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We present a translation from Multiplicative Exponential Linear Logic to a simply-typed lambda

calculus with cyclic sharing. This translation is derived from a simple observation on the Int-

construction on traced monoidal categories. It turns out that the translation is a mixture of the

call-by-name CPS translation and the Geometry of Interaction-based interpretation.

1 Introduction

It is often said that linear logic [7] is a resource-sensitive logic. Although this captures only one of the

possible interpretations of linear logic, it is true that we can neatly represent various resource-conscious

phenomena in linear logic. In particular, sharing of resources can be faithfully (and fully) interpreted

in linear logic: there is a fully complete translation from the calculus of acyclic sharing graphs (term

graphs) to the linear lambda calculus of the multiplicative exponential intuitionistic linear logic (MEILL)

[2, 10].1

In this paper we consider a translation in the other direction, with suitably extended source and target

calculi. Specifically, we give a translation from a linear lambda calculus for multiplicative exponential

linear logic (MELL) to a simply-typed lambda calculus with cyclic sharing [9] (higher-order cyclic shar-

ing theory [11]). The translation is derived from the following observation on traced monoidal categories

and the Int-construction [15]:

Theorem 1 Consider a functor F : C → D from a category C to a traced symmetric monoidal category

D . Let N : D → IntD be the canonical embedding of D to the compact closed category IntD obtained

by the Int-construction. Then the composition C
F
→ D

N
→ IntD has a right adjoint if and only if the

functor C
F
→ D

(−)⊗D
−→ D has a right adjoint for all D.

We give a proof of this theorem later, but it is embarrassingly short and easy; readers familiar with

relevant concepts should have no difficulty in showing this by themselves.

Theorem 1, when combined with the categorical semantics, can be applied to turn a model of the

lambda calculus with cyclic sharing to a model of MELL, hence to give a translation from MELL to

the cyclic lambda calculus. Of course, the Int-construction has been widely used to construct models of

linear logic, most notably in the context of Geometry of Interaction [8, 1]. Naturally our translation of the

purely linear (multiplicative) part is essentially the same as the standard Int- or GoI-based interpretation.

The novelty of this work lies in the treatment of the exponential modality !, which is a consequence

of Theorem 1. One small surprise is that the interpretation of intuitionistic (or non-linear) implication

1In [2] the translation from Milner’s action calculi [20] to MEILL is shown to be faithful (equationally complete), while

action calculi correspond to calculi of acyclic sharing graphs [6, 11]. Later the translation has been shown to be fully complete

[10].
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σ → τ = !σ ⊸ τ agrees with the standard call-by-name continuation-passing style (CPS) translation. It

turns out that this coincidence naturally follows from our categorical axiomatics.

We emphasize the semantics-directed nature of this work; the construction on semantic models

comes first, which in turn gives rise to a syntactic translation whose soundness is guaranteed by con-

struction.

Plan of this paper In Section 2, we recall the categorical structure relevant to this work and give a

proof of Theorem 1. In Section 3, we recall the categorical semantics of MELL [25, 5, 14, 18] and the

lambda calculus with cyclic sharing [11, 10, 22], and see how Theorem 1 gives rise to a translation from

MELL to the cyclic lambda calculus. We then recall the calculi in Section 4 and describe the translation

concretely (Section 5). In Section 6, we study the coincidence with the call-by-name CPS translation in

terms of our model constructions.

.

2 Traced monoidal categories and Int-construction

2.1 Preliminaries

Recall that a trace [15] on a symmetric monoidal category C is a family of maps

TrX
A,B : C (A⊗X ,B⊗X)→ C (A,B)

subject to a few axioms. For f : A⊗X → B⊗X , its trace TrX
A,B f : A → B can be drawn as a “feedback”:

f
X

A

X

B
7→ f

☛
✡

✟
✠

A B

A traced symmetric monoidal category is a symmetric monoidal category equipped with a trace.2

A duality between two objects A and B of a monoidal category is determined by a pair of arrows

η : I −→ B⊗A and ε : A⊗B −→ I such that the triangle equalities (ε ⊗ idA) ◦ (idA ⊗η) = idA and

(idB ⊗ ε) ◦ (η ⊗ idB) = idB hold. We say that B is a right dual of A, and A a left dual of B. A compact

closed category is a symmetric monoidal category in which every object has a (right) dual.

Any monoidal full subcategory of a compact closed category is traced. Conversely, a traced sym-

metric monoidal category C gives rise to a compact closed category IntC to which C is fully faithfully

embedded [15]. An object of IntC is a pair of objects of C . A morphism f : (X ,U)→ (Y,V ) in IntC is

a morphism f : X ⊗V →Y ⊗U in C . The composition of f : (X ,U)→ (Y,V ) and g : (Y,V )→ (Z,W ) is

✞
✝

☎
✆

��
f

❅❅
g

��W

X Y

U

Z

The tensor product of (X1,U1) and (X2,U2) is (X1 ⊗X2,U2 ⊗U1), while the unit object is (I, I). The dual

of (X ,U) is (U,X). There is a full faithful traced strong symmetric monoidal functor N : C → IntC

sending X to (X , I).

2The contents of this section are valid for traced balanced monoidal categories and tortile (ribbon) categories as well.
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2.2 The embarrassingly easy theorem

Now we are ready to show Theorem 1:

Consider a functor F : C → D from a category C to a traced symmetric monoidal category

D . Then N ◦F : C → IntD has a right adjoint if and only if F(−)⊗D : C → D has a right

adjoint for all D.

The proof is immediate: we have

IntD(N(F(C)),(Y,D)) = IntD((FC, I),(Y,D)) ∼= D(FC⊗D,Y)

Obviously, N ◦F has a right adjoint iff F(−)⊗D : C → D has a right adjoint for every D.

Example 1 By letting F be the identity functor on D , Theorem 1 says that, for any traced symmetric

monoidal category D , N : D → IntD has a right adjoint if and only if D is closed [13].

Example 2 Let 1 be a one object one arrow category. Giving a functor from 1 to a traced symmetric

monoidal category D is the same as giving an object X of D . That 1 → D
N
→ IntD has a right adjoint

means N(X) = (X , I) is an initial object of IntD . Therefore, Theorem 1 implies that, for an object X of

D , (X , I) is an initial object of IntD if and only if X ⊗D is an initial object of D for every D, i.e., X is a

distributive initial object in D .

3 Categorical models of linear logic and cyclic sharing

3.1 Categorical models of linear logic

A categorical model of Multiplicative Exponential Linear Logic consists of a ∗-autonomous category D

and a linear exponential comonad ! on D , where

• A ∗-autonomous category [4] is a symmetric monoidal closed category equipped with an object ⊥
such that the canonical map D −→ (D ⊸⊥)⊸⊥ is an isomorphism for every D.

• A linear exponential comonad [5, 14] on a symmetric monoidal category is a symmetric monoidal

comonad such that its category of coalgebras is a category of commutative comonoids.

When ! is a linear exponential comonad, its category of coalgebras is a cartesian category (the induced

monoidal product is cartesian). Conversely, any comonad induced by a symmetric monoidal adjunction

between a cartesian category and a symmetric monoidal category is a linear exponential comonad [18].

3.2 Categorical models of higher-order cyclic sharing

A Freyd category [22] consists of a cartesian category C , a symmetric (pre)monoidal category D and an

identity-on-objects strict symmetric (pre)monoidal functor F : C →D . Below we are interested in Freyd

categories F : C → D in which D is monoidal (except Sec. 6). A Freyd category F : C → D is

• closed when the functor F(−)⊗D has a right adjoint (called Kleisli exponential) D ⇒ (−) for

each D.

• traced when D is traced.

We employ the approach taken in our previous work of modelling sharing graphs [11] using Freyd cate-

gories as the key semantic structure.
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1. For modelling first-order acyclic sharing, we use a Freyd category F : C →D where D is supposed

to be monoidal. Values (including variables=wires) are interpreted in the cartesian category C ,

while terms with sharing are interpreted in the monoidal category D .

2. For modelling higher-order structure (i.e. lambda abstraction and application), we use a closed

Freyd category. The adjunction D(FC⊗D,E)∼= C (C,D ⇒ E) says that currying turns a term to

a value.

3. For modelling cyclic sharing, we use a traced Freyd category.

4. Finally, for modelling higher-order cyclic sharing (lambda calculus with cyclic sharing), we use a

traced closed Freyd category.

3.3 Relating models

We apply Theorem 1 to turn a model of higher-order cyclic sharing (traced closed Freyd category) to a

model of MELL (∗-autonomous category with a linear exponential comonad). As an immediate corollary

to the theorem, we have:

Proposition 1 A traced Freyd category F : C → D is closed if and only if N ◦F : C → IntD has a right

adjoint.

Now suppose that we have a traced closed Freyd category F : C → D with F(−)⊗D ⊣ D ⇒ (−) for

each D. Then the strong symmetric monoidal functor NF : C → IntD has a right adjoint sending (X ,U)
to U ⇒ X . This symmetric monoidal adjunction gives rise to a linear exponential comonad ! on IntD

sending (X ,U) to (U ⇒ X , I). Since IntD is compact closed, it is ∗-autonomous. Thus IntD with !

gives a model of MELL.

By applying this construction to the term model of the lambda calculus with cyclic sharing, we obtain

a translation from MELL to the cyclic lambda calculus. This will be spelled out in the rest of this paper.

4 The calculi

4.1 A lambda calculus with cyclic sharing

We give a simply typed lambda calculus with cyclic sharing λletrec (Figure 1). This is essentially the same

calculus as the higher-order cyclic sharing theory in [10], but slightly modified for a better match with

semantic models (closed traced Freyd categories); the only differences are (i) treatment of product types

(strictly associative or not) and (ii) treatment of variables (allowing variables on product types or not).

Readers familar with Moggi’s computational lambda calculus [21] should note that the λletrec-calculus

can be regarded as the commutative3 version of the computational lambda calculus enriched with the

recursive let-binding letrec for expressing cyclic sharing, as emphasized in [9].

As shown in [10], the λletrec-calculus is sound and complete for models given by closed traced Freyd

categories.

3Here “commutativity” means the commutativity of effects let x be L in let y be M in N = let y be M in let x be L in N.

At the level of semantic models, this amounts to forcing the Freyd categories to be monoidal (rather than premonoidal), and to

assuming the strong monads to be commutative.
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Types σ ::= b | σ ⇒ σ | σ ×σ | 1

Declarations, terms, values and contexts

Declarations D ::= /0 | xσ
be M,D

Terms M ::= x | λ xσ .M | M M | (M,M) | πi M | ∗ | letrec D in M

Values V ::= x | λ xσ .M | (V,V ) | πiV | ∗
Contexts C ::= [−] | C M | MC | (C,M) | (M,C)

In the term letrec D in M, the declaration D must be non-empty.

Typing

Γ1,x : σ ,Γ2 ⊢ x : σ

Γ,x : σ ⊢ M : τ

Γ ⊢ λ xσ .M : σ ⇒ τ
Γ ⊢ M : σ ⇒ τ Γ ⊢ N : σ

Γ ⊢ M N : τ

Γ ⊢ M : σ Γ ⊢ N : τ
Γ ⊢ (M,N) : σ × τ

Γ ⊢ M : σ1 ×σ2

Γ ⊢ πi M : σi Γ ⊢ ∗ : 1

Γ,x1 : σ1, . . . ,xn : σn ⊢ Mi : σi (i = 1, . . . ,n) Γ,x1 : σ1, . . . ,xn : σn ⊢ N : σ

Γ ⊢ letrec x
σ1
1 be M1, . . . ,x

σn
n be Mn in N : σ

Notations We make use of the following syntax sugar.

let xσ
be M in N ≡ (λ xσ .N)M

λ (xσ1 ,yσ2).M ≡ λ zσ1×σ2 .M[x := π1 z,y := π2 z]
let (xσ1 ,yσ2) be M in N ≡ (λ (xσ1 ,yσ2).N)M

letrec D1,(x,y) be M,D2 in N ≡ letrec D1,z be M,x be π1 z,y be π2 z,D2 in N

Axioms

β⇒
v (λ x.M)V = M[x :=V ]

η⇒
v λ x.V x = V (x 6∈ FV (V ))

β×
v πi (V1,V2) = Vi

η×
v (π1 V,π2V ) = V

β 1
v V = ∗ (V : 1)

Commlet C[M] = let x be M in C[x] (x 6∈ FV (C))

Assoc1 letrec x be (letrec D1 in M),D2 in N = letrec D1,x be M,D2 in N

Assoc2 letrec D1 in letrec D2 in M = letrec D1,D2 in M

Perm letrec D1,x be L,y be M,D2 in N = letrec D1,y be M,x be L,D2 in N

Commletrec C[letrec D in M] = letrec D in C[M]
σ1 letrec x be V,D in M = letrec x be V,D[x :=V ] in M[x :=V ]
σ2 letrec x be M in N = let x be M in N (x 6∈ FV (M))

Figure 1: The λletrec-calculus
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Types and terms
σ ::= b | ⊥ | σ ⊸ σ | σ → σ
M ::= x | λ xσ .M | M M | λλ xσ .M | M@M | Cσ M

where b ranges over a set of base types. We may omit the type subscripts for ease of presentation.

Typing

Γ1,x : σ ,Γ2 ; /0 ⊢ x : σ
Axnonlinear

Γ ; x : σ ⊢ x : σ
Axlinear

Γ ; ∆,x : σ ⊢ M : τ

Γ ; ∆ ⊢ λ xσ .M : σ ⊸ τ
⊸ Intr

Γ ; ∆1 ⊢ M : σ ⊸ τ Γ ; ∆2 ⊢ N : σ

Γ ; ∆1♯∆2 ⊢ M N : τ
⊸ Elim

Γ,x : σ ; ∆ ⊢ M : τ

Γ ; ∆ ⊢ λλ xσ .M : σ → τ
→ Intr

Γ ; ∆ ⊢ M : σ → τ Γ ; /0 ⊢ N : σ

Γ ; ∆ ⊢ M@N : τ
→ Elim

Γ ; ∆ ⊢ M : (σ ⊸⊥)⊸⊥

Γ ; ∆ ⊢ Cσ M : σ
Duality

where ∆1♯∆2 is a merge of ∆1 and ∆2 [3]. When we introduce ∆1♯∆2, it is assumed that there is no variable

occurring both in ∆1 and ∆2.

Axioms
β⊸ (λ x.M)N = M[x := N]
η⊸ λ x.M x = M

β→ (λλ x.M)@N = M[x := N]
η→ λλ x.M@x = M (x 6∈ FV (M))
C1 L(Cσ M) = M L (L : σ ⊸⊥)
C2 Cσ (λ k.k M) = M

Figure 2: Dual Classical Linear Logic (DCLL)

4.2 A linear lambda calculus for MELL

As the calculus for MELL, we use DCLL (dual classical linear logic) [12], as recalled in Figure 2. DCLL

is an extension of DILL (dual intuitionistic linear logic) of Barber and Plotkin [3], but has just linear

implication ⊸, non-linear implication → and the falsity type ⊥ as the primitive type constructs. Terms

are built from variables, the linear lambda abstraction λxσ .M and application M N, non-linear lambda

abstraction λλxσ .M and application M@N, and the double-negation elimination Cσ M. Like DILL, DCLL

employs a dual-context formulation, where a typing judgement takes the form Γ ; ∆ ⊢ M : τ in which

Γ represents a non-linear (intuitionistic) context whose variables can be used as many times as we like

whereas ∆ is a linear context whose variables are used exactly once. The equational theory has just the

βη-axioms together with two axioms for the isomorphism (σ ⊸⊥)⊸⊥ ∼= σ .

Despite its simplicity, DCLL is sound and complete for models given by ∗-autonomous categories

with a linear exponential comonad, and can express other connectives and proofs of MELL [12], e.g.,

I =⊥⊸⊥, σ ⊗ τ = (σ ⊸ τ ⊸⊥)⊸⊥ and !σ = (σ →⊥)⊸⊥.
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5 The translation

5.1 From DCLL to the λletrec-calculus

We spell out the translation from DCLL to the λletrec-calculus derived from the semantic construction

in Section 3. For each base type b of DCLL, fix types b+ and b− of the λletrec-calculus. For a typing

judgement

Γ ; ∆ ⊢ M : σ

in DCLL, its translation in the λletrec-calculus

Γ−⇒+,∆+ ⊢ [[M]]∆ : σ− ⇒ (σ+×∆−)

is given as follows, where

(x1 : σ1, . . . ,xm : σm)
−⇒+ = x1 : σ+

1 ⇒σ−
1 , . . . ,xm : σ+

m ⇒σ−
m

(y1 : τ1, . . . ,yn : τn)
+ = y1 : τ+

1 , . . . ,yn : τ+
n

(y1 : τ1, . . . ,yn : τn)
− = τ−

1 ×·· ·× τ−
n

and the translation of types and terms are inductively given as follows. Figure 3 gives a summary of the

translation.

Remark 1 In describing the translation, we pretend as if the product types in the λletrec-calculus are

strictly associative, e.g., we identify ((x,y),z) : (σ1 ×σ2)×σ3 with (x,(y,z)) : σ1 × (σ2×σ3) and (x,∗) :

σ × 1 with x : σ . This makes the description of translation much simpler. Alternatively, we could make

use of the original higher-order cyclic sharing theory [11] whose products are strictly associative.

Translation of types

(σ → τ)+ = τ+ (σ → τ)− = (σ− ⇒ σ+)× τ−

(σ ⊸ τ)+ = τ+×σ− (σ ⊸ τ)− = σ+× τ−

⊥+ = 1 ⊥− = 1

Translation of terms

[[x]] /0 = λk.xk

[[y]]y:σ = λk.(y,k)
[[λλx.M]]∆ = λ (x,k).[[M]]∆ k

[[M@N]]∆ = λk.[[M]]∆ ([[N]] /0,k)
[[λyσ .M]]∆ = λ (y,k).[[M]]∆,y:σ k

[[M N]]∆1♯∆2 = λk.(letrec (u,~z2) be [[N]]∆2 h, (v,h,~z1) be [[M]]∆1(u,k) in (v,~z1♯~z2))
[[CM]]∆ = [[M]]∆

Note that the translation of linear constructs agrees with the standard Int- or GoI-based interpretation.

For instance, the linear application [[M N]]∆1,∆2 is graphically presented as follows – it is an instance of

the composition in compact closed categories obtained by the Int-construction.

[[N]]
[[M]]

☛
✡

✟
✠

❅❅�� ❅❅��
❅❅�
�
�❅❅τ−

∆+
2

∆+
1

∆−
2

∆−
1

τ+
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Γ ; ∆ ⊢DCLL M : σ Γ−⇒+,∆+ ⊢λletrec
[[M]] : σ− ⇒ (σ+×∆−)

Γ1,x : σ ,Γ2 ; /0 ⊢ x : σ
Axnon linear

Γ−⇒+
1 ,x : σ− ⇒ σ+,Γ−⇒+

2 ⊢ λ kσ−
.xk : σ− ⇒ σ+

Γ ; x : σ ⊢ x : σ
Axlinear

Γ−⇒+,x : σ+ ⊢ λ kσ−
.(x,k) : σ− ⇒ (σ+×σ−)

Γ ; ∆,x : σ ⊢ M : τ

Γ ; ∆ ⊢ λ xσ .M : σ ⊸ τ
⊸ Intr

Γ−⇒+,∆+,x : σ+ ⊢ [[M]]∆,x:σ : τ− ⇒ (τ+×∆−)

Γ−⇒+,∆+ ⊢ λ (x,k).[[M]]∆,x:σ k : (σ+× τ−)⇒ (τ+×∆−)

Γ ; ∆1 ⊢ M : σ ⊸ τ Γ ; ∆2 ⊢ N : σ

Γ ; ∆1♯∆2 ⊢ M N : τ
⊸Elim

Γ−⇒+,∆+
1 ⊢ [[M]]∆1 : (σ+× τ−)⇒ (τ+×σ−×∆−

1 )
Γ−⇒+,∆+

2 ⊢ [[N]]∆2 : σ− ⇒ (σ+×∆−
2 )

Γ−⇒+,(∆1♯∆2)
+ ⊢

λ kτ− .letrec (u : σ+,~z2 : ∆−
2 ) be [[N]]∆2 h,

(v : τ+,h : σ−,~z1 : ∆−
1 ) be [[M]]∆1(u,k)

in (v,~z1♯~z2) : τ− ⇒ (τ+× (∆1♯∆2)
−)

Γ,x : σ ; ∆ ⊢ M : τ

Γ ; ∆ ⊢ λλ xσ .M : σ → τ
→ Intr

Γ−⇒+,x : σ− ⇒ σ+,∆+ ⊢ [[M]]∆ : τ− ⇒ (τ+×∆−)

Γ−⇒+,∆+ ⊢ λ (x,k).[[M]]∆ k : ((σ− ⇒ σ+)× τ−)⇒ (τ+×∆−)

Γ ; ∆ ⊢ M : σ → τ Γ ; /0 ⊢ N : σ

Γ ; ∆ ⊢ M@N : τ
→ Elim

Γ−⇒+,∆+ ⊢ [[M]]∆ : ((σ− ⇒ σ+)× τ−)⇒ (τ+×∆−)
Γ−⇒+ ⊢ [[N]] /0 : σ− ⇒ σ+

Γ−⇒+,∆+ ⊢ λ k.[[M]]∆ ([[N]] /0,k) : τ− ⇒ (τ+×∆−)

Γ ; ∆ ⊢ M : (σ ⊸⊥)⊸⊥

Γ ; ∆ ⊢ Cσ M : σ
Duality

Γ−⇒+,∆+ ⊢ [[M]]∆ : σ− ⇒ (σ+×∆−)

Γ−⇒+,∆+ ⊢ [[M]]∆ : σ− ⇒ (σ+×∆−)

Figure 3: Summary of the translation

The soundness of the translation follows by definition:

Proposition 2 (type soundness) If the typing judgement Γ ; ∆ ⊢ M : σ is derivable in DCLL, then

Γ−⇒+,∆+ ⊢ [[M]]∆ : σ− ⇒ (σ+×∆−) is derivable in the λletrec-calculus.

Proposition 3 (equational soundness) If the equation Γ ; ∆ ⊢ M = N : σ is derivable in DCLL, then

Γ−⇒+,∆+ ⊢ [[M]] = [[N]] is derivable in the λletrec-calculus.

We shall note that our translation is not equationally complete, because of the coherence of compact

closed categories. For instance, the two proofs of ((σ ⊸ I) ⊸ I) ⊸ I ⊢ ((σ ⊸ I) ⊸ I) ⊸ I (where

I =⊥⊸⊥) get the same interpretation (the triple-unit problem [16]).

5.2 Examples

One might expect that the translation of a well-typed term of DCLL would be equal to a letrec-free term

in the λletrec-calculus. The following example shows that it is not the case; we cannot eliminate letrec

even when we restrict our attention to terms in β -normal form. Consider the term

f : σ ⊸ τ , g : τ ⊸ δ ; x : σ ⊢DCLL g( f x) : δ
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with non-linear variables f ,g and a linear variable x. This term is interpreted as

f : (σ+× τ−)⇒ (τ+×σ−),
g : (τ+×δ−)⇒ (δ+× τ−),

x : σ+
⊢ λkδ−

.
(

letrec
(uτ+ ,zσ−

) be f (x,h),

(vδ+
,hτ−) be g(u,k)

in (v,z)
)

: δ− ⇒ (δ+×σ−)

This is precisely the composition in the Int-category.

☛
✡

✟
✠

��
f

❅❅
g

��δ−

σ+ τ+

σ−

δ+

τ−

Note that the use of non-linear variables is essential. For instance, the interpretation of the following

term

/0 ; f : σ ⊸ τ , g : τ ⊸ δ , x : σ ⊢DCLL g( f x) : δ

with linear variables f ,g,x is equal to the letrec-free term

f : τ+×σ−,g : δ+×τ−,x : σ+ ⊢ λkδ−
.(π1 g,x,π2 g,π1 f ,k,π2 f ) : δ−⇒ (δ+×σ+×τ−×τ+×δ−×σ−)

since the linear variables are simply interpreted as wirings.

6 Relation to the call-by-name CPS translation

The translation of non-linear variables, non-linear lambda abstraction and non-linear application agrees

with the (Streicher-style) call-by-name CPS translation [26]

[[x]] /0 = λk.xk [[λλx.M]] /0 = λ (x,k).[[M]] /0k [[M@N]] /0 = λk.[[M]] /0([[N]] /0,k)

though our translation does not assume a single fixed answer type. This is because the translation of

non-linear types picks up a cartesian closed category derived from the closed Freyd category:

Proposition 4 (folklore?) Suppose that F : C → D is a closed Freyd category (where D can be pre-

monoidal). Then there is a cartesian closed full subcategory of C whose objects are finite products of

objects of the form D ⇒ E.

C (Γ× (D ⇒ E), D′ ⇒ E ′) ∼= C (Γ, ((D ⇒ E)×D′)⇒ E ′)

In the case of traced closed Freyd categories, this cartesian closed category is where the interpretation of

non-linear abstraction and application takes place:

IntD(!(X1,U1)⊗·· ·⊗!(Xn,Un),(Y,V )) ∼= C ((U1 ⇒ X1)×·· ·× (Un ⇒ Xn),V ⇒Y )

By letting the codomains E and E ′ (or Xi and Y ) be a fixed answer type, we obtain the standard CPS

semantics.

This situation can be summarized as the following picture. The outer square expresses our model

constructions from traced closed Freyd categories, while the inner triangle shows the induced syntactic

translations. Commutativity at the level of semantic model consructions guarantees commutativity of

syntactic translations. (Since we employ DCLL as the language for MELL, the Girard translation from

the simply typed lambda calculus to MELL is just an inclusion in our formulation.)
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MELL

❄

[[−]]

λletrec

λ→ ✲
Girard translation

❍❍❍❍❍❍❍❥CbN CPS translation

traced closed Freyd category C
F
→ D

with F(−)⊗D ⊣ D ⇒ (−)

✻

compact closed category IntD
with !(X ,U) = (U ⇒ X ,1)

✛cartesian closed category of
finite products of cofree coalgebras of !

✛cartesian closed category of
finite products of D ⇒ E’s

equivalent

7 Concluding remarks

We gave a translation from MELL to a lambda calculus with cyclic sharing. This translation is derived

from an easy theorem (Theorem 1) on traced monoidal categories. Once we know the theorem, it is

fairly routine to derive the syntactic translation. Perhaps the most difficult part would be to establish the

appropriate syntax and categorical semantics of MELL and cyclic sharing, which had been sorted out

many yeas ago. We do not claim that this translation would immediately lead to a practical application,

but hope that it makes an interesting case of the semantics-driven approach to program transformations.

Our translation can be seen as a combination of GoI interpretation and CPS translation. Although

we could have used any calculi/proof nets which are sound for ∗-autonomous categories with a linear

exponential comonad, the simple design of DCLL allows us to simplify the description of the translation

a lot. In particular, in this formulation with linear/non-linear implications, the relation to the CPS trans-

lation is very easily observed. It seems that this relation to CPS semantics is new; Schöpp [24] observed

coincidence of CPS semantics and Int-interpretation in a different setting, but we are yet to see if there

is any formal relationship between his work and ours. It would also be meaningful to investigate the

connection between our translation and game semantics (or tensorial logic) along the work of Melliès

and Tabareau [19], where they study categorical structures closely related to ours.

Finally we shall mention a relation to the categorical semantics (and game semantics) of the π-

calculus in [17, 23]. The models in these work form traced closed Freyd categories, thus are instances of

the structure considered in this paper. It would be interesting to combine our translation and their work,

which might lead to new relation between linear logic and concurrency theory.
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