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We study the two Girard’s translations of intuitionistic implication into linear logic by exploiting
the bang calculus, a paradigmatic functional language with an explicit box-operator that allows both
call-by-name and call-by-value λ -calculi to be encoded in. We investigate how the bang calculus
subsumes both call-by-name and call-by-value λ -calculi from a syntactic and a semantic viewpoint.

1 Introduction

The λ -calculus is a simple framework formalizing many features of functional programming languages.
For instance, the λ -calculus can be endowed with two distinct evaluation mechanisms (among others), call-
by-name (CbN) and call-by-value (CbV), having quite different properties. A CbN discipline re-evaluates
an argument each time it is used. By contrast, a CbV discipline first evaluates an argument once and for
all, then recalls its value whenever required. CbN and CbV λ -calculi are usually defined by means of
operational rules giving rise to two different rewriting systems on the same set of λ -terms: in CbN there is
no restriction on firing a β -redex, whereas in CbV a β -redex can be fired only when the argument is a value,
i.e. a variable or an abstraction. The standard categorical setting for describing denotational models of the
λ -calculus, cartesian closed categories, provides models which are adequate for CbN, but typically not for
CbV. For CbV, the introduction of an additional computational monad (in the sense of Moggi [24, 25]) is
necessary. While CbN λ -calculus [5] has a rich and refined semantic and syntactic theory featuring ad-
vanced concepts such as separability, solvability, Böhm trees, classification of λ -theories, full-abstraction,
etc., this is not the case for CbV λ -calculus [27], in the sense that concerning the CbV counterpart of
these theoretical notions there are only partial and not satisfactory results (or they do not exist at all!).

Quoting from [19], “the existence of two separate paradigms is troubling” for at least two reasons:

• it makes each language appear arbitrary (whereas a unified language might be more canonical);

• each time we create a new style of semantics, e.g. Scott semantics, operational semantics, game
semantics, continuation semantics, etc., we always need to do it twice — once for each paradigm.

Girard’s Linear Logic (LL, [17]) provides a unifying setting where this discrepancy could be solved
since both CbN and CbV λ -calculi can be faithfully translated, via two different translations, into LL
proof-nets. Following [19], we can claim that, via these translations, LL proof-nets “subsume” the CbN
and CbV paradigms, in the sense that both operational and denotational semantics for those paradigms
can be seen as arising, via these translations, from similar semantics for LL.

Indeed, LL can be understood as a refinement of intuitionistic logic (and hence λ -calculus) in which
resource management is made explicit thanks to the introduction of a new pair of dual connectives:
the exponentials “!” and “?”. In proof-nets, the standard syntax for LL proofs, boxes (introducing the
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modality “!”) mark the sub-proofs available at will: during cut-elimination, such boxes can be erased
(by weakening rules), can be duplicated (by contraction rules), can be opened (by dereliction rules) or
can enter other boxes. The categorical counterpart of this refinement is well known: it is the notion of a
cartesian ∗-autonomous1 category, equipped with a comonad endowed with a strong monoidal structure.
Every instance of such a kind of structure yields a denotational model of LL.

In his seminal article [17, p. 78], Girard proposes a standard translation of intuitionistic logic (and
hence simply typed λ -calculus) in multiplicative-exponential LL proof-nets whose semantic counterpart is
well known: the Kleisli category of the exponential comonad “!” is cartesian closed thanks to the strong
monoidal structure of “!”. This translation (·)N maps the intuitionistic implication A⇒ B to the LL formula
!AN ( BN. In [17, p. 81] Girard proposes also another translation (·)V that he calls “boring”: it maps the
the intuitionistic implication A⇒ B to the LL formula !(AV ( BV) (or equivalently !AV ( !BV). Since
the untyped λ -calculus can be seen as simply typed with only one ground type o satisfying the recursive
identity o = o⇒ o, the two Girard’s translations (·)N and (·)V decompose this identity into o = !o ( o
and o = !(o ( o) (or equivalently, o = !o ( !o), respectively. At the λ -term level, these two translations
differ only by the way they use logical exponential rules (i.e. box and dereliction), whereas they use
multiplicative and structural (i.e. contraction and weakening) ingredients in the same way. Because of
this difference, the translation (·)N encodes the CbN λ -calculus into LL proof-nets (in the sense that
CbN evaluation→β is simulated by cut-elimination via (·)N), while (·)V encodes the CbV λ -calculus
into LL proof-nets (CbV evaluation→β v is simulated by cut-elimination via (·)V). Indeed, since in CbN
λ -calculus there is no restriction on firing a β -redex (its argument can be freely copied or erased), the
translation (·)N puts the argument of every application into a box (see [9, 29, 18]); on the other hand, the
translation (·)V puts only values into boxes (see [2]) since in CbV λ -calculus values are the only duplicable
and discardable λ -terms. Thus, as deeply studied in [22], the two Girard’s logical translations explain the
two different evaluation mechanisms, bringing them into the scope of the Curry-Howard isomorphism.

The syntax of multiplicative-exponential LL proof-nets is extremely expressive and powerful, but it is
too general and sophisticated for the computational purpose of representing purely functional programs.
For instance, simulation of β -reduction on LL proof-nets passes through intermediate states/proof-nets
that cannot be expressed as λ -terms, since LL proof-nets have many spurious cuts with axioms that have
no counterpart on λ -terms. More generally, LL proof-nets are manipulated in their graphical form, and
while this is a handy formalism for intuitions, it is far from practical for formal reasoning.

From the analysis of Girard’s translations it seems worthwhile to extend the syntax of the λ -calculus to
internalize the insights coming from LL in a λ -like syntax. The idea is to enrich the λ -calculus with explicit
boxes marking the “values” of the calculus, i.e. the terms that can be freely duplicated and discarded: such
a linear λ -calculus subsumes both CbN and CbV λ -calculi, via suitable translations. This, of course, has
been done quite early in the history of LL by defining various linear λ -calculi, such as [21, 1, 6, 7, 30,
22, 31]. All these calculi require a clear distinction between linear and non-linear variables, structural
rules being freely (and implicitly) available for the latter and forbidden for the former. This distinction
complicates the formalism and is actually useless as far as we are interested in subsuming λ -calculi.

Inspired by Ehrhard [15], in [16] it has been introduced an intermediate formalism enjoying at the
same time the conceptual simplicity of λ -calculus (without any distinction between linear and non-linear
variables) and the operational expressiveness of LL proof-nets: the bang calculus. It is a variant of the
λ -calculus which is “linear” in the sense that the exponential rules of LL (box and dereliction) are part
of the syntax, so as to subsume CbN and CbV λ -calculi via two translations (·)n and (·)v, respectively,

1Actually the full symmetry of such a category is not really essential as far as the λ -calculus is concerned, it is however quite
natural from the LL viewpoint: LL restores the classical involutivity of negation in a constructive setting.
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from the set Λ of λ -terms to the set !Λ of terms of the bang calculus (see §3). These two translations are
deeply related to Girard’s encodings (·)N and (·)V of CbN and CbV λ -calculi into LL proof-nets. Indeed,
Girard’s translations (·)N and (·)V decompose in such a way that the following diagrams commute:

Λ (·)N //
(·)n

))

LL

!Λ
(·)◦

55 Λ (·)V //
(·)v

))

LL

!Λ
(·)◦

55

where (·)◦ is a natural translation of the bang calculus into multiplicative-exponential LL proof-nets. Thus,
the bang calculus internalizes the two Girard’s translations in a λ -like calculus instead of LL proof-nets.
It subsumes both CbN and CbV λ -calculi in the same rewriting system and denotational model, so that it
may be a general setting to compare CbN and CbV. The bang calculus can be seen as a metalanguage
where the choice of CbN or CbV evaluation depends on the way the term is built up. If we consider the
syntax of the λ -calculus as a programming language, issues like CbN versus CbV evaluations affect the
way the λ -calculus is translated in this metalanguage, but does not affect the metalanguage itself.

It turns out that this bang calculus was already known in the literature: it is an untyped version of the
implicative fragment of Paul Levy’s Call-By-Push-Value calculus [19, 20]. Interestingly, his work was
not motivated by an investigation of the two Girard’s translations. This link is not casual, since it holds
even when the bang calculus is extended to a PCF-like system, as shown by Ehrhard [15].

The aim of our paper is to further investigate the way the bang calculus subsumes CbN and CbV
λ -calculi, refining and extending some results already obtained in [16].

1. From a syntactic viewpoint, we show in §3 that the bang calculus subsumes in the same rewriting sys-
tem both CbN and CbV λ -calculi, in the sense that the translations (·)n and (·)v from the λ -calculus
to the bang calculus are sound and complete with respect to β -reduction and βv-reduction, respec-
tively (in [16] only soundness was proven, and in a less elegant way). In other words, the diagrams

Λ 3 t β //

(·)n

��

s ∈Λ

(·)n

��
!Λ 3 tn b // sn ∈ !Λ

Λ 3 t βv //

(·)v

��

s ∈Λ

(·)v

��
!Λ 3 tv b // sv ∈ !Λ

commute in the two ways: starting from the β -reduction step→β for the CbN λ -calculus (on the
left) or the βv-reduction step →β v for the CbV λ -calculus (on the right), and starting from the
b-reduction step→b of the bang calculus.2

2. From a semantic viewpoint, we show in §4 that every LL-based model U of the bang calculus (as
categorically defined in [16]) provides a model for both CbN and CbV λ -calculi (in [16] this was
done only for the special case of relational semantics). Moreover, given a λ -term t, we investigate
the relation between its interpretations |t|n in CbN (resp. |t|v in CbV) and the interpretation J·K of its
translation tn (resp. tv) into the bang calculus. We prove that the diagram below on the left (for CbN)
commutes, whereas we give a counterexample (in the relational semantics) to the commutation of
the diagram below on the right (for CbV). We conjecture that there still exists a relationship in CbV
between |t|v and JtvK, but it should be more sophisticated than in CbN.

Λ 3 t |·|n //
(·)n ((

|t|n = JtnK ∈U

tn ∈ !Λ
J·K

44
Λ 3 t |·|v //

(·)v ((

|t|v = JtvK ∈U

tv ∈ !Λ
J·K

44

In order to achieve these results in a clearer and simpler way, we have slightly modified (see §2) the
syntax and operational semantics of the bang calculus with respect to its original formulation in [16].

2Actually, for the CbV λ -calculus the diagram is slightly more complex, as we will see in §3, but the essence does not change.
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Terms: T,S,R ::= x | λxT | 〈T 〉S | derT | T ! (set: !Λ)

Contexts: C ::= L·M | λxC | 〈C〉T | 〈T 〉C | derC | C! (set: !ΛC)

Ground contexts: G ::= L·M | λxG | 〈G〉T | 〈T 〉G | derG (set: !ΛG)

Root-steps: 〈λxT 〉S! 7→` T{S/x} der(T !) 7→d T 7→b := 7→` ∪ 7→d

r-reduction: T →r S ⇔ ∃C ∈ !ΛC, ∃T ′,S′∈ !Λ : T = CLT ′M, S = CLS′M, T ′ 7→r S′

rg-reduction: T →rg S ⇔ ∃G ∈ !ΛG, ∃T ′,S′∈ !Λ : T = GLT ′M, S = GLS′M, T ′ 7→r S′

Figure 1: The bang calculus: its syntax and its reduction rules, where r ∈ {`,d,b}.

Preliminaries and notations. Let→r and→r′ be binary relations on a set X . The composition of→r and→r′

is denoted by→r→r′ or→r ·→r′ . The transpose of→r is denoted by r←. The reflexive-transitive (resp. reflexive)
closure of→r is denoted by→∗r (resp.→=

r ). The r-equivalence 'r is the reflexive-transitive and symmetric closure
of→r. Let t ∈ X : t is r-normal if there is no s ∈ X such that t→r s; t is r-normalizable if there is a r-normal s ∈ X
such that t→∗r s, and we then say that s is a r-normal form of t.

The relation→r is confluent if ∗r← ·→∗r ⊆→∗r ·∗r←; it is quasi-strongly confluent if r← ·→r ⊆ (→r · r←)∪=.
From confluence it follows that: t 'r s iff t→∗r r ∗r← s for some r ∈ X ; and every r-normalizable t ∈ X has a unique
r-normal form. Clearly, quasi-strong confluence implies confluence.

2 Syntax and reduction rules of the bang calculus

The syntax and operational semantics of the bang calculus are defined in Fig. 1.
Terms are built up from a countably infinite set V ar of variables (denoted by x,y,z, . . . ). Terms

of the form T ! (resp. λxT ; 〈T 〉S; derT ) are called or boxes (resp. abstractions; (linear) applications;
derelictions). The set of boxes is denoted by !Λ!. The set of free variables of a term T , denoted by fv(T ),
is defined as expected, λ being the only binding construct. All terms are considered up to α-conversion.
Given T,S ∈ !Λ and a variable x, T{S/x} denotes the term obtained by the capture-avoiding substitution
of S (and not S!) for each free occurrence of x in T : so, T !{S/x}= (T{S/x})! ∈ !Λ!.

Contexts C and ground contexts G (both with exactly one hole L·M) are defined in Fig. 1. All ground
contexts are contexts but the converse fails: L·M! is a non-ground context. We write CLT M for the term
obtained by the capture-allowing substitution of the term T for the hole L·M in the context C.

Reductions in the bang calculus are defined in Fig. 1 as follows: given a root-step rule 7→r⊆ !Λ × !Λ ,
we define the r-reduction→r (resp. rg-reduction or ground r-reduction→rg) as the closure of 7→r under
contexts (resp. ground contexts). Note that →rg (→r as !ΛG ( !ΛC: the only difference between →r

and →rg is that the latter does not reduce under ! (but both reduce under λ ). The root-steps used in
the bang calculus are 7→` and 7→d and 7→b := 7→`∪ 7→d. From the definitions in Fig. 1 it follows that
→b=→` ∪→d and→bg =→`g ∪→dg . In LL proof-nets, b-reduction and bg-reduction correspond to
cut-elimination and cut-elimination outside boxes, respectively.

Intuitively, the basic idea behind the root-steps 7→` and 7→d is that the box-construct ! marks the only
terms that can be erased and duplicated. When the argument of a construct der is a box T !, the root-step
7→d opens the box, i.e. accesses its content T , destroying its status of availability at will (but T , in turn,
might be a box). The root-step 7→` says that a β -like redex 〈λxT 〉S can be fired only when its argument is
a box, i.e. S = R!: if it is so, the content R of the box S replaces any free occurrence of x in T .3

3In [16], the definition of 7→` is slightly different from Fig. 1: 〈λxT 〉V 7→` T{V/x} where V is a variable or a box. Logically,
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varx⇒` x
T ⇒` S

λ

λxT ⇒` λxS

T ⇒` S
!

T !⇒` S!

T ⇒` S
der

derT ⇒` derS

T ⇒` S R⇒` Q
@

〈T 〉R⇒` 〈S〉Q
T ⇒` S R⇒` Q

`
〈λxT 〉R!⇒` S{Q/x}

Figure 2: Parallel `-reduction.

Example 1. Let ∆ := λx〈x〉x! and ∆′ := λx〈der(x!)〉x!. Then, ∆′→dg ∆ and 〈∆〉∆!→`g 〈∆〉∆!→`g . . . and
〈der(∆′!)〉∆′!→dg 〈∆′〉∆′!→`g 〈der(∆′!)〉∆′!→dg . . . Note that (〈∆〉∆!)! is bg-normal but not b-normalizable.

The bang (resp. ground bang) calculus is the set !Λ endowed with the reduction→b (resp.→bg).

Quasi-strong confluence of bg-reduction and confluence of b-reduction. To prove the confluence
of→b (Prop. 4.2), first we show that→` is confluent (Lemma 3.4). The latter is proved by a standard
adaptation of Tait–Martin-Löf technique — as improved by Takahashi [32] — based on parallel reduction.
For this purpose, we introduce parallel `-reduction, denoted by⇒`, a binary relation on !Λ defined by
the rules in Fig. 2. Intuitively,⇒` reduces simultaneously a number of `-redexes existing in a term. It is
immediate to check that⇒` is reflexive and→`⊆⇒`⊆→∗` , hence⇒∗` =→∗` .

For any term T , we denote by T ∗ the term obtained by reducing all `-redexes in T simultaneously.
Formally, T ∗ is defined by induction on T ∈ !Λ as follows:

x∗ := x (λxT )∗ := λxT ∗ (T !)∗ := (T ∗)! (derT )∗ := der(T ∗)

(〈T 〉S)∗ := 〈T ∗〉S∗ if T 6= λxR or S /∈ !Λ! (〈λxT 〉S!)∗ := T ∗{S∗/x} .

Lemma 2 (Development). Let T,S ∈ !Λ . If T ⇒` S, then S⇒` T ∗.

Lemma 2 is the key ingredient to prove the confluence of→` (Lemma 3.4 below).
The next lemma lists a series of good rewriting properties of `-, `g-, d- and dg-reductions that will be

used to prove quasi-strong confluence of→bg and confluence of→b (Prop. 4 below).

Lemma 3 (Basic properties of reductions).
1. →`g is quasi-strongly confluent, i.e. `g← ·→`g⊆ (→`g · `g←)∪= .

2. →dg and→d are quasi-strongly confluent (separately).

3. →dg and→`g strongly commute (i.e. dg← ·→`g⊆→`g ·dg←); →d quasi-strongly commutes over
→` (i.e. d← ·→` ⊆→` · ∗d←); →d and→` commute (i.e. ∗d← ·→∗` ⊆→∗` · ∗d←).

4. →` is confluent, i.e. ∗`← ·→∗` ⊆→∗` · ∗`← .

Proposition 4 (Quasi-strong confluence of→bg and confluence of→b).
1. The reduction→bg is quasi-strongly confluent, i.e. bg← ·→bg⊆ (→bg ·bg←)∪= .

2. The reduction→b is confluent, i.e. ∗b← ·→∗b ⊆→∗b · ∗b← .

3 The bang calculus with respect to CbN and CbV λ -calculi, syntactically

One of the interests of the bang calculus is that it is a general framework where both call-by-name (CbN,
[5]) and Plotkin’s call-by-value (CbV, [27]) λ -calculi can be embedded.4 Syntax and reduction rules of

this means that a variable of the bang calculus corresponds in LL proof-nets to an exponential axiom in [16], and to a derelicted
axiom here. The two definitions 7→` of are expressively equivalent (they can be simulated each other), but the one adopted here
allows for more elegant embeddings of CbN and CbV λ -calculi into the bang calculus (cf. Thm. 8 below with Prop. 2 in [16]).

4Here, with CbN or CbV λ -calculus we refer to the whole calculus and its general reduction rules, not only to CbN or CbV
(deterministic) evaluation strategy in the λ -calculus.
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λ -terms: t,s,r ::= v | ts (set: Λ)

λ -values: v ::= x | λx t (set: Λv)

λ -contexts: C ::= L·M | λxC | Ct | tC (set: ΛC)

CbN ground λ -contexts: N ::= L·M | λxN | Nt (set: ΛN)

CbV ground λ -contexts: V ::= L·M | Vt | tV (set: ΛV)

Root-steps: (λxt)S 7→β t{S/x} (CbN) (λxt)v 7→β v t{v/x} (CbV)

r-reduction: t→r s ⇔ ∃C ∈ΛC, ∃ t ′,s′∈Λ : t = CLt ′M, s = CLs′M, t ′ 7→r s′

βg-reduction: t→βg
s ⇔ ∃N ∈ΛN, ∃ t ′,s′∈Λ : t = NLt ′M, s = NLs′M, t ′ 7→β s′

β
v
g -reduction: t→β v

g
s ⇔ ∃V ∈ΛV, ∃ t ′,s′∈Λ : t = VLt ′M, s = VLs′M, t ′ 7→β v s′

Figure 3: The CbN and CbV λ -calculi: their syntax and reduction rules, where r ∈ {β ,β v}.

CbN and CbV λ -calculi are in Fig. 3: β -reduction→β (resp. β v-reduction→β v) is the reduction for the
CbN (resp. CbV) λ -calculus. CbN and CbV λ -calculi share the same term syntax (the set Λ of λ -terms
of CbN and CbV λ -calculi can be seen as a subset of !Λ ), whereas→β v is just the restriction of→β

allowing to fire a β -redex (λx t)s only when s is a λ -value, i.e. a variable or an abstraction. Ground
β -(resp. β v-)reduction→βg

(resp.→β v
g
) is an interesting restriction of β -(resp. β v-)reduction:

• →βg
is the “hereditary” head β -reduction, which contains head β -reduction and weak head β -

reduction, two well-known evaluation strategies for CbN λ -calculus (both reduce the β -redex in
head position, the latter does not reduce under λ ’s);

• →β v
g

is the weak β v-reduction, i.e. β v-reduction with the restriction of not reducing under λ ’s; it
contains (weak) head β v-reduction (aka left reduction in [27, p. 136]), the well-known evaluation
strategy for CbV λ -calculus firing the β v-redex in left position (if any) not under λ ’s.

CbN and CbV translations into the bang calculus. The CbN and CbV translations are two functions
(·)n : Λ → !Λ and (·)v : Λ → !Λ , respectively, translating λ -terms into terms of the bang calculus:

xn := x (λx t)n := λx tn (ts)n := 〈tn〉sn! ;

xv := x! (λx t)v := (λx tv)! (ts)v := 〈der tv〉sv .

Example 5. Let ω := (λxxx)λxxx, the typical diverging λ -term for CbN and CbV λ -calculi: one has
ωn = 〈∆〉∆ ! and ωv = 〈der(∆′!)〉∆′!, which are not bg- nor b-normalizable (∆ and ∆′ are defined in Ex. 1).

For any λ -term t, tn and tv are just different decorations of t by means of the monadic operators ! and
der (the latter does not occur in tn). Note that the translation (·)n puts the argument of any application
into a box: in CbN λ -calculus any λ -term is duplicable or discardable. On the other hand, only λ -values
(i.e. abstractions and variables) are translated by (·)v into boxes, as they are the only λ -terms duplicable
or discardable in CbV λ -calculus.

Lemma 6 (Substitution). Let t,s be λ -terms and x be a variable.

1. CbN translation vs. substitution: One has that tn{sn/x}= (t{s/x})n.

2. CbV translation vs. substitution: If s is such that sv = S! for some S ∈ !Λ , then tv{S/x}= (t{s/x})v.

Proof. The proofs of both points are by induction on t ∈Λ .
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1. • Variable: If t is a variable then there are two subcases. If t := x then tn = x, so tn{sn/x}=
sn = (t{s/x})n. Otherwise t := y 6= x and then tn = y, hence tn{sn/x}= y = (t{s/x})n.
• Abstraction: If t := λyr then tn = λyrn (we suppose without loss of generality y /∈ fv(s)∪{x}).

By i.h., rn{sn/x}= (r{s/x})n and so tn{sn/x}= λy(rn{sn/x}) = λy(r{s/x})n = (t{s/x})n.
• Application: If t := rq then tn = 〈rn〉qn!. By i.h., rn{sn/x} = (r{s/x})n and qn{sn/x} =
(q{s/x})n. So, tn{sn/x}= 〈rn{sn/x}〉(qn{sn/x})! = 〈(r{s/x})n〉((q{s/x})n)! = (t{s/x})n.

2. • Variable: If t is a variable then there are two subcases. If t := x then tv = x!, so tv{S/x} =
S! = sv = (t{s/x})v. Otherwise t := y 6= x and then tv = y!, hence tv{S/x}= y! = (t{s/x})v.

• Application: If t := pq then tv = 〈der pv〉qv. By i.h., pv{S/x} = (p{s/x})v and qv{S/x} =
(q{s/x})v. So, tv{S/x}= 〈der(pv{S/x})〉qv{S/x}= 〈der(p{s/x}v)〉(q{s/x})v = (t{s/x})v.
• Abstraction: If t := λyr then tv=(λyrv)! (suppose without loss of generality y /∈ fv(s)∪{x}).

By i.h. rv{S/x}= (r{s/x})v, so tv{S/x}= (λy(rv{S/x}))! = (λy(r{s/x})v)! = (t{s/x})v.

Note that the hypothesis about s in Lemma 6.2 is fulfilled if and only if s is a λ -value.
Remark 7 (CbV translation is `-normal). It is immediate to prove by induction on t ∈Λ that tv is `-normal,
so if tv→d S0→` S then the only `-redex in S0 has been created by the step tv→d S0 and is absent in tv.

Simulating CbN and CbV reductions into the bang calculus. We can now show that the CbN trans-
lation (·)n (resp. CbV translation (·)v) from the CbN (resp. CbV) λ -calculus into the bang calculus is
sound and complete: it maps β -reductions (resp. β v-reductions) of the λ -calculus into b-reductions of
the bang calculus, and conversely b-reductions — when restricted to the image of the translation — into
β -reductions (resp. β v-reductions). Said differently, the target of the CbN (resp. CbV) translation into the
bang calculus is a conservative extension of the CbN (resp. CbV) λ -calculus.

Theorem 8 (Simulation of CbN and CbV λ -calculi). Let t be a λ -term.

1. Conservative extension of CbN λ -calculus:
Soundness: If t→β t ′ then tn→` t ′n (and tn→b t ′n);
Completeness: Conversely, if tn→b S then tn→` S = t ′n and t→β t ′ for some λ -term t ′.

2. Conservative extension of ground CbN λ -calculus:
Soundness: If t→βg

t ′ then tn→`g t ′n (and tn→bg t ′n);
Completeness: Conversely, if tn→bg S then tn→`g S = t ′n and t→βg

t ′ for some λ -term t ′.

3. Conservative extension of CbV λ -calculus:
Soundness: If t→β v t ′ then tv→d→` t ′v (and hence tv→b→b t ′v);
Completeness: Conversely, if tv→d→` S then S = t ′v and t→β v t ′ for some λ -term t ′.

4. Conservative extension of ground CbV λ -calculus:
Soundness: If t→β v

g
t ′ then tv→dg→`g t ′v (and hence tv→bg→bg t ′v);

Completeness: Conversely, if tv→dg→`g S then S = t ′v and t→β v
g

t ′ for some λ -term t ′.

Proof. 1. Soundness: We prove by induction on the λ -term t that if t→β t ′ then tn→` t ′n (this implies
tn→b t ′n, since→`⊆→b). According to the definition of t→β t ′, there are the following cases:

• Root-step, i.e. t := (λxr)s 7→β r{s/x}=: t ′: by Lemma 6.1, tn = 〈λxrn〉sn! 7→` rn{sn/x}= t ′n.
• Abstraction, i.e. t := λxr→β λxr′ =: t ′ with r→β r′: by i.h., rn→` r′n, thus tn = λxrn→`

λxr′n = t ′n.
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• Application left, i.e. t := rs→β r′s =: t ′ with r→β r′: analogous to the previous case.

• Application right, i.e. t := sr→β sr′=: t ′ with r→β r′: by i.h. rn→` r′n, so tn = 〈sn〉rn!→`

〈sn〉r′n!
= t ′n.

Completeness: First, observe that tn→b S entails tn→` S since der does not occur in tn, hence tn is
d-normal. We prove by induction on the λ -term t that if tn→` S then S = t ′n and t→β t ′ for some
λ -term t ′. According to the definition of tn→` S, there are the following cases:

• Root-step, i.e. tn := 〈λxrn〉qn! 7→` rn{qn/x} =: S: by Lemma 6.1 S = (r{q/x})n, so t =
(λxr)q 7→β r{q/x}=: t ′ where t ′n = S.
• Abstraction, i.e. tn := λxrn→` λxS′ =: S with rn→` S′: by i.h., there is a λ -term r′ such that

r′n = S′ and r→β r′, thus t = λxr→β λxr′ =: t ′ where t ′n = λxr′n = S.

• Application left, i.e. tn := 〈rn〉qn!→` 〈S′〉qn! =: S with rn→` S′: analogously to above.
• Application right, i.e. tn := 〈qn〉rn!→` 〈qn〉S′!=: S with rn→` S′: by i.h., there is a λ -term r′

such that r′n = S′ and r→β r′, so t = qr→β qr′ =: t ′ with t ′n = 〈qn〉r′n!
= S.

2. Since 7→β is simulated by 7→` and vice-versa (see the root-cases above), Thm. 8.2 is proved
analogously to the proof of Thm. 8.1 (→`g replaces→`, and→βg

replaces→β ), with the difference
that, by definition,→βg

and→`g do not give rise to the case Application right.

3. Soundness: We prove by induction on the λ -term t that if t→β v t ′ then tv→d→` t ′v. According to
the definition of t→β v t ′, there are the following cases:

• Root-step, i.e. t := (λxr)v 7→β v r{v/x} =: t ′ where v is a λ -value, i.e. a variable or an
abstraction: then vv = S! for some S ∈ !Λ , hence tv = 〈der(λxrv)!〉vv →dg 〈λxrv〉vv 7→`

rv{S/x}= t ′v by Lemma 6.2 (recall that→dg⊆→d).
• Abstraction, i.e. t := λxr →β v λxr′ =: t ′ with r →β v r′: by i.h., rv →d→` r′v; therefore

tv = (λxrv)!→d→` (λxr′v)! = t ′v.
• Application left, i.e. t := rs→β v r′s =: t ′ with r →β v r′: by i.h. rv →d→` r′v; therefore

tv = 〈derrv〉sv→d→` 〈derr′v〉sv = T ′v.
• Application right, i.e. t := sr→β v sr′=: t ′ with r→β v r′: analogous to the previous case.

Completeness: We prove by induction on S0 ∈ !Λ that if tv→d S0→` S then S = t ′v and t→β v t ′

for some λ -term t ′. According to the definition of S0→` S, there are the following cases:

• Root-step, i.e. S0 := 〈λxR〉Q! 7→` R{Q/x}=: S. By Rmk. 7, necessarily tv = 〈der(λxR)!〉Q!

and hence t = (λxr0)v for some λ -term r0 and some λ -value v such that rv0 = R and vv = Q!.
Note that tv→dg S0. Let t ′ := r0{v/x}: then, t 7→β v t ′ and t ′v = rv0{Q/x}= S by Lemma 6.2.
• Abstraction, i.e. S0 := λxR0→` λxR′ =: S with R0→` R′. This case is impossible because,

according to Rmk. 7, necessarily tv = λxR for some `-normal R ∈ !Λ such that R→d R0, but
there is no λ -term t such that tv is an abstraction.
• Dereliction, i.e. S0 := derR0→` derR′ =: S with R0→` R′. This case is impossible because,

according to Rmk. 7, necessarily tv = derR for some `-normal R ∈ !Λ such that R→d R0, but
there is no λ -term t such that tv is a dereliction.
• Application left, i.e. S0 := 〈R0〉R1→` 〈R′〉R1 =: S with R0→` R′. By Rmk. 7, tv = 〈derP〉R1

for some `-normal P ∈ !Λ such that derP→d R0, and thus R0 = derP0 where P→d P0 (indeed
P = R!

0 is impossible because P is `-normal), and hence R′ = derP′ with P0→` P′. So, t = qq1
for some λ -terms q and q1 such that qv = P and qv1 = R1 with qv→d P0→` P′. By i.h., P′= q′v

and q→β v q′ for some λ -term q′. Let t ′ := q′q1: then, t = qq1→β v t ′ and t ′v = 〈derq′v〉qv1 = S.
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Target of CbN translation into !Λ : T,S ::= x | 〈T 〉S! | λxT (set: !Λn)

Target of CbV translation into !Λ : M,N ::=U ! | 〈derM〉N | 〈U〉M (set: !Λv) U ::= x | λxM (set: !Λ v
v ).

Figure 4: Targets of CbN and CbV translations into the bang calculus.

• Application right, i.e. S0 := 〈R1〉R0→` 〈R1〉R′ =: S with R0→` R′. By Rmk. 7, necessarily
tv = 〈derP1〉R for some `-normal R,P1 ∈ !Λ such that derP1 = R1 and R→d R0. So, t = q1q
for some λ -terms q1 and q such that qv1 = P1 and qv = R with qv→d R0→` R′. By i.h., R′= q′v

and q→β v q′ for some λ -term q′. Let t ′ := q1q′: then, t = q1q→β v t ′ and t ′v = 〈derqv1〉q′
v = S.

• Box, i.e. S0 := R!
0→` R′! =: S with R0→` R′. According to Rmk. 7, necessarily tv = R! for

some `-normal R ∈ !Λ such that R→d R0. So, t = λxq (since tv is a box and xv is d-normal)
for some λ -term q such that R = λxqv, and hence there are P0,P′ ∈ !Λ such that R0 = λxP0
and R′ = λxP′ with qv→d P0→` P′. By i.h., P′ = q′v and q→β v q′ for some λ -term q′. Let
t ′ := λxq′: then, t = λxq→β v t ′ and t ′v = (λxq′v)! = S.

4. Since 7→β v is simulated by→dg 7→` and vice-versa (see the root-cases above), Thm. 8.4 is proved
analogously to the proof of Thm. 8.3 (replace→` with→`g , and→d with→dg , as well as→β v

with→β v
g
), with the difference that→β v

g
does not give rise to the case Abstraction (in the soundness

proof) and Box (in the completeness proof).

So, the bang calculus can simulate β - and β v-reductions via (·)n and (·)v and, conversely, `-reductions
in the targets of (·)n and (·)v correspond to β - and β v-reductions. Also, these simulations are:
• modular, in the sense that ground β -reduction (including head β -reduction and weak head β -

reduction) is simulated by ground `-reduction, and vice-versa (Thm. 8.2); ground β v-reduction
(including head β v-reduction) is simulated by ground d- and `-reductions, and vice-versa (Thm. 8.4);

• quantitative sensitive, meaning that one step of (ground) β -reduction corresponds exactly, via (·)n,
to one step of (ground) `-reduction, and vice-versa; one step of (ground) β v-reduction corresponds
exactly, via (·)v, to one step of (ground) `-reduction, and vice-versa.

The target of CbN translation (·)n into the bang calculus can be characterized syntactically (Rmk. 9).
Remark 9 (Image of CbN translation). The CbN translation (·)n is a bijection from the set Λ of λ -terms
to the subset !Λn of !Λ defined in Fig. 4: tn ∈ !Λn for any t ∈Λ , and conversely, for any T ∈ !Λn, there is
a unique t ∈Λ such that T n = t. According to the definition of !Λn (Fig. 4), the construct der never occurs
in any term in !Λn, hence the relations→d and→dg are empty and→` =→b and→`g =→bg in !Λn.

Thm. 8.1-2 and Rmk. 9 mean that !Λn endowed with the reduction→` (resp. →`g ) — which coincides
with→b (resp.→bg ) in !Λn — is isomorphic to CbN (resp. ground CbN) λ -calculus. In particular, (·)n pre-
serves normal forms (forth and back) and equates (via b-equivalence) exactly the same as β -equivalence.
Corollary 10 (Preservations with respect to CbN λ -calculus). Let t,s ∈Λ .

1. CbN equational theory: t 'β s iff tn '` sn iff tn 'b sn.

2. CbN normal forms: t is (ground) β -normal iff tn is (ground) `-normal iff tn is (ground) b-normal.

Proof. 1. The equivalence “tn '` sn iff tn 'b sn” holds because→` =→b in !Λn, which is the image
of (·)n (Rmk. 9). If t 'β s then t →∗

β
r ∗

β
← s for some r ∈ Λ , as →β is confluent; by Thm. 8.1

(soundness), tn →∗` rn ∗`← sn and so tn '` sn. Conversely, if tn 'b sn then tn →∗b R ∗b← sn for
some R ∈ !Λ , since→b is confluent (Prop. 4.2); by Thm. 8.1 (completeness) and bijectivity of (·)n
(Rmk. 9), t→∗

β
r ∗

β
← s for some λ -term r such that rn = R, and therefore t 'β s.
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2. Immediate consequence of Thm. 8.1-2.

The correspondence between CbV λ -calculus and bang calculus is slightly more delicate: CbV
translation (·)v gives a sound and complete embedding of→β v into→d→` (and similarly for their ground
variants), but it is not complete with respect to generic →b. Indeed, Ex. 1 and Ex. 5 have shown that
(λxxx)v = ∆′!→d ∆!, where ∆! is b-normal and there is no λ -term t such that tv = ∆!. Note that λxxx is
β v-normal but (λxxx)v = ∆′! is not b-normal: in CbV the analogous of Cor. 10.2 does not hold for (·)v.

Actually, an analogous of Cor. 10.1 for CbV holds: CbV translation preserves β v-equivalence in a
sound and complete way with respect to b-equivalence (see Cor. 13 below). The proof requires a fine
analysis of CbV translation (·)v. First, we define two subsets !Λv and !Λ v

v of !Λ , see Fig. 4.
Remark 11 (Image of CbV translation). If t ∈Λ then tv ∈ !Λv; in particular, if v ∈Λv then vv =U ! for
some U ∈ !Λ v

v . Note that (·)v is not surjective in !Λv: ∆! ∈ !Λv but there is no λ -term t such that tv = ∆!.
We then define a forgetful map (·)† : !Λv∪ !Λ v

v →Λ from terms M ∈ !Λv and U ∈ !Λ v
v into λ -terms:

(U !)† :=U† (〈derM〉N)† := M†N† (〈U〉M)† :=U†M† ; x† := x (λxM)† := λxM†.

Lemma 12 (Properties of the forgetful map (·)†).
1. Forgetful map is a left-inverse of CbV translation: For every t ∈Λ , one has tv† = t.

2. Substitution: M{U/x} ∈ !Λv with (M{U/x})† = M†{U†/x}, for any M ∈ !Λv and U ∈ !Λ v
v .

3. b-reduction vs. β v-reduction: For any M ∈ !Λv and T ∈ !Λ , if M→b T then T ∈ !Λv and M†→=
β v T †.

Despite the non-surjectivity of (·)v on !Λ v, Lemma 12.3 and Rmk. 11 mean that !Λv is the set of terms
in !Λ reachable by b-reduction from CbV translations of λ -terms (i.e. for any t ∈ Λ , if tv →∗b S then
S ∈ !Λv); moreover, b-reduction on !Λ v is projected into β v-reduction on Λ by the forgetful map (·)†.
Corollary 13 (Preservation of CbV equational theory). Let t,s ∈Λ . One has t 'β v s iff tv 'b sv.

Proof. If t 'β v s then t →∗
β v r ∗

β v← s for some r ∈ Λ , as →β v is confluent; by Thm. 8.3 (soundness),
tv→∗b rv ∗b← sv and so tv 'b sv. Conversely, if tv 'b sv then tv→∗b R ∗b← sv for some R ∈ !Λ , since→b

is confluent (Prop. 4.2); by Rmk. 11, tv,sv ∈ !Λv; thus, R ∈ !Λv and tv†→∗
β v R† ∗

β v← sv† by Lemma 12.3,
hence t = tv† 'β v sv† = s by Lemma 12.1.

So, Cor. 13 says that CbV translation (·)v — even if it is a sound but not complete embedding of
β v-reduction into b-reduction — is a sound and complete embedding of β v-equivalence into b-equivalence.
Said differently, the non-completeness of the CbV translation with respect to b-reduction is just a syntactic
detail, the CbV translation (via b-equivalence) equates exactly the same as β v-equivalence.

A final remark on the good rewriting properties of the bang calculus: the embeddings of CbN and
CbV λ -calculi into the bang calculus are finer than the ones into the linear calculus λlin introduced in [22].
For instance, in λlin there is no fragment isomorphic to CbN λ -calculus; also, the CbV translation of the
λ -calculus into λlin is sound but not complete, and equates more than β v-equivalence (see [22, Ex.17]).
Moreover, the bang calculus can be modularly extended with other reduction rules and/or syntactic
constructs so that our CbV translation embeds the extensions of CbV λ -calculus studied in [3] into the
corresponding extended version of the bang calculus, with results analogous to those presented here.

4 The bang calculus with respect to CbN and CbV λ -calculi, semantically

The denotational models of the bang calculus we are interested in this paper are those induced by a
denotational model of LL. We recall the basic definitions and notations, see [23, 15, 16] for more details.
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Linear logic based denotational semantics of bang calculus. A denotational model of LL is given by:

• A ∗-autonomous category L , namely a symmetric monoidal closed category (L ,⊗,1,λ ,ρ,α,σ)
with a dualizing object⊥. We use X (Y for the linear exponential object, ev∈L ((X ( Y )⊗X ,Y )
for the evaluation morphism and cur for the linear currying map L (Z⊗X ,Y )→L (Z,X ( Y ).
We use X⊥ for the object X ( ⊥ of L (the linear negation of X). This operation ( )⊥ is a
functor L op→L . The category L is cartesian with terminal object >, product &, projections pri
(i ∈ {1,2}). By ∗-autonomy, L is cocartesian with initial object 0, coproduct ⊕ and injections ini.

• A functor ! : L →L which is:

– a comonad with counit derX ∈L (!X ,X) (dereliction) and comultiplication digX ∈L (!X , !!X)
(digging), and

– a strong symmetric monoidal functor—with Seely isos m0 ∈L (1, !>) and m2
X ,Y ∈L (!X⊗

!Y, !(X &Y ))—from the symmetric monoidal category (L ,&,>) to the symmetric monoidal
category (L ,⊗,1), satisfying an additional coherence condition with respect to dig.

In order that L is also a denotational model of the bang calculus we need a further assumption:

the unique morphism in L (0,>) must be an iso (to simplify, we assume just 0 =>). (1)

From (1) it follows that for any two objects X and Y there is a morphism 0X ,Y := i t ∈L (X ,Y ) where t
is the unique morphism X →> and i is the unique morphism 0→ Y . It turns out that this specific zero
morphism satisfies the identities f 0X ,Y = 0X ,Z = 0Y,Zg for all f ∈L (Y,Z) and g∈L (X ,Y ) . Assumption
(1) is satisfied by many models of LL, like relational model [8], finiteness spaces [12], Scott model [14],
(hyper-)coherence [17, 11] and probabilistic coherence spaces [10], all models based on Indexed LL [8].

A model of the bang calculus is any object U of L satisfying the identity U ∼= !U & (!U ( U )
(we assume this iso to be an equality). Note that this entails both !U C U and !U ( U C U .

Given a term T and a repetition-free list of variables ~x = (x1, . . . ,xk) which contains all the free
variables of T , we can define a morphism JT K~x ∈ L ((!U )⊗k,U )— the denotational semantics (or
interpretation) of T — where (!U )⊗k :=

⊗k
i=1 !U . The definition is by induction on T ∈ !Λ :

• JxiK~x := w⊗i−1
U ⊗ derU ⊗w⊗k−i

U where wU ∈L (!U ,1) is the weakening and we keep implicit the
monoidality isos 1⊗U 'U ,

• JλySK~x := 〈0
(!U )⊗k,!U ,cur (JSK~x,y)〉, where we assume without loss of generality y /∈ {x1, . . . ,xk},

• J〈S〉RK~x := ev (pr2 JSK~x⊗pr1 JRK~x) c, where c ∈L ((!U )⊗k,(!U )⊗k⊗ (!U )⊗k) is the contraction,

• JS!K~x := 〈(JSK~x)
!,0

(!U )⊗k,!U (U 〉, for (JSK~x)
! = !(JSK~x)h where h ∈L ((!U )⊗k, !((!U )⊗k)) is the

coalgebra structure map of (!U )⊗k (see [15]),

• JderSK~x := derU pr1 JSK~x .

Theorem 14 (Invariance, [16]). Let T,S ∈ !Λ and~x be a repetition-free list of variables which contains
all free variables of T and S. If T 'b S then JT K~x = JSK~x.

The proof of Thm. 14 uses crucially the fact that JR!K~x is a coalgebra morphism, see [15].
The general notion of denotational model for the bang calculus presented here and obtained from any

denotational model L of LL satisfying the assumption (1) above is a particular case of Moggi’s semantics
of computations based on monads [24, 25], if one keeps in mind that the functor “!” defines a strong
monad on the Kleisli category L! of L .
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Call-by-name. A model of the CbN λ -calculus is a reflexive object in a cartesian closed category. The
category L being ∗-autonomous, its Kleisli L! over the comonad (!,dig,der) is cartesian closed. The
category L! (whose objects are the same as L and morphisms are given by L!(A,B) := L (!A,B)) has
composition f ◦g := f !g dig and identities A := derA. In L!, products A&B are preserved, with projections
πi := pri der!(A&B) (i∈ {1,2}); the exponential object A⇒ B is !A ( B (this is the semantic counterpart of
Girard’s CbN translation) and has an evaluation morphism Ev := ev(der!A(B⊗ id!A)(m

2)−1 ∈L (!((!A(
B)& !A),B). This defines an exponentiation since for all f ∈L (!(C & A),B) there is a unique morphism
Λ( f ) := cur( f m2) ∈L (!C, !A ( B) satisfying Ev ◦ 〈Λ( f ),A〉= f .

The identity U = !U & (!U ( U ) satisfied by our object U (the model of the bang calculus)
entails !U ( U C U in L via lam := 〈0!U (U ,!U , id!U (U 〉 ∈L (!U ( U ,U ) and app := pr2 ∈
L (U , !U ( U ), since app lam = id!U (U . So, U is a reflexive object (i.e. !U ( U C U ) in
L! via appn := der!U (U !app ∈L!(U , !U ( U ) and lamn := derU !lam ∈L!(!U ( U ,U ), since
appn ◦ lamn = !U ( U . Then, the interpretation of a λ -term t can be defined, as usual, as a morphism
|t|n~x ∈L!(U k,U ), with~x = (x1, . . . ,xk) such that fv(t)⊆ {x1, . . . ,xk} and xi 6= x j:

|xi|n~x := π
k
i , |λy t|n~x := lamn ◦Λ(|t|n~x,y), |ts|n~x := Ev ◦ 〈appn ◦ |t|n~x , |s|n~x〉.

Summing up, the object U provides both a model of the bang calculus and a model of the CbN λ -
calculus. The relation between the two is elegant: the semantics |t|n in the CbN model of the λ -calculus of a
λ -term t decomposes into the semantics J·K in the model of the bang calculus of the CbN translation tn of t.
Theorem 15 (Factorization of any CbN semantics). For every λ -term t and every repetition-free list
~x = (x1, . . . ,xk) of variables such that fv(t)⊆ {x1, . . . ,xk}, one has JtnK~x = |t|n~x (up to Seely’s isos).

Proof. Below we use ∼= to transform a morphism f ∈L ((!U )⊗k,U ) into a morphism g ∈L!(U k,U )
using Seely’s isos (where U k :=

˘k
i=1 U ). We proceed by induction on t ∈Λ .

If t is a variable, then t = xi = tn, so JtnK~x = JxiK~x = w⊗i−1
U ⊗ derU ⊗w⊗k−i

U
∼= prk

i derU k = |xi|n~x .
If t := λys then tn = λysn. Hence,

JλysnK~x = 〈0(!U )⊗k,!U ,cur (JsnK~x,y)〉 ∼= 〈0(!U )⊗k,!U ,cur(|s|n~x,ym2)〉

= derU !(〈0(!U )⊗k,!U ,cur(|s|n~x,ym2)〉)digU k

= derU !〈0!U (U ,!U , id!U (U 〉 !cur(|s|n~x,ym2)digU k

= (derU !lam)◦Λ(|s|n~x,y) = |λys|n~x .

If t := sr then tn = 〈sn〉(rn)!. Therefore,

J〈sn〉(rn)!K~x = ev((pr2 JsnK~x)⊗ (pr1 J(rn)!K~x))c = ev((pr2 JsnK~x)⊗ (pr1 〈(JrnK~x)
!,0

(!U )⊗k,!U (U 〉))c

= ev((pr2 JsnK~x)⊗ (JrnK~x)
!)c ∼= ev((app |s|n~x)⊗ (!|r|n~x digU k))c

= ev(der!U (U !(app |s|n~x)digU k)⊗ (!|r|n~x digU k))c

= ev(der!U (U ⊗ id!U )(!(app |s|n~x)⊗ !|r|n~x)(digU k⊗digU k)c

= ev(der!U (U ⊗ id!U )m2!〈app |s|n~x , |r|n~x〉digU k

= Ev ◦ 〈der!U (U !(app |s|n~x)digU k , |r|n~x〉 = Ev ◦ 〈der!U (U !app !|s|n~x digU k , |r|n~x〉
= Ev ◦ 〈(der!U (U !app)◦ |s|n~x , |r|n~x〉= |sr|n~x .

Thm. 15 is a powerful result: it says not only that every LL based model of the bang calculus is also
a model of the CbN λ -calculus, but also that the CbN semantics of any λ -term in such a model always
naturally factors into the CbN translation of the λ -term and its semantics in the bang calculus.
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Call-by-value. Following [28, 13], models of the CbV λ -calculus can be defined using Girard’s “boring”
CbV translation of the intuitionistic implication into LL. It is enough to find an object X in L satisfying
!X ( !X C X (or equivalently, !(X ( X) C X).5 This is the case for our object U (the model of
the bang calculus) since !U ( U C U and !U C U entail !U ( !U C U (by the variance of
!U ( ) via the morphisms lamv = 〈0!U (!U ,!U ,cur(〈ev,0(!U (!U )⊗!U ,U 〉)〉 ∈L (!U ( !U ,U ) and
appv = cur(pr1 ev)pr2 ∈L (U , !U ( !U ). As in [13], we can then define the interpretation of a λ -term
t as a morphism |t|v~x ∈L ((!U )⊗k, !U ), with~x = (x1, . . . ,xk) such that fv(t)⊆ {x1, . . . ,xk} and xi 6= x j:

|xi|v~x = w⊗i−1
U ⊗ id!U ⊗w⊗k−i

U , |λy t|v~x = (lamv cur(|t|v~x,y))
!, |ts|v~x = ev((appv |t|v~x)⊗ (|s|v~x))c .

We now have two possible ways of interpreting the CbV λ -calculus in our model U : either by translating a
λ -term t into tv ∈ !Λ and then compute JtvK, or by computing directly |t|v. It is natural to wonder whether
the two interpretations JtvK and |t|v are related, and in what way. In [16] the authors conjectured that, at
least in the case of a particular relational model U satisfying U = !U ∪ (!U ×U ) = !U & (!U ( U ),
the two interpretations coincide. We show that the situation is actually more complicated than expected.

The relational model U introduced in [16] admits the following concrete description as a type system.
The set U of types and the set !U of finite multisets over U are defined by mutual induction as follows:

(set: U ) α,β ,γ ::= a | a ( α (set: !U ) a,b,c ::= [α1, . . . ,αk] for any k ≥ 0. (2)

Environments Γ are functions from variables to !U such that supp(Γ ) := {x ∈ V ar | Γ (x) 6= []} is finite.
We write x1 : a1, . . . ,xk : ak for the environment Γ satisfying Γ (xi) = ai and Γ (y) = [ ] for y /∈ {x1, . . . ,xk}.
The multiset union a+b is extended to environments pointwise, namely (Γ +∆)(x) := Γ (x)+∆(x).

On the one hand (see [13, 4]), the relational model U for the CbV λ -calculus interprets a λ -term t
using | · |v, which gives |t|v~x = {(a1, . . . ,ak,β ) | x1 :a1, . . . ,xk :ak `v t :β is derivable} where~x = (x1, . . . ,xk)
with fv(t)⊆ {x1, . . . ,xk}, and `v is the type system below (note that if Γ `v t : β is derivable then β ∈ !U ):

ax
x : a `v x : a

Γ `v t : [a(b] ∆ `v s : a
app

Γ +∆ `v ts : b

(Γi,y : ai `v t : bi)1≤i≤k k ≥ 0
lam

∑
k
i=1 Γi `v λy t : [a1(b1, . . . ,ak(bk] .

On the other hand (see [16]), the relational model U for the bang calculus interprets a term T ∈ !Λ
using J·K, which gives JT K~x = {(a1, . . . ,ak,β ) | x1 :a1, . . . ,xk :ak `! T :β is derivable}where~x=(x1, . . . ,xk)
with fv(t)⊆ {x1, . . . ,xk}, and `! is the following type system:

ax!
x : [α] `! x : α

Γ `! T : a(β ∆ `! S : a
@

Γ +∆ `! 〈T 〉S : β

(Γi `! T : βi)1≤i≤k k ≥ 0
!

∑
k
i=1 Γi `! T ! : [β1, . . . ,βk]

Γ `! T : [α]
der

Γ `! derT : α

Γ ,x : a `! T : β
λ

Γ `! λxT : a ( β .

In U (seen as the relational model for the bang calculus) what is the interpretation JtvK~x of the CbV
translation tv of a λ -term t? Easy calculations show that in the type system `! the rules below — the ones
needed to interpret terms of the form tv for some λ -term t — can be derived:

ax
x : a `! x! : a

Γ `! tv : [a(β ] ∆ `! sv : a
app

Γ +∆ `! 〈der tv〉sv : β

(Γi,y : ai `! tv : βi)1≤i≤k k ≥ 0
lam

∑
k
i=1 Γi `! (λy tv)! : [a1(β1, . . . ,ak(βk]

(3)

5This approach is compatible with other notions of model such as Moggi’s one [24, 25], since the functor “!” defines a strong
monad on the Kleisli category L!. The reflexive object !X ( !X C X (or equivalently, !(X ( X)C X) is the CbV version in L
of the reflexive object X ⇒ X C X in a cartesian closed category, in accordance with Girard’s CbV decomposition of the arrow.
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Intuitively, the type system `v is obtained from the restriction of `! to the image of (·)v by substituting
arbitrary types β with multisets b of types. So, given a λ -term t, the two interpretations |t|v~x and JtvK~x can
be different: for α ∈U r !U (e.g. take α = []( [ ]), one has [([a(α]+a)(α]∈ J(λxxx)vKr |λxxx|v.

Proposition 16 (Relational semantics for CbV). In the relational model U , |t|v~x ⊆ JtvK~x for any λ -term t,
with~x = (x1, . . . ,xk) such that fv(t)⊆ {x1, . . . ,xk}. There exists a closed λ -term s such that |s|v 6= JsvK.

Proof. We have just shown that |s|v 6= JsvK for s = λxxx. To prove that |t|v~x ⊆ JtvK~x, it is enough to show,
by induction on t ∈Λ , that x1 :a1, . . . ,xn :ak `! tv :β is derivable whenever x1 :a1, . . . ,xk :ak `v t :β is.

If t is a variable, then t = xi for some 1≤ i≤ k, and tv = x!
i . All derivations for t in the type system `v

are of the form
ax

xi : a `v xi : a for any a∈ !U , and in the type system `!, according to (3),
ax

xi : a `! x!
i : a

is derivable.
If t = sr, then tv = 〈der sv〉rv and all derivations for t in the type system `v are of the form

Γ `v s : [a(b] ∆ `v r : a
app

Γ +∆ `v sr : b
for any a,b ∈ !U .

By i.h., Γ `! sv : [a(β ] and ∆ `! sv : a are derivable in the type system `!, hence the following derivation
is derivable in the type system `!, according to (3) since !U ⊆U

Γ `! sv : [a(b] ∆ `! rv : a
app

Γ +∆ `! 〈der sv〉rv : b .

If t = λys, then tv = (λysv)! and all derivations for t in the type system `v are of the form

(Γi,y : ai `v s : bi)1≤i≤k k ≥ 0
lam

∑
k
i=1 Γi `v λy s : [a1(b1, . . . ,ak(bk]

for any a1,b1, . . . ,ak,bk ∈ !U .

By i.h., Γi,y : ai `! sv : bi is derivable in the type system `! for all 1≤ i≤ k, hence the following derivation
is derivable in the type system `!, according to (3) since !U ⊆U

(Γi,y : ai `! sv : bi)1≤i≤k k ≥ 0
lam

∑
k
i=1 Γi `! (λy sv)! : [a1(b1, . . . ,ak(bk] .

The example above of |s|v 6= JsvK shows also that in general neither JtvK~x = 〈|t|v,0〉~x nor pr1JtvK~x = |t|v~x
hold in relational semantics.6 We conjecture that, for any λ -term t, |t|v~x can be obtained from JtvK~x by
iterating the application of pr1 to J·K along the structure of t, but how to express this formally and
categorically for a generic model U of the bang calculus? Usually in these situations one defines a logical
relation between the two interpretations, but this is complicated by the fact that we are in the untyped
setting so there is no type hierarchy to base our induction. We plan to investigate whether the (syntactic)
logical relations introduced by Pitts in [26] can give an inspiration to define semantic logical relations in
the untyped setting. Another source of inspiration might be the study of other concrete LL based models
of the CbV λ -calculus, such as Scott domains and coherent semantics [28, 13].

6Relational semantics interprets terms in the object U — defined in (2), where a ( α denotes the ordered pair (a,α)— of
the category Rel of sets and relations. The cartesian product & is the disjoint union, with the empty set as terminal and initial
object >= 0, so that the zero morphism 0X ,Y for any objects X and Y is the empty relation and the projection pri is the obvious
selection. Therefore, in relational semantics, 〈|t|v~x ,0〉= |t|

v
~x and pr1JtvK~x = JtvK~x for any λ -term t.
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5 Conclusions

The bang calculus is a general setting to study and compare CbN and CbV λ -calculi in the same rewriting
system and with the same denotational semantics, as we have shown. Since CbN and CbV λ -calculi are
usually investigated as two different rewriting systems with two distinct semantics, the study of the bang
calculus can be fruitful because it provides a more general, canonical and unifying setting where:

• operational and denotational notions and properties (such as models, continuations, standardization,
normalization strategies, equational theories induced by denotational models, etc.) can be introduced
and investigated, so that one can obtain their CbN and CbV counterparts by just restricting the
general notion or result for the bang calculus to the CbN and CbV fragments of the bang calculus;

• in particular, many well studied theoretical notions of the CbN λ -calculus that do not have sat-
isfactory CbV counterparts yet (such as separability, solvability, Böhm trees, classification of
λ -theories, full-abstraction, etc.) might be generalized in the bang calculus, so as to obtain their
CbV counterparts when restricted to the CbV fragment of the bang calculus.
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