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Proof nets provide permutation-independent representations of proofs and are used to investigate

coherence problems for monoidal categories. We investigate a coherence problem concerning Second

Order Multiplicative Linear Logic (MLL2), that is, the one of characterizing the equivalence over

proofs generated by the interpretation of quantifiers by means of ends and coends.

We provide a compact representation of proof nets for a fragment of MLL2 related to the Yoneda

isomorphism. By adapting the “rewiring approach” used in coherence results for ∗-autonomous

categories, we define an equivalence relation over proof nets called “rewitnessing”. We prove that

this relation characterizes, in this fragment, the equivalence generated by coends.

1 Introduction

Proof nets are usually investigated as canonical representations of proofs. For the proof-theorist, the

adjective “canonical” indicates a representation of proofs insensitive to admissible permutations of rules;

for the category-theorist, it indicates a faithful representation of arrows in free monoidal categories (e.g.
∗-autonomous categories), by which coherence results can be obtained.

This twofold approach has been developed extensively in the case of Multiplicative Linear Logic

(see for instance [5, 6]). The use of MLL proof nets to investigate coherence problems relies on the

correspondence between proof nets and a particular class of dinatural transformations (see [5]). As

dinatural transformations provide a well-known interpretation of parametric polymorphism (see [1, 16]),

it is natural to consider the extension of this correspondence to second order Multiplicative Linear Logic

MLL2. This means investigating the “coherence problem” generated by the interpretation of quantifiers

as ends/coends, that is, to look for a faithful proof net representation of coends over a ∗-autonomous

category.

The main difficulty of this extension is that, as is well-known, dinaturality does not scale to second

order (e.g. System F, see [26]): the dinatural interpretation of proofs generates an equivalence over

proofs which strictly extends the equivalence generated by β and η conversions. In particular, coends

induce “generalized permutations” of rules ([36]) to which neither System F proofs nor standard proof

nets for MLL2 are insensitive. For instance, the interpretation of quantifiers as ends/coends (whose

definition is recalled in appendix A) equates the distinct System F derivations in fig. 1a as well as the

distinct proof nets in fig. 1b. From these examples it can be seen that such generalized permutations do

not preserve the witnesses of existential quantification (or, equivalently, of the elimination of universal

quantification).

Several well-known issues in the System F representation of categorial structures can be related to

this phenomenon. For instance, the failure of universality for the “Russell-Prawitz” translation of con-

nectives (e.g. the failure of the isomorphism A⊗B ≃ ∀X((A⊸ B⊸ X)⊸ X)), and the failure of ini-

tiality for the System F representation of initial algebras (i.e. the failure of the isomorphism µX .T (X)≃
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(b) Failure of dinaturality for proof nets

Figure 1: Failure of dinaturality in System F and MLL2

∀X((T(X) ⇒ X)⇒ X)). In such cases, the failure is solved by considering proofs modulo the equiva-

lence induced by dinaturality (see [33, 17]). All these can be seen as instances of a more general prob-

lem, namely the fact that the Yoneda isomorphism Nat(C(a,x),F) ≃ F(a) corresponds, in the language

of MLL2, to a series of logical equivalences of the form ∀X((A⊸ X)⊸ F[X ]))≃ F [A/X ] which fail to

be isomorphisms of types. In this paper we investigate the possibility to provide a faithful representation

of the Yoneda isomorphism, and more generally of ends and coends, by means of MLL2 proof nets.

As a consequence of the isomorphism ∀X(X⊸ X)≃ 1, which is a particular instance of the Yoneda

isomorphism just recalled, the proof net representation of quantifiers as ends and coends must include a

faithful representation of multiplicative units. From this we can deduce some a priori limitations to our

enterprise: it is well-known that no canonical representation of MLL with multiplicative units can have

both a tractable correctness criterion and a tractable translation from sequent calculus ([18]). However, in

usual approaches to multiplicative units proof nets are considered modulo an equivalence relation called

rewiring ([37, 6, 22]), which provides a partial solution to this problem. The “rewiring approach” ([22])

allows to circumvent the complexity of checking arrows equivalence in the free ∗-autonomous category

by isolating the complex part into a geometrically intuitive equivalence relation.

We define a compact representation of proof nets (called ∃-linkings) for the fragment of MLL2 which

adapts the rewiring technique to second order quantification. We consider the system MLL2Y , in which

quantification ∀XA is restricted to “Yoneda formulas”, i.e. formulas of the form ∀X((
⊗n

i Ci ⊸ X)⊸
D[X ]). This fragment contains the multiplicative “Russell-Prawitz” formulas as well as the translation of

multiplicative units. In our approach rewiring is replaced by rewitnessing, an equivalence relation which

allows to rename the witnesses of existential quantifiers. This approach is related to rewiring in the sense

that, when restricted to the second order translation of units, ∃-linkings correspond exactly to the “lax

linkings” in [22].

Our main result (theorem 2) is that the equivalence over proofs generated by coends coincides ex-

actly with the rewitnessing equivalence over ∃-linkings. More precisely, we define an equivalence ≃ε

over standard MLL2 proof nets, where two proof nets are equivalent when their interpretations in any

dinatural model coincide, and we show that, within the fragment MLL2Y , π ≃ε π ′ holds iff the associ-

ated ∃-linkings ℓπ and ℓπ ′ are equivalent up to rewitnessing. To prove this, we construct an isomorphism

between the category generated by MLL2 proof nets modulo the equivalence induced by dinaturality

and the category generated by ∃-linking modulo rewitnessing. The proof that this is an isomorphism

will essentially rely on the “true” Yoneda isomorphism. These results imply that ∃-linkings form a ∗-

autonomous category in which ∀X(X ⊸ X) is the tensor unit and provide a faithful representation of

coends.

In the category of ∃-linkings the Yoneda isomorphism is a true isomorphism and the “Russell-

Prawitz” isomorphisms like A⊗B ≃∀X((A⊸ B⊸ X)⊸ X) hold. The representation of initial algebras

falls outside the scope of the fragment MLLY , due to the more complex shape of the formulas involved.
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However, following the ideas in [38], a generalization of the approach here presented might yield similar

results for the representation of initial algebras.

Related work Dinaturality is a well-investigated property of System F and is usually related to para-

metric polymorphism (see [1, 33]). The connections between dinaturality, coherence and proof nets are

well-investigated in the case of MLL, with or without units ([4, 5, 6, 24, 22, 19, 30, 20]). An extensive

literature exists on coends in monoidal categories (see [27] for a survey). String diagram representations

of some coends can be found in the literature on Hopf algebras and their application to conformal field

theory ([23, 12]). Such coends are all of the restricted form considered in this paper and their represen-

tation seems comparable to the one here proposed. A different approach to quantifiers as ends/coends

over a symmetric monoidal closed category appears in [31], through a bifibrational reformulation of the

Lawvere’s presheaf hyperdoctrine in the 2-category of distributors.

The universality problem for the “Russell-Prawitz” translation is related to the instantiation overflow

property ([10]), by which one can transform the System F proofs obtained by this translation into proofs

in Fat or atomic System F, which have the desired properties (see [9]). In [32] is shown that the atomized

proofs are equivalent to the original ones modulo dinaturality. ∃-linkings provide a very simple approach

to instantiation overflow, to be investigated in the future, as the transformation from F to Fat corresponds

to rewitnessing.

The representation of proof nets here adopted is inspired from results on MLL with units ([37, 6, 22])

and on MLL1 ([21]). Proof nets for first-order and second order quantifers were first conceived by

means of boxes ([13]). Later, Girard proposed two distinct boxes-free formalisms (in [14, 15] for MLL1

but extendable to MLL2, see [8]), the second of which is referred here as “Girard nets”. Different

refinements of proof nets for MLL1 and MLL2 have been proposed ([29, 21] for MLL1 and [35] for

MLL2) to investigate variable dependency issues related to Herbrand theorem and unification, which are

not considered here.

2 Girard nets and their interpretation in dinatural models

We let L 2 be the language generated by a countable set of variables X ,Y,Z, · · · ∈ Var and their negations

X⊥,Y⊥,Z⊥, . . . and the connectives ⊗,`,∀,∃. Negation is extended in an obvious way into an equiva-

lence relation over formulas. By sequents Γ,∆, . . . we indicate finite multisets of formulas. A sequent Γ

is clean when no variable occurs both free and bound in Γ and any variable in Γ is bound by at most one

∀ or ∃ connective.

By MLL2 we indicate the standard sequent calculus over L 2. [15] describes proof nets for first-order

MLL. Both the description of proof structures and the correctness criterion can be straightforwardly

turned into a definition of proof structures and proof nets for MLL2 (see for instance [8]). We indicate

the latter as Girard proof structures and Girard nets (shortly, G-proof structures and G-nets1). We let

G indicate the category of G-nets, whose objects are the types of MLL2 and where G(A,B) is the set of

cut-free G-nets of conclusions A⊥,B (with composition given by cut-elimination).

1In [15] the definition of proof structures is based on two conditions: (1) that any ∀ link has a distinct eigenvariable and

(2) that the conclusions of a proof structures have no free variable (in particular, new constants x are introduced to eliminate

free variables). Moreover, in the definition of the correctness criterion any ∀-link of eigenvariable X can jump on any formula

in which X occurs free. In [21] conditions (1) and (2) are replaced by the equivalent condition that the conclusions of the

proof structure plus the witnesses of existential links must form a clean sequent and the correctness criterion is modified by

demanding that a ∀-link of eigenvariable X can jump on any ∃-link whose witness formula contains free occurrences of X . Here

we will consider this formulation.
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Some useful definitions and properties of ∗-autonomous categories and coends can be found in ap-

pendix A. It is well-known (see [25]) that, if we let P be the category of MLL proof nets and C be any

(strict) ∗-autonomous category, then any map ϕ : Var→ ObC generates a functor Φ : P→ C. We will

now extend this result to MLL2 by considering dinatural models, that is, models in which MLL2 proofs

are interpreted as dinatural transformations [1]. We show how any G-net can be interpreted in a dinatural

model over a ∗-autonomous category C, and we deduce that any map ϕ : Var→ ObC generates a functor

Φ : G→ C.

It is well-known that dinatural transformations do not compose. The standard approach to interpret

second order proofs (see [1]) is thus to restrict to a class of composable dinatural transformations. In

order to interpret quantifiers one considers then relativized ends/coends, i.e. wedges/co-wedges (see

appendix A) which are universal among the class of dinatural transformations in the model.

Definition 1 (dinatural model). Let C to be a (strict) ∗-autonomous category C. A dinatural model over

C is a category F such that

• the objects of F are multi-variant functors over C, including projections of any arity and the

constant functor 1C, and closed with respect to ⊗ and ∗;

• for all objects F,G, F (F,G) is a set of dinatural transformations from F to G, so that F is
∗-autonomous with unit 1C, monoidal product ⊗ and involution ∗;

• the objects of F contain all ends and coends relativized to arrows in F .

The definition above can be recast in the standard fibrational setting of second order models (see [34])

by using properties of ends and coends. Two dinatural models are suggested in [5] and [3]. Moreover,

a free dinatural model is obtained by quotienting the syntactic model of MLL2 under the congruence

generated by all equations expressing the fact that quantifiers correspond to wedges and co-wedges.

In the rest of this section we suppose given a dinatural model F over a (strict) ∗-autonomous category

C . Any formula A ∈ L 2 whose free variables are within X1, . . . ,Xn can be interpreted as a functor

AC,F : (Cop ×C)n → C in F by letting

X
C,F
i (~a,~b) := bi X

C,F
i (~f ,~g) := gi

(A⊗B)C,F := AC,F ⊗BC,F (∀YA)C,F :=
∫

F

y AC,F (y,y) (A⊥)C,F := (AC,F )∗

where
∫

F

y F indicates the end relativized to F . In the following lines, since reference to F is clear,

we will write AC,F as AC and
∫

F

y F as
∫

y F for simplicity. For a clean sequent Γ = A1, . . . ,An, whose

free variables are within X1, . . . ,Xn, we let ΓC := AC
1 ` · · ·`AC

n (where x` y := C(x⊥,y)) if n ≥ 1 and

ΓC = 1C if n = 0.

Lemma 1 (substitution lemma). (A[B/X ])C(x,x) = AC(BC(x,x),BC(x,x)).

Proof. Induction on A. The only delicate case is A = ∀YA′, and, as we can suppose that BC does not de-

pend on y, (A[B/X ])C(x,x)=
∫

y((A
′[B/X ])C((y,x),(y,x)))

[i.h.]
=

∫

y(A
′)C((y,BC),(y,BC))= (

∫

y(A
′)C((y,x),(y,x)))(BC ,BC)=

AC(BC,BC).

Let π be a cut-free G-net of conclusions Γ and let all formulas occurring in π be within X1, . . . ,Xn.

We now show that π can be interpreted as a dinatural transformation πC,F : 1C → ΓC,F 2. As in the case

2As explained in appendix A, we omit for readability reference to variables x1, . . . ,xn.
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of functors, since reference to F is clear, we will simply write πC,F as πC. Similarly to [25] (Th. 2.3.1.

p. 32), we can define πC by induction on a sequentialization of π . We adopt a sequentialization theorem

for G-nets inspired from [21] and described in appendix B.

• if π is an axiom link of conclusions X⊥,X , then πC := 1̂AC .

• if Γ = ∆,A`B and π is obtained from a π ′ of conclusions ∆,A,B by adding a `-link, then πC :=
(π ′)C.

• if Γ = ∆1,∆2,A⊗B and π is obtained from π1 of conclusions ∆1,A and π2 of conclusions ∆2,B,

then πC := t~x ◦
(

(π1)
C ⊗ (π2)

C
)

, where t~x : (∆C
1 ` AC)⊗ (∆C

2 ` BC) → ∆C
1 ` ∆C

2 ` (A ⊗ B)C is

ιAC,∆C
1 ,(∆2`B)C ◦ (ιAC,∆C

2 ,B
C `BC), given the natural transformation ιa,b,c : (a`b)⊗ c → (a⊗ c)`b.

• if Γ = ∆,∀YA and π is obtained from π ′ of conclusions ∆,A, then from (π ′)Cx : 1C → ∆C`AC we

obtain (by applying the natural isomorphism C(a⊗b⊥,c)≃C(a,b`c)) a dinatural transformation

θx : (∆C)⊥ → AC 3. πC is now obtained by the universality of (relativized) ends, as shown by the

diagram below:

(∆C)⊥

∫

y AC(y,y) AC(a,a)

AC(b,b) AC(a,b)

θa

θb

πC

δ AC

a

δ AC

b
AC(a, f )

AC( f ,b)

• if Γ = ∆,∃YA and π is obtained from π ′ of conclusions ∆,A[B/X ], then πC is obtained from (π ′)C

by the chain of arrows below (by exploiting lemma 1):

1C ∆C`AC(BC,BC)
∫ x(∆C`AC(x,x)) ∆C`

∫ x
AC(x,x)

(π ′)C ω∆C`AC

BC ν

where ν is given in equation A.5 in appendix A.

Remark 1. It is well-known that MLL proof nets can be interpreted as (composable) dinatural transfor-

mations over any ∗-autonomous category C [5], without requiring a dinatural model over C to exist. This

fact does not seem to scale to MLL2, since the last step of the definition above exploits the composition

of two dinatural transformations.

We show now that the definition of πC does not depend on the sequentialization chosen. We must

consider all possible permutations of rules in a sequentialization of πC. We call a ∃ link simple if it

has no incoming jump. For readability we will often confuse formulas A and proof nets π with their

interpretations AC and πC.

• permutations between `,∀ and simple ∃:

(`/`) We can argue as in [25].

(`/∀) π1,π2, of conclusions Γ,A`B,∀XC come from π ′ of conclusions Γ,A,B,C. The claim

follows from the fact that the introduction of ` does not change the interpretation.

(∀/∀) π1,π2, of conclusions Γ,∀XA,∀YB come from π ′ of conclusions Γ,A,B. The claim fol-

lows from
∫

x AC(x,x)`
∫

y BC(y,y)
Eq. A.1
≃

∫

x

∫

y(A
C(x,x)`BC(y,y))

Eq. A.3
≃

∫

y

∫

x(A
C(x,x)`

BC(y,y))
Eq. A.1
≃

∫

x AC(x,x)`
∫

y BC(y,y).

(`/∃) Similar to case (`/∀).

3More precisely, θx is θx1,...,xn,x and comes from (π ′)Cx1,...,xn,x, where (∆C)⊥ does not depend on x.
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(∀/∃) π1,π2 of conclusions ∀XA,∃YB (we omit contexts Γ for simplicity) come from π ′ of con-

clusions A,B[C/Y ], where C has no free occurrence of X . We let c = CC, θ indicate the

translation of the G-net of conclusions ∀XA,B[C/Y ] and σx indicate the translation of the

G-net of conclusions A,∃Y B, so that π1 = (
∫

x A`ωB
c )◦θ and π2 is the universality arrow in

the dinaturality diagram for σx. Then π1 = π2 follows from the universality of π2, as shown

by the diagram below:

1C

∫

x A`B(c,c) A(a,a)`B(c,c)

∫

x(A`
∫ y

B)≃
∫

x A`
∫ y

B A(a,a)`
∫ y

B

A(b,b)`B(c,c) A(a,b)`B(c,c)

A(b,b)`
∫ y

B A(a,b)`
∫ y

B

σa
π ′

a

σb

π ′
b

θ
π2

δ A
a `B(c,c)

δ A
b `B(c,c)

∫

x A`ωB
c

A(a, f )`B(c,c)

A`ωB
c

δ A
a `

∫ y
B

δ A
b `

∫ y
B

A(a, f )`
∫ y

B
A( f ,b)`B(c,c)

A`ωB
c A`ωB

c

A( f ,b)`
∫ y

B

(∃/∃) Similar to case (∀/∀).

• permutations between a splitting ⊗ and `,∀ or simple ∃:

(⊗/`) We can argue as in [25].

(⊗/∀) π1,π2, of conclusions A⊗C,∀XB (we omit contexts Γ,∆ for simplicity) are obtained from

σ , of conclusions A,B and τ , of conclusion C, so that π1 = ιA,
∫

x B,C ◦ (
∫

x σ ⊗ τ), where
∫

x σ is

the interpretation of the G-net obtained from σ by adding a ∀-link and π2 is the universality

arrow in the universality diagram for ιA,B(x),C ◦ (σx ⊗ τ). Then π1 = π2 follows from the

universality of π2, as shown by the diagram below.

1C

(A`
∫

x B)⊗C (A`B(a,a))⊗C

(A⊗C)`
∫

x B ≃
∫

x((A⊗C)`B) (A⊗C)`B(a,a)

(A`B(b,b))⊗C

(A⊗C)`B(b,b) (A⊗C)`B(a,b)

π2

σa⊗τ

σb⊗τ

∫

x σ⊗τ
(A`δ B

a )⊗C

(A`δ B
b )⊗C

ιA,
∫

x B,C

ιA,B(a,a),C

(A⊗C)`δ B
a

(A⊗C)`δ B
b

(A⊗C)`B(a, f )

ιA,B(b,b),C

(A⊗C)`B( f ,b)

(⊗/∃) π1,π2, of conclusions A⊗D,∃XB (again, we omit contexts Γ,∆ for simplicity) are obtained

from σ , of conclusions A,B[C/X ] and τ , of conclusions D, so that π1 = ιA,
∫ x

B,D ◦ (
∫ x σ ⊗ τ),

where c = CC,
∫ x σ = (A`ωB

c ) ◦σ is the interpretation of the G-net obtained from σ by

adding a ∃-link and π2 = ((A⊗D)`ωB
c ) ◦ ιA,B(c,c),D ◦ (σ ⊗ τ). Then π1 = π2 follows from

the naturality of ι , as shown in the diagram below.

(A`B[C/X ])⊗D (A⊗D)`B[C/X ]

1C

(A`
∫ x

B)⊗D (A⊗D)`
∫ x

B

(A`ωB
c )⊗D

ιA,B[C/X ],D

(A⊗D)`ωB
c

σ⊗τ

(
∫ x σ)⊗τ

ιA,
∫ x B,D
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• permutations between splitting ⊗: we can argue as in [25].

The definition above can be extended to the case of a G-net with cuts: if π has conclusions Γ and cut-

formulas B1, . . . ,Bn, then we can transform π into a G-net πcut of conclusions Γ, [B1 ⊗B⊥
1 , . . . ,Bn ⊗B⊥

n ].
Then we can define πC as (idΓC `⊥̂BC

1
` · · ·`⊥̂BC

n
)◦πC

cut . The following proposition shows that if the G-

net π reduces to the cut-free G-net π0, then πC = πC
0 . Hence it shows that the denotation πC is invariant

with respect to reduction.

Proposition 1. Let π be a G-net with cuts of conclusions Γ and π0 be the G-net obtained from π by

eliminating all cuts. Then πC = πC
0 .

Proof. We consider a reduction sequence of π which follows a sequentialization, hence such that any

time a cut is eliminated, this cut corresponds to a splitting tensor of π . As this reduction sequence is

finite and terminates on π0 (by strong normalization and confluence), we can argue by induction on its

length. The cases of MLL cuts can be treated by arguing as in the proof of Lemma 2.3.4, p. 36, of

[25]. We consider then the case of a cut ∀/∃. Let π be a G-net of conclusions Γ, [∀XA⊗∃XA⊥] and

let π ′ be the G-net of conclusions Γ, [A[B/X ]⊗A⊥[B/X ]] obtained by applying one reduction step to π ′.

We must show that σ1 = (ΓC` ⊥̂∫

x AC(x,x))◦πC is equal to σ2 = (ΓC` ⊥̂AC(b,b))◦ (π
′)C, where b = BC.

Since the ⊗-link is splitting, Γ = Γ1,Γ2 and π (resp. π ′) splits into π1 of conclusions Γ1,∀XA (resp π ′
1

of conclusions Γ1,A[B/X ]) and π2 of conclusions Γ2,∃XA⊥ (resp. π ′
2 of conclusions Γ2,A

⊥[B/X ]). The

claim follows then from the induction hypothesis and the commutation of the diagram below, which is

a consequence of the dinaturality of ⊥̂x and of the fact that ωA⊥

b = (δ A
b )

⊥ (as before, for readability we

confuse formulas A and proof nets π with their interpretations AC and πC).

A(b,b)⊗A⊥(b,b)

Γ⊥
1 ⊗Γ⊥

2

∫

x A(x,x)⊗A⊥(b,b) ⊥C

∫

x A(x,x)⊗
∫ y

A⊥(y,y)

⊥̂A(b,b)

(π ′
1)b⊗π ′

2

π1⊗π ′
2

π1⊗π2

δ A
b ⊗A⊥

∫

x A⊗(δ A
b )

⊥

⊥̂∫

x A

Any map φ : Var→ObC extends into a map ϕ : L 2 →ObC by letting (A⊗B)ϕ =Aϕ ⊗Bϕ , (∀XA)ϕ =
∫

F

x Aϕ(x,x) and (A⊥)ϕ = (Aϕ)⊥. The following can be verified by induction on formulas:

Lemma 2. For each map φ : Var→ ObC and each sequent Γ, ΓC(X
φ
1 , . . . ,X

φ
n ) = Γφ .

By letting Φ(π) := πC(X
φ
1 , . . . ,X

φ
n ), for ϕ : Var→ ObC, we finally get:

Theorem 1 (functor Φ : G→C). For all ϕ : Var→ ObC there exists a functor Φ : G→ C such that, for

all A ∈ L
2, Φ(A) = Aϕ .

To account for multiplicative units we must introduce extended G-proof structures, i.e. G-proof

structures including two links with no premiss and unique conclusions 1 and ⊥, respectively, and with

lax thinning edges (in the sense of [22]) connecting any occurrence of ⊥ with a node. Extended G-

nets are defined with the usual criterion. Cut-elimination extends straightforwardly to extended G-nets.

Extended G-nets can be sequentialized into the sequent calculus for MLL2 with units.

The interpretation πC extends in a straightforward way to extended G-nets. When no quantifier

appears in an extended G-net π , then this net corresponds to a lax linking in the sense of [22], p.22. We

will exploit the result contained in [22] that the category Lax of lax linkings modulo rewiring (see section

6) is the free ∗-autonomous category.

We can now define the equivalence relation generated by the interpretation of G-nets:
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Definition 2 (equivalence ≃ε ). We let ≃ε be the equivalence relation over G-nets given by π ≃ε π ′ iff

πC,F = (π ′)C,F , for any dinatural model F over a ∗-autonomous category C. We let Gε be the category

of cut-free G-nets considered modulo ≃ε .

From proposition 1 it follows that ≃ε includes βη-equivalence (hence it is a congruence). The

following example shows that ≃ε strictly extends βη-equivalence. In the next section we will consider

a more general example related to the Yoneda isomorphism.

Example 1. The category G is not ∗-autonomous (while Gε is). In particular, ∀X(X⊥`X) is not a

tensor unit in G: by composing any G-net in G(Y ⊗∀X(X⊥`X),Y ) with the unique G-net in G(Y,Y ⊗
∀X(X⊥`X)) one cannot get idY⊗∀X(X⊥`X).

3 The Yoneda translation

We introduce a way to translate proof nets in (a fragment of) MLL2 into proof nets in MLL which is re-

lated to the Yoneda isomorphism. The latter is usually stated as a natural bijection h :NatC(C(a,x),F(x))≃
F(a), where F : C→ Set and a ∈ ObC. The maps h and h−1 are defined by

h(θx) = θa(ida) (θx ∈ NatC(C(a,x),F(x)))
(h−1(z))x( f ) = F( f )(z) (z ∈ F(a), f ∈C(a,x))

(3.1)

In a dinatural model F , if F,G are covariant functors, F (F,G) ≃ F (1C,
∫

F

x F(x)⊸ G(x)) as a

consequence of the universality of (relativized) ends and the Yoneda isomorphism can be restated as the

isomorphism below:

h : F

(

1C,
∫

F

x
(F ⊸ x)⊸ G(x)

)

≃ F (1C,G◦F) (3.2)

This isomorphism can be expressed in the language of MLL2 by equivalences of the form ∀X((C⊸
X)⊸ D[X ]) ≃ D[C/X ], where D[X ] is a formula in which X occurs only positively. This leads to the

following definition:

Definition 3 (Yoneda formula). Given a variable X ∈ Var and a formula A ∈ L 2, A is Yoneda in X

(resp. co-Yoneda in X) if A (resp. A⊥) is of the form (
⊗n

i Ci ⊗X⊥)`D[X ]4, where X does not occur in

any of the Ci and D[X ] has a unique, positive, occurrence of X.

We let L 2
Y

⊂ L 2 be the language obtained by restricting ∀ quantification (resp. ∃ quantification) to

Yoneda (resp. co-Yoneda) formulas. In other words ∀XA ∈ L 2
Y

(resp. ∃XA ∈ L 2
Y

) only if A ∈ L 2
Y

and

A is Yoneda in X (resp. co-Yoneda in X ). We indicate by MLL2Y the restriction of G-nets to L 2
Y

.

The Yoneda isomorphism induces a translation from MLL2Y formulas into propositional formulas:

the Yoneda translation AY of a formula A ∈ L 2
Y

is the multiplicative formula obtained by replacing

systematically ∀X((
⊗n

i Ci ⊗X⊥)`D[X ]) by D[
⊗n

i Ci ⊗1] and ∃X((
˙n

i Ci `X)⊗D[X⊥]) by D[
˙n

i Ci `
⊥]. The formulas ∀X(X⊥`X) and ∃X(X ⊗X⊥) translate the multiplicative units 1,⊥. We let L1,⊥ ⊂
L 2

Y
be the language obtained by restricting ∀XA to A=X⊥`X and ∃XA to A=X⊗X⊥. We let MLL21,⊥

be the restriction of G-nets to L1,⊥.

Let us fix a dinatural model F over a C. For any formula A Yoneda in X , the isomorphism 3.2

takes the form hA : (∀XA)C,F → A
C,F
Y

5. hA can be represented by means of the extended G-nets YoA
1 ∈

4Given a formula A and a finite (possibly empty) sequence of formulas C1, . . . ,Cn, we indicate by
⊗n

i Ci ⊗A (resp.
˙n

i Ci `
A) the formula C1 ⊗·· ·⊗Cn ⊗A (resp. C1 ` · · ·`Cn `A).

5It is easily seen that the Yoneda isomorphism can be restated for relativized coends in a dinatural model.
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YoA
1 =

D[
˙n

i Ci ⊗1]⊥

˙n
i Ci ⊗1 X⊥

D[X ]⊗

`

∀

YoA
2 =

D[
˙n

i Ci ⊗1]

D[
˙n

i Ci ⊗1]⊥
˙n

i Ci ⊗1

⊗n
i C⊥

i `⊥`

⊗

∃

Figure 2: G-nets for the Yoneda isomorphism

G(∀XA,AY ) and YoA
2 ∈ G(AY ,∀XA) illustrated in figure 2 (where the blue arrows correspond to lax

thinning edges). By inspecting the behavior of these G-nets with respect to cut-elimination one easily

sees that they correspond to hA in the following sense:

Lemma 3 (Yoneda isomorphism for G-nets). Let A be Yoneda in X,

1. For all G-net π of conclusion ∀XA, (YoA
1 ◦π)C,F = hA(π

C,F ).

2. For all G-net π of conclusion ∃XA⊥, (YoA
2 ◦π)C,F = h−1

A (πC,F ).

Let GY (resp. G
Y
ε ) be the subcategory of G made of G-nets (resp. G-nets modulo ≃ε) in the

fragment MLL2Y . By using the extended G-nets YoA
1 ,YoA

2 , the Yoneda translation can be extended into

a functor Yon : GY → Lax, where Lax is the category of lax linkings for MLL recalled in the previous

section. The functor Yon associates to a L 2
Y

formula A its translation AY and to a G-net π of conclusions

Γ the lax linking Yon(π) of conclusions ΓY obtained by cutting any occurrence of ∀XA (resp. ∃XA⊥) in

π with YoA
1 (resp. with YoA

2 ).

More precisely, πY is constructed as follows: since π is sequentializable, for any ∃-link of conclusion

∃XA, there exists a sub-net πA of conclusions Γ,A[B/X ] from which π can be obtained by first adding

the ∃-link and then adding other links. Starting from the topmost ∃-links in the sequentialization of

π , let us replace the associated sub-nets πA with the sub-net π∗
A obtained by cutting πA with Yo1

A and

then reducing this cut. After eliminating all ∃-links, the same construction, with Yo2
A in place of Yo1

A

allows to eliminate ∀-links. πY is clearly independent from the sequentialization chosen. However, by

reasoning by induction on the sequentialization order one can be convinced that all cuts so introduced

can be eliminated. A simple verification also shows that the transformation just defined is functorial (i.e.

it preserves identity and composition).

As a functor from G
Y to Lax, Yon is not faithful: for instance, the composition YoA

1 ◦YoA
2 is not

equal to the identity on ∀XA, while its translation yields the identity on AY . This implies that the G-net

representation of the Yoneda isomorphism is not an isomorphism in G
Y . This is another way to say that

the equivalence ≃ε strictly extends βη-equivalence of G-nets.

However, the Yoneda isomorphism becomes an isomorphism of G-nets as soon as we consider these

modulo ≃ε . More generally, by applying the “true” Yoneda isomorphism as well as lemma 3, we obtain

the following:

Lemma 4. Yon is faithful as a functor from G
Y
ε to Lax.

In the next section we will introduce a compact representation of G-nets which allows to compute

the equivalence ≃ε in a syntactic way.
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4 Linkings for MLL2Y

In this section we introduce a compact representation of proof nets for MLL2Y . We adopt a notion of

linking inspired from [22, 21] and a notion of rewiring inspired from [6, 18, 22] (in which the role of

thinning edges is given by witness edges). In particular, the restriction to L 2
1,⊥ yields a formalism which

is equivalent to lax linkings for MLL (lemma 8).

Given a formula A (resp. a sequent Γ) we let tA = (nA,eA) (resp. tΓ = (nΓ,eΓ)) be its parse tree

(resp. parse forest). We will often confuse the nodes of Γ with the associated formulas. Let Γ be a clean

sequent. An edge e is a pair of leaves of tΓ consisting in two occurrences of opposite polarity of the

same variables. Any ∃-link in tΓ has a distinguished eigenvariable. A variable is an existential variable

if it occurs quantified existentially. We will indicate existential variables as X,Y, . . . , to stress that these

variables are treated as “unknown variables”. A formula containing no free occurrences of existential

variables will be called a ground formula. Since in all formulas of the form ∃XA, A is co-Yoneda in X ,

existential variables come in pairs, called co-edges. We let Γ∃ be the set of co-edges of Γ. Any co-edge

c is uniquely associated with an existential formula Ac. For any formula B and co-edge c, we say that B

depends on c when c = (X,X⊥) and X occurs free in B.

A linking of Γ is a set of disjoint edges whose union contains all but the existential variables of Γ.

A witnessing function over Γ is an injective function W : Γ∃ → nΓ, associating any co-edge with a node

of Γ. We will represent witnessing functions by using colored and dotted arrows, called witness edges,

going from the two nodes of a co-edge c to the formula W (c). An ∃-linking over Γ is a pair ℓ= (E,W ),
where E is a linking over Γ and W is a witnessing function over Γ. Examples of ∃-linkings are shown in

fig. 3c.

Given a witnessing function W , we let the dependency graph of W be the directed graph DW with

nodes the co-edges and arrows c → c′ when W (c) depends on c′. We call a witnessing function W acyclic

when the graph DW is directed acyclic. We call ℓ = (E,W ) acyclic when W is acyclic. When DW is

acyclic, the witnessing function W allows to associate a ground formula (called a ground witness) GW (c)
to any co-edge: if c is a leaf of DW , then W (c) is a already ground formula, so GW (c) :=W (c); other-

wise, if DW contains the edges (c,c1), . . . ,(c,cn), W (c) depends on the existential variables X1, . . . ,Xn

associated to the co-edges c1, . . . ,cn, respectively, then by induction on the well-founded order induced

by DW , we can suppose the GW (ci) well-defined and put GW (c) :=W (c)[GW (c1)/X1, . . . ,GW (cn)/Xn].

Acyclic ∃-linkings provide a compact representation of G-proof structures, since to an ∃-linking

ℓ = (E,W ) can be associated a unique G-proof structure π(ℓ) as follows: starting from co-edges which

are leaves in DW , we repeatedly apply to the graph E ∪ tΓ, recursively on DW , the co-edge expansion

operation shown in fig. 3a, which instantiates the unknown variable of a co-edge c with its ground

witness GW (c). An ∃-linking ℓ is correct when it is acyclic and π(ℓ) is a G-net.

We introduce an equivalence relation over correct ∃-linkings, called rewitnessing, inspired from the

“rewiring” technique in [6, 18, 22]. Given a witnessing function W , a simple rewitnessing of W is a

witnessing function W ′ obtained by either moving exactly one witness edge from one formula to another

“free” one (i.e. to some formula A such that W−1(A) = /0), or by switching two consecutive witness

edges, i.e. two edges c1,c2 such that W (c1) ∈ c2, as shown in fig. 3b. We let ℓ ∼1 ℓ′ if ℓ = (E,W ),
ℓ′ = (E,W ′) and W ′ is a simple rewitnessing of W . We let ∼ be the reflexive and transitive closure of ∼1.

In fig. 3c are shown ∼-equivalent ∃-linkings over ∃X((Y⊥`X)⊗X⊥),∀X((Y ⊗X⊥)`X). These

correspond to the two ≃ε-equivalent G-nets in fig. 3d. In the next section we will show that rewitnessing

can be used to compute the ε-equivalence. When A is Yoneda in X , we let ID∀XA denote the ∃-linking in

figure 7a.

We let L
∃ be the category of ∃-linkings, whose objects are the formulas of MLL2Y and where
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X D[X]⊥
˙

iC
⊥
i

`

⊗

∃

c
GW (c)

 

GW (c) D[GW (c)]⊥
˙

iC
⊥
i

`

⊗

∃

GW (c)

(a) Expansion of a maximal co-edge

A

B

 

A

B

(1) Moving one witness edge (where W−1(B) = /0)

 

(2) Swapping two witness edges

(b) rewitnessing moves

∃X((Y⊥`X)⊗X⊥) ∀X((Y ⊗X⊥)`X)

∃X((Y⊥`X)⊗X⊥) ∀X((Y ⊗X⊥)`X)

(c) ∼-equivalent ∃-linkings

Y⊥ X

X⊥`

⊗

∃

Y X⊥

X⊗

`

∀

Y⊥ Y

Y⊥`

⊗

∃

Y X⊥

X⊗

`

∀

(d) ≃ε -equivalent G-nets

Figure 3: ∃-linkings and rewitnessing.

ℓ=

A

∃

⊗

X X⊥

π(ℓ) =

A

∃

⊗

A A⊥

ℓY =
A⊥

Figure 4: Local comparison of ℓ, π(ℓ) and ℓY for ⊥∃ = ∃X(X ⊗X⊥).

L
∃(A,B) is the set of ∼-equivalence classes of correct ∃-linkings of conclusions A⊥,B, with composition

given by cut-elimination (see next section). We let L1,⊥ be the restriction of L∃ to MLL21,⊥ formulas.

Similarly to the functor Yon : G→ Lax, we can construct a functor Y : L∃ → Lax for ∃-linkings. The

linking ℓY is obtained in two steps: first, for any co-edge c = (X,X⊥), replace Ac by (Ac)Y , replace the

thinning edge from c to W (c) by a lax thinning edge from ⊥ to W (c), and move all lax thinning edges

pointing to X or X⊥ (or to X⊗X⊥ if Ac =⊥∃) onto W (c); once all co-edges have been eliminated, replace

any universal formula ∀XA by (∀XA)Y and eliminate the unique edge (X⊥,X). The transformation just

described yields then a lax linking EY over the MLL sequent ΓY . Observe that witness edges are replaced

by lax thinning edges, see fig. 4.

By letting ∼lax denote the rewitnessing equivalence over lax linkings, we have:

Lemma 5. ℓ∼ ℓ′ ⇒ ℓY ∼lax ℓ
′
Y

.

Proof. The claim follows from the fact that a rewitnessing move of type (1) (fig. 3b) in ℓ corresponds to

a rewiring move in ℓY , while a rewitnessing move of type (2) in ℓ does not affect ℓY .

5 Cut-elimination for ∃-linkings

We let a cut sequent be a sequent of the form Γ, [∆], where Γ,∆ is a clean sequent and ∆ is a multiset

of formulas, called cut formulas, of the form A⊗A⊥ (that we depict by a configuration of the form
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X X⊥ X
 X

(a)

A⊗B A⊥`B⊥

 

A B A⊥ B⊥

(b)

∀X((
⊗n

i Ci ⊗X⊥)`D[X ]) ∃X((
˙n

i C⊥
i `X)⊗D⊥[X⊥])

B

 

D[
⊗n

i Ci ⊗∀X(X⊥`X)] D⊥[
˙n

i C⊥
i `∃X(X ⊗X⊥)]

B

(c)

∀X(X⊥`X) ∃X(X ⊗X⊥)

B
 B

(d)

Figure 5: Cut elimination local steps.

A A⊥ ).

By an ∃-linking over Γ, [∆] we indicate an ∃-linking over Γ,∆. We call an ∃-linking ℓ= (E,W ) ready

when W−1(A) = /0 for all A occurring in a cut-formula. Cut-elimination relies on the following lemma,

proved in appendix C.

Lemma 6 (“ready lemma”). For any correct ∃-linking ℓ there exists a ready ℓ′ such that ℓ′ ∼ ℓ.

Indeed, by lemma 6 it suffices to apply cut-elimination to ready ∃-linkings. Cut reduction is the

relation over ready ∃-linkings defined by the rewrite rules in figure 5, where in case 5c either n ≥ 1 or

D[X ] 6= X , and, in case 5c and 5d the existence of the lefthand edge is forced by the fact that Γ,∆ is clean.

Observe that the reduction (c) incorporates the Yoneda translation.

We now verify usual properties of cut-elimination.

Lemma 7 (confluence). Cut reduction is confluent.

Proof. Immediate consequence of the locality of the reduction rules.

Proposition 2 (stability). Let ℓ be a correct and ready. If ℓ ℓ′, then ℓ′ is correct.

Proof. For any G-net π and for any formula ∀XA (with dual formula ∃XA⊥) occurring in a cut, let πA

be the G-net obtained by replacing the formula ∀XA (resp. ∃XA⊥ ) by AY (resp. A⊥
Y

) by cutting it with

YoA
1 (resp. YoA

2 ). In other words, we apply the Yoneda translation locally. πA is still a G-net, as π , YoA
1

and YoA
2 are all sequentializable, and the cut introduced can be applied just after the rules introducing the

quantifier of ∀XA (resp. ∃XA⊥).

Now, any cut reduction rule ℓ 7→ ℓ′ induces a transformation of G-nets π(ℓ) 7→∗ π(ℓ′). We must show

then that 7→∗ preserves correctness. This is trivial in cases 5a, 5b and 5d. In case 5c, let the cut-formula

be ∀XA⊗∃XA⊥; then π(ℓ) 7→ π∗, where π∗ can be obtained from πA (which is a G-net as π(ℓ) is a G-net

and G-net reduction preserves correctness) by performing some G-net reduction steps. We conclude then

that π∗ is correct, i.e. ℓ′ is correct.

Strong normalization can be proved in a direct way, without reducibility candidates techniques.

Proposition 3 (strong normalization). Let ℓ be a correct and ready ∃-linking over Γ, [∆]. Then all cut-

reductions of ℓ terminate over a unique correct ∃-linking n f (ℓ) over Γ, called the normal form of ℓ.



160 Proof Nets, Coends and the Yoneda Isomorphism

Proof. We define a measure s(A) over formulas as follows: s(X) = s(X⊥) = 0, s(A ⊗ B) = s(A `
B) = s(A) + s(B) + 1, s(∀X(X⊥ ` X)) = s(∃X(X ⊗ X⊥) = 1 and, when either n ≥ 1 or D[X ] 6= X ,

s(∀X((
⊗n

i Ci ⊗X⊥)`D[X ])) = s(∃X((
˙n

i C⊥
i `X)⊗D[X ]⊥)) = s(D[C])+ 3, where C is either

⊗n
i Ci

or
˙n

i C⊥
i . By letting s(ℓ) be the sum all s(A), where A is a cut-formula, any reduction step makes s(ℓ)

decrease strictly.

By proposition 3 any correct ∃-linking has a unique normal form, up to rewitnessing.

6 Characterization of ε-equivalence

B D[B]⊥
˙

iC
⊥
i

`

⊗

∃

7→

B D[B]⊥ B B⊥
˙

iC
⊥
i

`

⊗

∃

Figure 6: From π to πcut .

We exploit the Yoneda translation to prove that the

compact representation of G-nets by means of ∃-

linkings characterizes the equivalence induced by

ends and coends. We will indeed show that the

translation ℓ→ π(ℓ) yields an isomorphism of cat-

egories L∃ ≃G
Y
ε .

We start by defining the translation ℓ : π 7→ ℓπ

“adjoint” to π : ℓ 7→ π(ℓ). First, for a G-net π , let

πcut be obtained from π by introducing a new cut

for any ∃-link of π as follows: if Ac = ∃X((
⊗n

i Ci `X)
⊗

D[X ]⊥) with premiss (
⊗n

i Ci `B)
⊗

D[B]⊥,

introduce an axiom and a cut over B as illustrated in fig. 6. By inspecting the co-edge expansion in fig.

3a, it can be seen that πcut is of the form π(ℓcut) for a unique ∃-linking with cuts ℓcut . We let then ℓπ be

the normal form of ℓcut . While ℓ= ℓπ(ℓ) holds by construction, the converse equation π = π(ℓπ) does not

hold in general (since cut-elimination of ∃-linking might require rewitnessings). However, we will show

that the weaker π ≃ε π(ℓπ) holds (theorem 2).

We can use the translations π and ℓ to relate the Yoneda translations for G-nets and ∃-linkings as

follows:

Proposition 4. a. Yon◦π = Y .

b. Y ◦ ℓ = Yon.

G
Y
ε L

∃

Lax

Yon
ℓ

π

Y

Proof. a. can be verified by inspecting the reduction steps involved in the transformation of π(ℓ) into

a lax linking. For b. we argue as follows: π is β -equivalent to πcut = π(ℓcut), where ℓcut ∼ ℓπ . Now,

from a. it follows that Yon(π) = Yon(πcut) = Yon(π(ℓcut))∼lax ℓ
cut
Y

. From ℓπ ∼ ℓcut we deduce then, by

lemma 5, that (ℓπ)Y ∼lax ℓ
cut
Y

, hence we conclude (ℓπ)Y ∼lax Yon(π).

From proposition 4 we deduce that if ℓ is correct, ℓY is correct (since ℓY = Yon(π(ℓ))). Moreover,

we deduce that the functor Y is faithful (as Yon is).

The following proposition allows to state that ℓ is indeed a functor ℓ : GY
ε → L

∃.

Proposition 5. If π ≃ε π ′, then ℓπ ∼ ℓπ ′ .

Proposition 5 is deduced from the two lemmas below.

Lemma 8. L
∃ is ∗-autonomous. L1,⊥ is the free ∗-autonomous category.

Proof. That L
∃, with units ∀X(X⊥` X) and ∃X(X ⊗ X⊥), verifies all coherence conditions of a ∗-

autonomous category is a simple verification. The second point follows from the faithfulness of Y

and the fact that Lax is the free ∗-autonomous category ([22]).
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∃X((
˙n

i C⊥
i `X)⊗D[X ]⊥) ∀X((

⊗n
i Ci ⊗X⊥)`D[X ]

(a) Identity ∃-linking

∃X((
˙n

i C⊥
i `X)⊗D[X ]⊥) (

⊗n
i Ci ⊗B⊥)`D[B]

(b) ∃-linking ΩB
A

A(E, ℓ) =
(
˙n

i C⊥
i `E)⊗D[E]⊥ (

⊗n
i Ci ⊗E⊥)`D[F]

ℓ

A(ℓ,F) =
(
˙n

i C⊥
i `F)⊗D[F]⊥ (

⊗n
i Ci ⊗E⊥)`D[F]

ℓ

(c) Functorial action of Yoneda formulas

∃X((
˙n

i C⊥
i `X)⊗D[X ]⊥) (

⊗n
i Ci ⊗E⊥)`D[F]

ℓ
∼

∃X((
˙n

i C⊥
i `X)⊗D[X ]⊥) (

⊗n
i Ci ⊗E⊥)`D[F]

ℓ

(d) ∃ is a co-wedge in L
∃

Figure 7: Existential linkings and co-wedges.

For any A = (
˙

iCi `X)⊗D[X⊥] Yoneda in X and any B ∈ L 2
Y

, let ΩB
A be the correct ∃-linking

in fig. 7b. Moreover, for all B,C ∈ L 2
Y

, we let A(E, ℓ) and A(ℓ,F) be the correct ∃-linking in fig. 7c,

corresponding to the covariant and contravariant functorial action of A on ℓ. The following lemma states

then that the existential quantifier behaves like a co-wedge in L
∃.

Lemma 9. For all A Yoneda in X, E,F ∈ L 2
Y

and ℓ ∈ L
∃(E,F), ΩE

A ◦A(ℓ,E)∼ ΩF
A ◦A(F, ℓ)

Proof. Indeed ΩE
A ◦A(ℓ,E) and ΩF

A ◦A(F, ℓ) differ by a unique rewitnessing, see fig. 7d.

Example 2. The “Yoneda isomorphism” holds in L
∃, as the composition ℓYoA

1
◦ ℓYoA

2
reduces to ID∀XA

(up to rewitnessing).

By relying on the two Yoneda translations we now prove our main result.

Theorem 2. π and ℓ define an isomorphism of categories GY
ε ≃ L

∃.

Proof. We will show that π and ℓ are faithful functors inverse each other. To prove that π is a faithful

functor we must show that the assignment ℓ 7→ π(ℓ) yields an injective function L
∃(A,B)→ G

Y
ε (A,B).

We claim that ℓ ∼ ℓ′ ⇒ π(ℓ) ≃ε π(ℓ′): from ℓ ∼ ℓ′ we deduce by lemma 5 ℓY ∼lax ℓ′
Y

, hence, by

proposition 4 a., Yon(π(ℓ))∼lax Yon(π(ℓ′)), and from the faithfulness of Yon we can conclude π(ℓ)≃ε

π(ℓ′). This shows that π is a function. Functoriality can be easily verified (by showing that π maps

identity linkings into identity G-nets and that it preserves composition). Injectivity is proved as follows:

if π(ℓ)≃ε π(ℓ′) then, by proposition 5, ℓ= ℓπ(ℓ) ∼ ℓπ(ℓ′) = ℓ′.
To prove that ℓ is a faithful functor we must show that the assignment π 7→ ℓπ yields an injective

function G
Y
ε (A,B) → L

∃(A,B). The functionality of ℓ follows from proposition 5. By construction it

can be verified that the functor ℓ translates an identity G-net into an identity ∃-linking and that it preserves

composition. Injectivity is proved as follows: if ℓπ ∼ ℓπ ′ , then by lemma 5, (ℓπ)Y ∼lax (ℓπ ′)Y , hence by

proposition 4 b., Yon(π)∼lax Yon(π ′) and from the faithfulness of Yon we conclude π ≃ε π ′.

Since ℓ= ℓπ(ℓ), it remains to show that π ≃ε π(ℓπ). This follows from ℓπ = ℓπ(ℓπ ) and the faithfulness

of ℓ.

Corollary 3. For all G-nets π,π ′ of conclusions Γ, π ≃ε π ′ iff ℓπ ∼ ℓπ ′ .
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7 Conclusions

We provided a syntactic characterisation of the equational theory generated by ends/coends over Yoneda

formulas in MLL2. Our result relies on the simple structure of Yoneda formulas (1 positive and 1 neg-

ative occurrence of quantified variables) and on the existence of a faithful translation from MLL2Y to

MLL with units. It seems thus plausible that more sophisticated syntactic techniques are required to ex-

tend the characterisation to more expressive fragments of MLL2. In particular, while our result implies

the decidability of the dinatural equivalence ≃ε in MLL2Y , it is not known whether the theory ≃ε is

decidable over full MLL2. However, keeping the Yoneda restriction, it can be expected that similar char-

acterizations can be obtained for more expressive systems like MELL2 (which is as expressive as System

F).

Finally, it might be interesting to compare the theory ≃ε with the equivalence arising from other

models of MLL2 investigated in the literature. For instance, while it is well-known that the coherent

model of second order linear logic [13] is not dinatural ([11]), it can be easily seen that it satisfies the

Yoneda isomorphism. Hence it can be conjectured that the model is injective (in the sense of [7]) with

respect to ∃-linkings for MLL2Y .
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A ∗-autonomous categories and coends

We recall that a ∗-autonomous category is a category C endowed with functors _ ⊗ _ : C2 → C and

_⊥ : Cop → C, an object 1C, the following natural isomorphisms:

αa,b,c : a⊗ (b⊗ c)→ (a⊗b)⊗ c

λa : a⊗1C → a

ρa : 1C⊗a → a

σa,b : a⊗b → b⊗a

and a natural bijection between C(a⊗ b,c) and C(a,b⊥` c), where x` y = C(x⊥,y), satisfying certain

coherence conditions (that we omit here, see [2]). In any ∗-autonomous category C there is a natural

isomorphism A⊥⊥ ≃ A. C is called strict when this isomorphism is an identity.

For the definition of multivariant functors and dinatural transformations the reader can look at [28].

When F : (Cop ⊗C)n+1 → D and the values a1, . . . ,an ∈ ObC are clear from the context, we will will

often abbreviate F((a1, . . . ,an,a),(a1, . . . ,an,b)) as F(a,b).

Given C
∗-autonomous, for all a ∈ ObC, there exist dinatural transformations 1̂x : 1C → x⊥` x and

⊥̂x = 1̂⊥x : x⊗ x⊥ → ⊥C, where ⊥C := 1⊥
C

. It is clear that such transformations exist in all dinatural

model, according to definition 1.

Given categories C,D and a multivariant functor F : (Cop⊗C)n+1 →D, a wedge for F6 (dually, a co-

wedge for F , see [28]) is a pair (C,δx1,...,xn,a) (resp. (D,ωx1,...,xn,a))
7 made of a functor C : (Cop⊗C)n →D

and a dinatural transformation δa : C → F(a,a) (resp. ωa : F(a,a) → D) natural in x1, . . . ,xn. A wedge

(resp. a co-wedge) for F is an end (resp. a coend) when the dinatural transformation δa (resp. ωa) is

universal. This means that for any functor G : (Cop ⊗C)n → D and dinatural transformation θa : G →
F(a,a) (resp. θa : F(a,a) → G) there exists a unique natural transformation h : G →

∫

x F(x,x) (resp.

k :
∫ x

F(x,x) → G) such that the following diagrams commute for all f ∈ C(a,b):

6We give here a functorial definition of ends and coends which can be easily deduced from the usual definition (see [28]).
7We will abbreviate δx1,...,xn,a and ωx1,...,xn,a simply as δa and ωa, respectively.

http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1007/BF01622878
http://dx.doi.org/10.1007/s11225-017-9772-6
http://dx.doi.org/10.1016/j.entcs.2011.02.020
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G

∫

x F(a,a) F(a,a)

F(b,b) F(a,b)

θa

θb

h

δa

δb F(a, f )

F( f ,b)

F(b,a) F(a,a)

F(b,b)
∫ x

F(x,x)

G

F( f ,a)

F(b, f )

θa

ωa

ωb

θb

k

Duality yields
∫

x F = (
∫ x

F⊥)⊥,
∫ x

F = (
∫

x F⊥)⊥ and δa = ω⊥
a , ωa = δ⊥

a .

We recall some basic facts about coends (see [28, 27]):

• Commutation with `/⊗:

∫

x
(F `G(x,x))≃ G`

∫

x
G(x,x) (A.1)

∫ x

(F ⊗G(x,x)) ≃ F ⊗

∫ x

G(x,x) (A.2)

• “Fubini” theorem:
∫

x

∫

y
F ≃

∫

y

∫

x
F (A.3)

∫ x ∫ y

F ≃

∫ y ∫ x

F (A.4)

• Commutation of
∫

x /
∫ x

and `: given a functor F and a multivariant functor G(x,y), there exist

natural transformations

µ :

∫

x
(F `G(x,x))→ F `

∫

x
G(x,x) (A.5)

ν :

∫ x

(F `G(x,x))→ F `
∫ x

G(x,x) (A.6)

In a dinatural model (def. 1) one considers relativized ends and coends, that is, wedges/co-wedges

which are universal with respect to a certain class of (composable) dinatural transformations. All facts

above about ends and coends can be straightforwardly adapted to relativized ends and coends.

B Hughes sequentialization theorem

We adapt the sequentialization algorithm for unification nets in [21] to G-nets. This algorithm is based

on the translation of a unification net into a MLL
− proof net (where MLL

− indicates MLL without units),

called the frame, by a suitable encoding of jumps. The reconstruction of a sequent calculus derivation

exploits then the usual splitting property of MLL
− proof nets. This construction can be straightforwardly

adapted to G-nets, by translating a cut-free G-proof structures into MLL
− proof-structures as follows:

(1) Encode every jump from a ∀ to an ∃ as a new link: for each such jump between formulas ∀XA and

∃Y B, let Z be a fresh variable. Replace ∃Y B by Z⊗∃Y B and ∀XA by Z⊥`∀XA;

(2) Delete quantifiers. After (1) replace every formula ∀XA by A and every formula ∃XA, with premiss

A[B/X ], by A[B/X ].
We let πm, the frame of π , be the MLL

− proof-structure obtained. The following two lemmas are as in

[21].
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Lemma 10. If π is a G-net, πm is a proof net.

Lemma 11. No ⊗ added during the construction of πm splits.

We can now use πm to find splitting tensors in π , yielding the following:

Theorem 4 (sequentialization). If π is a G-net, then π is the translation of some sequent calculus deriva-

tion.

Proof. The sequentialization algorithm for a G-net π is as follows:

1. Start by eliminating negative links, i.e. `,∀ links; in other words, for any link of conclusion A`B

(resp. ∀XA), let π ′ be the G-net obtained by deleting the ` (resp. ∀) link. By induction hypothesis

π ′ is sequentializable, yielding a derivation of Γ−{A`B},A,B (resp. Γ−{∀XA},A), from which

a derivation of Γ can be obtained by a `-rule (resp. by a ∀-rule - we are here supposing that Γ,∀XA

is clean, so X does not occur free in Γ).

2. If, after 1, there are ∃-links with no incoming jumps, eliminate them; in other words, for any such

link of conclusion ∃XA, let π ′ be the G-net obtained by deleting the link. By induction hypothesis

π ′ is sequentializable, yielding a derivation of Γ −{∃XA},A[B/X ], for some formula B, from

which a derivation of Γ can be obtained by a ∃-rule.

3. After 2 all non-axiom links are either ⊗ or ∃ with incoming jumps. If there is none we are done.

Otherwise πm has only ⊗-links, so one must be splitting, and by lemma 11 it corresponds to

a splitting ⊗ in π . By deleting this link we obtain two G-nets π1, π2 yielding, by induction

hypothesis, two derivations of conclusions, respectively, Γ1,A and Γ2,B, where Γ = Γ1,Γ2,A⊗B.

Now, a derivation of Γ is obtained by a ⊗-rule.

C Proof of lemma 6

To prove lemma 6 (the “ready lemma”) we use the following facts, which can be easily established by

looking at π(ℓ):

Lemma 12 (⊥∃-moves). (i.) If Ac = ⊥∃ and W (c) = B occurs in a cut-formula B⊗B⊥, then c can be

rewired on B⊥.

(ii.) If Ac =⊥∃ and W (c) = B, then c can be rewired on any subformula of B.

(iii.) If Ac = ⊥∃ and W (c) = X is the conclusion of an axiom link of conclusions X ,X⊥, then c can be

rewired on X⊥.

From lemma 12 we deduce:

Proposition 6. If for all c ∈ Γ∃, Ac =⊥∃, then ℓ is equivalent to a ready ∃-linking.

Proof. For any cut formula B⊗B⊥, there is at least an axiom link going outside the tree of B and B⊥,

otherwise both B and B⊥ would be provable. Hence, if W (c) is in the tree of a cut formula B⊗B⊥, by

lemma 12 it can be rewitnessed upwards so to pass through an axiom links moving outside the cut.
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ℓ=

π1

π2

C A

`

X

⊗

D[X⊥]
Y Y⊥

⊗

∃ ⊥∃

ℓ′ =

π1

π2

C A

`

X

⊗

D[X⊥]
Y Y⊥

⊗

∃ ⊥∃

Figure 8: From ℓ to ℓ′ by two rewitnessing moves.

π(ℓ) =

π1

π2

A

C A

`
⊗

D[A⊥] A A⊥

A⊥

⊗

∃ ⊥∃

π(ℓ′) =

π1

π2

A

C A A⊥

⊗

⊥∃

`
⊗

∃

D[1∃]

1∃

⊥∃

Figure 9: π(ℓ) and π(ℓ′) are both correct.

Proof of lemma 6. Given ℓ = (E,W ), we will first construct an ∃-linking ℓ∗ = (E,W ∗) such that ℓ ∼ ℓ∗

and for all formula A occurring in a cut, (W ∗)−1(A) is either empty of contains a formula of the form ⊥∃.

From this we can conclude then by applying proposition 12.

Let c = (X,X⊥) ∈ Γ∃ be such that Ac is not of the form ⊥∃ and W (c) = A occurs in a cut. We

can suppose that W−1(X⊥) contains c′ = (Y,Y′) such that Ac′ = ⊥∃ is a conclusion of ℓ and such that

W−1(⊥∃) = /0: if it is not the case then we can add the formula ⊥∃ to the conclusions of ℓ and set W (c′) =
X⊥, as this preserves correctness and does not alter equivalence questions because of the isomorphism

between the conclusions Γ of ℓ and Γ`⊥∃. We let then W ′ be like W but for W ′(c) =⊥∃ and W ′(c′) = A

(as illustrated in figure 8). W ′ is obtained from W by a rewitnessing move of type (2) (switching W (c)
and W (c′) so that c is sent to Y and c′ to A) and a rewitnessing move of type (1) (moving c from Y to

⊥∃). We must then show that ℓ′ = (E,W ′) is correct, so that ℓ ∼ ℓ′. This follows by remarking that the

first rewitnessing move does not change π(ℓ) and that the second rewitnessing move transforms π(ℓ)
into π(ℓ′) (as illustrated in fig. 9), preserving correctness, as it can be seen by inspecting paths in both

graphs. By applying this operation to all co-edges c such that Ac 6= ⊥∃ we obtain the desired ∃-linking

ℓ∗ ∼ ℓ.
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