2.1 UITL: Syntax and Semantics
	1.2.2 Ranker Directionality
	1.2.3 Reducing UITL to TL[Xa,Ya]

	1.3 AtNext Logic

	2 Interval Constraints
	2.1 Expressiveness
	2.2 Subformulas and the formula automaton
	2.3 Decision problems
	2.4 Extensions

