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We present a framework for the formal meta-theory of lambda calculi in first-order syntax, with two
sorts of names, one to represent both free and bound variables, and the other for constants, and by
using Stoughton’s multiple substitutions. On top of the framework we formalize Girard’s proof of
the Strong Normalization Theorem for both the simply-typed lambda calculus and System T. As to
the latter, we also present a simplification of the original proof. The whole development has been
machine-checked using the Agda system.

1 Introduction

In [21] a framework was presented for the formal meta-theory of the pure untyped lambda calculus in
first-order abstract syntax (FOAS) and using only one sort of names for both free and bound variables1.
Based upon Stoughton’s work on multiple substitutions [19], the authors were able to give a primitive
recursive definition of the operation of substitution which does not identify alpha-convertible terms2,
avoids variable capture, and has a homogeneous treatment in the case of abstractions. Such a defini-
tion of substitution is obtained by renaming every bound name to a sufficiently fresh one. The whole
development has been formalized in constructive type theory using the Agda system [16].

The framework has been used since then to verify many fundamental meta-theoretic properties of the
lambda calculus including: Subject Reduction for the simply-typed lambda calculus (STLC) in [8]; the
Church-Rosser Theorem for the untyped lambda calculus also in [8]; the Standardization Theorem in [9],
and; the Strong Normalization Theorem for STLC in [24], and by using F. Joachimski and R. Matthes’
syntactical method [14]. Now in this paper, we continue the same line of work and formalize the Strong
Normalization Theorem for System T, and we also present a new and different mechanization for STLC.

System T extends STLC by adding primitive recursive functions on natural numbers. It has its roots
in K. Gödel’s work presented in [12], and it was originally developed to study the consistency of Peano
Arithmetic. The Strong Normalization Theorem states that every program (term) in some calculus under
consideration is strongly normalizing. A term is strongly normalizing if and only if its computation
always halts regardless of the reduction path been taken. This result for System T is already well known.
In this development we mechanize J.-Y. Girard’s proof presented in [11], which in turn is based on
W. W. Tait’s method of computability or reducible functions [20] (henceforth we shall refer to Girard
and Tait’s method or proof interchangeably). This method defines a (logical) relation between terms
and types that is fitter than the Strong Normalization Theorem, and hence it enables a more powerful

*This work is partially supported by Agencia Nacional de Investigación e Innovación (ANII), Uruguay.
1Both the previous framework and the one presented here use named variables, it bears repeating. In a contrary sense, there

are nameless approaches, e.g., de-Bruijn indices [5] or locally nameless syntax [6], which use numbers to identify the variables.
2Or without using Barendregt’s variable convention.
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induction hypothesis. Any term related to some type under such a relation is said to be reducible. Then
the method consists of two steps: first, to prove that all reducible term are strongly normalizing, and
secondly to prove that all typed terms are reducible.

Initially, the sole objective of this work was to formalize a proof of the Strong Normalization The-
orem but only for System T, and by using the framework presented in [21]. Of course, the syntax of
the pure lambda terms had to be extended to include the term-formers for the natural numbers and the
recursion operator3. For this, we based ourselves upon a standard definition of the lambda terms in which
two disjoint sort of names are used, one to represent the variables, and the other for the constants, e.g.,
see [13]. Now, instead of restricting ourselves to a specific set of constants, we shall allow any (count-
able) set. Once the syntax of the framework had been parameterised it felt natural to parameterise the
reduction schema as well, as these relations are often defined by the syntax. The work went a bit further,
and the first part of the proof was also abstracted for a class of calculi to be defined; this step consists
mainly in analysing reduction paths. To round up, hitherto the work evolved from formalizing the proof
of the Strong Normalization Theorem in System T, into also providing a general-purpose framework with
theories for substitution, alpha-conversion, reduction and reducible terms of simple types.

Now, having such a framework it was a good time to revisit the previous formalization of the Strong
Normalization Theorem for STLC presented in [24]. There, the definition of the logical relation was
based on the one in the POPLMark Challenge 2 [2], and it included the context of variables. In addition to
that, a syntactical characterization based on [14] was used to define the type of the strongly normalizing
terms. In this development, we shall use a standard definition of the logical relation which does not
contain the context, and an accessibility characterization of the strongly normalizing terms based on [3].
Furthermore, the proof for STLC is contained in the one for System T, so it serves both as a milestone in
this exposition, as well as to show the incremental nature of the whole method presented here.

The last result presented in this development is about a simplification in Girard’s proof of the Strong
Normalization Theorem for System T. More specifically, in the second part of the proof there is a lemma
whose principle of induction requires to count the occurrences of the successor operator in the normal
form of a given strongly normalizing term. This is not strictly necessary, and one can just count such
symbols directly in the term, and so avoid evaluating it.

In summary, the novel contributions in this paper are: (1) a framework for the meta-theory of lambda
calculi in FOAS with named variables and constants; (2) a complete mechanization of Girard’s proof
of The Strong Normalization Theorem for System T in Agda; (3) a new and different mechanization of
Girard’s proof for STLC in Agda as well, and; (4) a simplification of the principle of induction in Girard’s
original proof of The Strong Normalization Theorem for System T. To the best of our knowledge, there is
not yet a mechanization of the Strong Normalization Theorem for System T. The development has been
entirely written in Agda and it is available at: https://github.com/surciuoli/lambda-c.

The structure of this paper is the following. In the next section we introduce the new framework: its
syntax, substitution, conversion theories and logical relations (reducible terms). Some results presented
are completely new, and some others are an extension of [21, 24] to consider the additional syntax.
From Section 2.5 on, and unless the opposite is explicitly stated, all results represent new developments.
In Section 3, we formalize both STLC and Girard’s proof of the Strong Normalization Theorem. In
Section 4, we extend both the calculus and Girard’s proof to System T, and we also explain the afore-
mentioned simplification. In the last sections we give some overall conclusions and compare our work
with related developments.

3In contrast to [11], during this development we shall not consider booleans nor tuples as part of the syntax. Nevertheless,
they can be easily defined by the machinery presented here.

https://github.com/surciuoli/lambda-c
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Throughout this exposition we shall use Agda code for definitions and lemmata, and a mix of code
and English for the proofs in the hope of making reading more enjoyable. A certain degree of familiarity
with Agda or at least with functional programming languages like Haskell is assumed.

2 The Framework

Let V = v0,v1 . . . be any infinitely countable collection of names, the variables, ranged over by letters x,
y . . . and equipped with a deciding procedure for definitional equality; for concreteness, we shall define
V = N, i.e., the set of natural numbers in Agda, but it can be any other suitable type, e.g., strings. Let
C be any possibly infinite countable collection of names, the constants, and ranged over by c. The
abstract syntax of the lambda terms with constants is defined:

Definition 2.1 (Syntax).

1 module CFramework.CTerm (C : Set) where

2 ...

3 data Λ : Set where

4 k : C → Λ

5 v : V → Λ

6 ň : V → Λ → Λ

7 _·_ : Λ → Λ → Λ

In line 1 we indicate that the definition is contained in the module CFramework.CTerm, which according
to Agda’s specification must be located in the file CFramework/CTerm.agda. We also specify that the
module is parameterised by the set of constants C, which can be of any inductive type (Set). Lines 4
and 5 define the constructors for the constants and the variables respectively. In line 6 we use ň to not
interfere with Agda’s primitive λ . We shall follow the next convention unless the opposite is explicitly
stated: use λ to represent object-level abstractions in informal discussions and proofs, and use ň in code
listings. Line 7 defines the infix binary operator of function application. As usual, we shall use letters M,
N . . . to range over terms.

The module can be then instantiated with any type of constants. For example, the next declaration
derives the syntax of the pure lambda terms into the current scope:

Definition 2.2. open import CFramework.CTerm ⊥

⊥ is the inductive type without any constructor. The import statement tells Agda to load the content
of the file named after the module into the current scope, while the open statement lets one access the
definitions in it without having to qualify them. Both statements can be combined into a single one as
shown.

Whenever a name x syntactically occurs in a term M and is not bound by any abstraction, we shall
say x is free in M, and write it x *M. On the other hand, if every occurrence of x is bound by some
abstraction (or even if x does not occur at all), we shall say x is fresh in M, and write it x #M as in
nominal techniques, e.g., see [23]. Both relations are inductively defined in a standard manner, and in
[21] it was proven that both relations are opposite to each other.

It will come in handy to define both the type of predicates and binary relations on terms respectively
by: Pred = Λ → Set, and Rel = Λ → Λ → Set.
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2.1 Substitution

Substitution is the fundamental entity on which alpha- and beta-conversion sit. We shall base ourselves
upon the work done in [19], and first define multiple substitutions as functions from variables to terms:

Subst = V → Λ

We shall use letter σ to range over them. Later, by applying these functions to the free variables in a
given term we shall obtain the desired operation of the action of substitution (Definition 2.6), i.e., the
operation of replacing every free name x in M by its corresponding image σx.

Most substitutions appearing in properties and definitions are identity-almost-everywhere. We can
generate them by starting from the identity substitution ι , which maps every variable to itself, and ap-
plying the update operation on substitutions _≺+_ such that for any σ , x and M, σ ≺+ (x ,M) is the
substitution that maps x to M, and y to σy for every y other than x:

Definition 2.3 (Update operation).

1 _≺+_ : Subst → V × Λ → Subst

2 (σ ≺+ (x , M)) y with x
?
= y

3 ... | yes _ = M

4 ... | no _ = σ y

In line 1, × is the non-dependent product type, and in line 2, ?
= is the procedure that decides if two names

are equal, and mentioned at the start of this section.
In some places we shall need to restrict the domain of a substitution so to have a finite image or

range, therefore we introduce the type of restrictions, written R, and defined: R = Subst × Λ. Below
we extend freshness to restrictions:

Definition 2.4 (Freshness on restrictions).

_#�_ : V → R → Set

x #� (σ , M) = (y : V) → y * M → x # σ y

In English, a name is fresh in the restriction (σ ,M) if and only if it is fresh in every image σy, for
every y *M.

Now we shall briefly discuss the mechanism in the framework used to rename the bound names in
a given term, and so avoid capturing any free variable during the action of substitution. The complete
description can be found in [21]. Let χ’ be the function that returns the first name not in a given list:

χ’ : List V → V

The algorithm is obtained by a direct consequence of the pigeonhole principle: the list of names given is
finite, therefore we can always choose a fresh name from the infinite collection V. Then we can define
the choice function χ that returns the first name not in a given restriction (σ ,M), by first concatenating
into a single list every free name that appears in the image σx for every x *M, and then selecting the first
name not in such a list by using the previous χ ′ function:

χ : R → V

χ (σ , M) = χ’ (concat (mapL (fv ◦ σ) (fv M)))

mapL applies a function to every element in a list, ◦ stands for the usual composition of functions, and
fv computes the list of free names in a given term. In [21] it was proven that χ computes a sufficiently
fresh name, according to our expectations to be addressed shortly:

Lemma 2.5. χ-lemma2 : (σ : Subst) (M : Λ) → χ (σ , M) #� (σ , M)
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The action of a substitution σ on a term M is the operation that replaces every free name in M by its
corresponding image under σ . It is written M •σ and defined:

Definition 2.6 (Action of substitution).

_•_ : Λ → Subst → Λ

k c • σ = k c

v x • σ = σ x

M · N • σ = (M • σ) · (N • σ)

ň x M • σ = ň y (M • σ ≺+ (x , v y)) where y = χ (σ , ň x M)

Notice that in the last equation we always rename the bound variable x to y by using the χ function.
We can show that this method avoids variable capture: for any w *M other than x it must follow
y # (σ ≺+ (x , y))w, otherwise it would mean that we have captured an undesired free occurrence of
y. Notice that if w = x then its image is y which represents an occurrence of x in the original term λxM
and therefore must be “re-bound”. So, x *M and x 6= w, therefore w * λxM. Next, by Lemma 2.5 we
have y # � (σ , λxM). Then, by Definition 2.4 it follows y #σw, and since (σ ≺+ (x , y))w = σw by
Definition 2.3, so y # (σ ≺+ (x , y))w.

Unary substitution is defined:

_[_/_] : Λ → Λ → V → Λ

M [ N / x ] = M • ι ≺+ (x , N)

Our definition of • has a direct consequence on the terms: when submitted to substitutions, the
bound variables become “ordered”, for the lack of a better name4. Consider the next example. Let
M = λv1v1. By definition, M •σ = λx(v1 •σ ≺+ (v1 , x)) = λxx, where x = χ(σ , λv1v1), and for
every σ . We can see that M does not contain any free variable, therefore by definition of χ we have
that x = v0, i.e., the first name in V, and so we have that the closed term λv1v1 turned into λv0v0 even
though no substitution actually happened. Another example a bit more sophisticated is the next one:
(λv3λv2λv0(v0v1v2v3))[ v0 / v1 ] = λv1λv2λv3(v3v0v2v1). This collateral effect will have some impli-
cations on our definition of beta-reduction.

2.2 Alpha-conversion

Alpha-conversion is inductively defined by the syntax:

1 module CFramework.CAlpha (C : Set) where

2 open import CFramework.CTerm C

3 ...

4 data _∼α_ : Rel where

5 ∼k : {c : C} → k c ∼α k c

6 ∼v : {x : V} → v x ∼α v x

7 ∼· : {M M’ N N’ : Λ} → M ∼α M’ → N ∼α N’ → M · N ∼α M’ · N’

8 ∼ň : {M M’ : Λ} {x x’ y : V} → y # ň x M → y # ň x’ M’

9 → M [ v y / x ] ∼α M’ [ v y / x’ ] → ň x M ∼α ň x’ M’

Since the syntax of the lambda terms is parameterised by a set C, every module that depends on the
syntax (all of them) will have to be parameterised by C as well. Lines 1 and 2 illustrate this point.

4There is a similitude between this designation and A. Church’s definition of principal normal form terms in [7, p. 348].
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Arguments written between braces { and } are called implicit and they are not required to be supplied;
the type-checker will infer their values, whenever possible. Implicit arguments can be made explicit by
enclosing them between braces, e.g., ∼k {c1} has type k c1 ∼α k c1.

The only case in the definition worth mentioning is∼ň. There, we rename both x and x′ to a common
fresh name y. If such results are alpha-convertible, then the choice of the bound name is irrelevant, and
it should be expected to assert that both abstractions are alpha-convertible. This definition can also be
seen in nominal techniques, e.g., see [23], though there it happens to be more usual to rename only one
side of ∼α . Our symmetrical definition has some advantages over those that are not (see [21]). Also, in
[21], ∼α was proven to be an equivalence relation.

The next results are quickly extended from [21]:

Lemma 2.7. lemma•ι : ∀ {M} → M ∼α M • ι

Lemma 2.8. corollary1SubstLemma : ∀ {x y σ M N} → y #� (σ , ň x M)

→ (M • σ ≺+ (x , v y)) • ι ≺+ (y , N) ∼α M • σ ≺+ (x , N)

Arguments preceded by ∀ are not required to be annotated with their respective types.

2.3 Reduction

Let . be any binary relation on terms and called a contraction relation. The syntactic closure of . is
written and it is inductively defined:

Definition 2.9.

1 import CFramework.CTerm as CTerm

2 module CFramework.CReduction (C : Set) (_._ : CTerm.Rel C) where

3 open CTerm C

4 ...

5 data _ _ : Rel where

6 abs : ∀ {x M N} → M  N → ň x M  ň x N

7 appL : ∀ {M N P} → M  N → M · P  N · P

8 appR : ∀ {M N P} → M  N → P · M  P · N

9 redex : ∀ {M N} → M . N → M  N

Line 1 imports the module CFramework.CTerm, and at the same time renames it to CTerm just for
convenience. Line 2 specifies that the module is parameterised by the contraction relation .; notice that
since we have not opened the module CTerm nor specified the set of constants to be used, we wrote
CTerm.Rel C (compare with line 5). From now until the end of this section, it is assumed that both C

and . are in the scope of every definition, unless explicitly stated the opposite.
Any term on the left-hand side of . shall be called a redex, as usual, and any term on right-hand side

a contractum. Besides, any term on the right-hand side of shall be called a reductum.
We can define beta-reduction by means of as next. Let beta-contraction be inductively defined:

Definition 2.10 (Beta-contraction).

module CFramework.CBetaContraction (C : Set) where

...

data _.β_ : Rel where

beta : ∀ {x M N} → ň x M · N .β M [ N / x ]

Then beta-reduction for the pure lambda calculus is derived by importing the modules:
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Definition 2.11 (Beta-reduction).
open import CFramework.CBetaContraction ⊥
open import CFramework.CReduction ⊥ _.β_ renaming (_ _ to _→β_)

Recall that in Definition 2.2 we had explained that by defining C = ⊥ we obtain the syntax of the pure
lambda terms.

The renaming done by • is sensitive to the free variables in the subject term. As a consequence, →β

is not compatible with substitution, i.e., the next lemma does not hold:
∀ {M N σ} → M →β N → M • σ →β N • σ

Consider the following example. Let M = λv1((λv0λv0v0)v0) and N = λv1λv0v0. It can be seen that
M →β N is derivable. Now, let us apply ι on each side. As to N, v1 is renamed to the first name fresh in the
restriction (ι , λv1λv0v0), i.e., to v0; we obtain N • ι = λv0λv0v0. As to M, the variable v1 is renamed
to itself, since it is the first fresh name in the corresponding restriction (renaming it to v0 would cause a
capture). So, M • ι = M, and the only reductum λv1((λv0v0)[ v0 / v0 ]) of M equals to λv1λv0v0, which
is not N • ι .

Since we are going to need some form of the lemma of compatibility above as we shall see, we
will use the next approximation which is always possible: continuing with the earlier example, after the
reduction takes place we shall perform an alpha-conversion step from the reductum to meet N • ι , i.e.,
M • ι →β λv1λv0v0 followed by λv1λv0v0 ∼α N • ι .

So, let r be any binary relation on terms, either a contraction relation or a reduction. We shall say
r is alpha-compatible with substitution, and write it Compat• r, if and only if, for every directed pair of
terms M and N related under r, there must exist some P such that M •σ and P are also related, and that
P ∼α N •σ . Formally:
Definition 2.12 (Alpha-compatibility with substitution).
Compat• r = ∀ {M N σ} → r M N → Σ[ P ∈ Λ ](r (M • σ) P × P ∼α N • σ)

In Agda, the dependent product type can be written Σ[ a ∈ A ] B, where a is some (meta-)variable of
type A, and B is some type which might depend upon a.

Similarly, we shall say r is alpha-commutative and define it:
Definition 2.13 (Alpha-commutativity).
Comm∼α r = ∀ {M N P} → M ∼α N → r N P → Σ[ Q ∈ Λ ](r M Q × Q ∼α P)

We shall restrict this development to contraction relations that preserve freshness, i.e., relations that
do not introduce any free name in any contractum:
Definition 2.14. Preserves# r = ∀ {x M N} → r M N → x # M → x # N

Then we have that, if . preserves freshness, or it is compatible with substitution, or it commutes with
alpha-conversion, then its syntactic closure has the corresponding properties as well:
Lemma 2.15.
preser # : Preserves# _._ → Preserves# (_ _ _._)
compat • : Preserves# _._ → Compat• _._ → Compat• (_ _ _._)
commut α : Preserves# _._ → Compat• _._ → Comm∼α _._ → Comm∼α (_ _ _._)

Their proofs are extended from [21, 24]. Notice the cascade effect on the lemmata: each of them has all
the arguments of the one above. This happens naturally since each lemma relies on the previous one.

Finally, we have that beta-contraction is alpha-commutative, along with two other results (their proofs
are extended from [24]):
Lemma 2.16. Preserves# _.β_ × Compat• _.β_ × Comm∼α _.β_
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2.4 Strongly normalizing terms

A term is strongly normalizing if and only if every reduction path starting from it eventually halts. We
shall use their accessible characterization (originally presented in [3]). For any given computation rela-
tion we define sn:

Definition 2.17 (Strongly normalizing terms).

1 sn : Λ → Set

2 sn = Acc (dual _ _)

Acc is the type of the accessible elements by some order <, i.e., the set of elements a such that there is
no infinite sequence . . . < a′ < a. It is defined in Agda’s standard library [22]. dual is the function that
returns the type of the inverse of every binary relation on terms. We use the dual of  instead of the
direct because Acc expects an order that descends to its left-hand side, so to speak, which is not the case
for . Line 2 can be read as: sn is the set of terms M such that M M′ . . . is always finite. Below
is the definition of Acc to support this paragraph:

data Acc {a b} {A : Set a} (_<_ : Rel A b) (x : A) : Set (a t b) where

acc : (∀ y → y < x → Acc _<_ y) → Acc _<_ x

Note that Rel above is the type of binary relations between any two types, and it is defined in the standard
library. a and b are universe indices or levels, and t is the function that returns the greatest of them.

The next result is adapted from [24] and follows easily by induction:

Lemma 2.18. inversionSnApp : ∀ {M N} → sn (M · N) → sn M × sn N

sn is closed under alpha-conversion, as long as the supporting relation is alpha-commutative. The
corresponding proof presented here is an adaptation of [24]:

Lemma 2.19. closureSn∼α : Comm∼α _ _ → ∀ {M N} → sn M → M ∼α N → sn N

Proof. By induction on the derivation of snM. To derive snN we need to prove snP for any N  P.
By Definition 2.13 there exists some Q such that M Q and Q ∼α P. By Definition 2.17, snQ holds,
i.e., Q is accessible, and snQ is a proper component of the derivation of snP5. Then, we can use the
induction hypothesis on snQ together with Q ∼α P and obtain snP.

Exceptionally, we show the code of the proof above because it is very compact, and to reinforce the
understanding of the principle of structural induction of sn:

closureSn∼α comm {M} {N} (acc i) M∼N =

acc λ P P←N → let Q , M→Q , Q∼P = comm M∼N P←N
in closureSn∼α comm (i Q M→Q) Q∼P

The λ occurrence denotes Agda’s entity for meta-level lambda terms. i Q M→Q is of type snQ, and it is
a proper component of acc i which is of type snM. P←N is of type (dual _ _) P N which in turn
equals to P  N. For the same reason M→Q is of type (dual _ _) Q M.

5Put in other words, every reduction beginning in Q is at least one step shorter than every other reduction beginning in M.
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2.5 Reducibile terms

Girard’s proof of the Strong Normalization Theorem defines a relation between terms and types. A term
that is related to some type is said to be reducible. The proof is carried out in two steps: first, it is proven
that every reducible term is strongly normalizing, and secondly that every typed term is reducible. In this
section we shall define the logical relation of reducible terms, and after that we shall prove some of their
properties, including the first step in Girard’s proof (CR1 of Lemma 2.27).

Both in STLC and System T (object-level) types are simple, so regarding this development they will
be enough for our definition of the logical relation. We define them by:

Definition 2.20 (Object-level types).

data Type : Set where

τ : Type

_⇒_ : Type → Type → Type

The relation of reducible terms or logical relation is then defined by recursion on the types:

Definition 2.21 (Reducible terms).

Red : Type → Λ → Set

Red τ M = sn M

Red (α ⇒ β) M = ∀ {N} → Red α N → Red β (M · N)

Red is closed under alpha-conversion:

Lemma 2.22 (Closure of Red under ∼α).

closureRed∼α : Comm∼α _ _ → ∀ {α M N} → Red α M → M ∼α N → Red α N

Proof. By induction on the type α , and by using Lemma 2.19.

Next we have neutral terms. We shall use a different characterization than the one given in [11], and
define them as the set of terms which when applied to any non-empty sequence of arguments, the result
is never a redex, i.e., M is neutral if and only if MN1N2 . . .Nn is not a redex for any n > 0.

So first, let us define the type of vectors of applications of terms:

Definition 2.23 (Vectors).

data Vec : Λ → Λ → Set where

nil : ∀ {M} → Vec M M

cons : ∀ {M N} → Vec M N → ∀ {P} → Vec M (N · P)

Vec M V will then indicate that V = MN1N2 . . .Nn for some n≥ 0, and we shall say that M is the head. If
n = 0 then M =V , and M is not applied to any argument (we will see right away why this is convenient
despite our motivation required n > 0).

Now we can give a precise characterization of the type of neutral terms:

Definition 2.24 (Neutral terms).

Ne M = ∀ {V} → Vec M V → ∀ {P Q} → ¬ (V · P) . Q

Note that we have added P at the end of V · P to have at least one argument applied to M.
The next result follows immediately by induction on the definition of Vector:

Lemma 2.25. lemmaNe : ∀ {M} → Ne M → ∀ {N} → Ne (M · N)
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As to the main result in this section we have some properties about reducible terms, among them,
the first part of Girard’s proof, i.e., reducible terms are strongly normalizing (CR1). Let . be any relation
that does not reduce variables, and such that for any vector V with a variable at the head it follows V
is neutral under .6; using our definition of vectors (possibly with no applications) we can compact both
conditions by:

Definition 2.26 (Condition of .).

Cond. = ∀ {x N} → Vec (v x) N → ∀ {Q} → ¬ N . Q

Then, for any such a relation . we have that:

Lemma 2.27 (Properties of reducible terms).

CR1 : ∀ {α M} → Red α M → sn M

CR2 : ∀ {α M N} → Red α M → M  N → Red α N

CR3 : ∀ {α M} → Ne M → (∀ {N} → M  N → Red α N) → Red α M

Proof. By mutual induction on the type α:

• Case α = τ:

CR1 By Definition 2.21, Redτ M = snM, so CR1 is a tautology.
CR2 Immediate by Definition 2.17.
CR3 Analogous to CR2.

• Case α = β ⇒ γ:

CR1 By Definition 2.26 we have both that Nev0, and that v0  N is absurd for any N. As a
direct consequence of the latter, the second hypothesis or argument of CR3 follows by vacu-
ity, and so we can use the main induction hypothesis CR3 and obtain Redβ v0. Now, by
Definition 2.21 on Red(β ⇒ γ)M, we obtain Redγ (Mv0), and by the induction hypothesis
sn(Mv0). Finally, by Lemma 2.18 we get snM.

CR2 According to Definition 2.21, to prove the thesis Red(β ⇒ γ)N we have to prove Redγ (NP)
for any Redβ P. By Definition 2.21, again, the hypothesis Red(β⇒ γ)M tells us Redγ (MP),
and by the appL rule of Definition 2.9 on M N we can derive MP NP, so we can use
the induction hypothesis and obtain Redγ (NP) as desired.

CR3 Let Redβ P. To derive our desired result Redγ (MP) and by using the induction hypothesis,
we need to feed it with the required hypotheses or arguments: (1) Ne(MP), and (2) that for
every N′, MP N′ implies Redγ N′. (1) follows by Lemma 2.25. As to (2), first of all, by
the main induction hypothesis CR1 we get snP. Now we continue by a nested induction on
the derivation of snP7. Let us analyse every possible derivation of MP N′.

– Case redex: MP.N′ is absurd by Definition 2.26.
– Case appL: If MP M′N′′ follows from M M′ with N′ = M′N′′ then by (2) we get
Red(β ⇒ γ)M′, and so by Definition 2.21, Redγ (M′N′′).

– Case appR: If MP MP′ follows from P P′ with N′ = MP′, then by Definition 2.17
we obtain snP′, which is a proper component of snP, and so we can continue by induc-
tion on snP′.

6Actually, we could have asked the second condition just for one specific variable and Lemma 2.27 would hold anyway (see
the proof of CR1 when α is functional).

7In the code, it means to define an auxiliary function in the current scope.
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Next we have some general definitions regarding the assignment of types. First, there are contexts
(of variable declarations). They are defined as list of pairs, possibly with duplicates:

Definition 2.28. Cxt = List (V × Type)

Then there is the relation of membership between variables and contexts. We shall write x ∈ Γ and say
that x is the first variable in Γ, searched from left to right. Below is the inductive definition:

data _∈_ : V → Cxt → Set where

here : ∀ {x α Γ} → x ∈ Γ d x : α

there : ∀ {x y α Γ} → x 6≡ y → x ∈ Γ → x ∈ Γ d y : α

Γ d x : α is syntax-sugar for (x , α) :: Γ. Finally, there is a lookup function on contexts such
that it returns the type of the first variable (provided it is declared), searched in the same fashion, and
defined:

1 _〈_〉 : ∀ {x} → (Γ : Cxt) → x ∈ Γ → Type

2 [] 〈 () 〉
3 ((k , d) :: xs) 〈 here 〉 = d

4 ((k , d) :: xs) 〈 there _ p 〉 = xs 〈 p 〉

In the second line, () is an absurd pattern, and it tells Agda to check that there is no possible way of
having an object of type x ∈ [], for any x.

To end this section, we present reducible substitutions. We shall say a substitution is reducible under
some context Γ if and only if it maps every variable in Γ to a reducible term of the same type:

Definition 2.29. RedSubst σ Γ = ∀ x → (k : x ∈ Γ) → Red (Γ 〈 k 〉) (σ x)

The next results follow immediately by definition:

Lemma 2.30. Red-ι : ∀ {Γ} → RedSubst ι Γ

Lemma 2.31.

Red-upd : RedSubst σ Γ → ∀ x → Red α N → RedSubst (σ ≺+ (x , N)) (Γ d x : α)

3 STLC

The syntax and theories of substitution, alpha- and beta-conversion for STLC are obtained by instantiat-
ing the framework with:

module STLC where

open import CFramework.CTerm ⊥
...

open import CFramework.CReduction ⊥ _.β_ as Reduction renaming (_ _ to _→β_)

Next is the assignment of types in STLC:

data _`_:_ (Γ : Cxt) : Λ → Type → Set where

`var : ∀ {x} → (k : x ∈ Γ) → Γ ` v x : Γ 〈 k 〉
`abs : ∀ {x M α β} → Γ d x : α ` M : β → Γ ` ň x M : α ⇒ β

`app : ∀ {M N α β} → Γ ` M : α ⇒ β → Γ ` N : α → Γ ` M · N : β
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3.1 The Strong Normalization Theorem in STLC

Following Girard’s proof, first we need to prove that every reducible term is sn. We shall use CR1 of
Lemma 2.27 for that matter, so we need to prove that .β satisfies conditions in Definition 2.26.

Lemma 3.1. cond.β : ∀ {x N} → Vec (v x) N → ∀ {Q} → ¬(N .β Q)

Proof. Immediate by contradiction from Vec (x N) N and N .β Q.

Then we can open the following modules and inherit Lemma 2.27 for STLC, particularly CR1:

open import CFramework.CReducibility ⊥ _.β_ as Reducibility

open Reducibility.RedProperties cond.β

Next we have to prove that every typed terms is reducible; we shall refer to this as the main lemma.
To present the proof, we are going to need some preparatory results. First, by Lemma 2.16 together with
Lemma 2.15 we have that →β is both alpha-compatible with substitution, and alpha-commutative:

Lemma 3.2. Compat• _→β_ × Comm∼α _→β_

Secondly, it is immediate that (λxN)N is neutral for every x, M and N:

Lemma 3.3. lemmaβNe : ∀ {x M N} → Ne ((ň x M) · N)

And finally, since the main lemma proceeds by induction on the derivation of the typing judgement, and
the case of abstractions is quite complex, it turns out to be convenient to have a separate lemma for this:

Lemma 3.4. lemmaAbs : ∀ {x M N α β} → sn M → sn N

→ (∀ {P} → Red α P → Red β (M [ P / x ])) → Red α N → Red β (ň x M · N)

Proof. By induction on the derivations of snM and snN. We shall refer to hypotheses snM, snN,
∀{P} → Redα P → Redβ (M[P / x ]) and Redα N as (1) through (4) respectively. So, to use CR3 of
Lemma 2.27 to prove that the neutral term (λxM)N is reducible of type β (the thesis of this lemma) we
need to show that every reductum is reducible (the second explicit hypothesis of the mentioned lemma).
So, let us analyze every possible case:

• Case redex: If (λxM)N →β M[N / x ] then we can quickly derive that M[N / x ] is reducible
from (3) and (4).

• Case appL: If (λxM)N →β (λxM′)N follows from M →β M′ then, to use the induction hypoth-
esis on snM′, we need to provide the requested hypotheses (1) through (4) correctly instanti-
ated. (1) follows from Definition 2.17. (2) and (4) are direct. As to (3), we need to prove that
Redβ (M′[P / x ]) holds for any Redα P. By Lemma 3.2 we know that there exists some R such
that M[P / x ] →β R and R ∼α M′[P / x ]. By hypothesis (3) it follows Redβ (M[P / x ]), so
by CR2 of Lemma 2.27 we obtain Redβ R. Finally, we can use Lemma 3.2 together with inherited
Lemma 2.22 to derive Redβ (M′[P / x ]).

• Case appR: If (λxM)N →β (λxM)N′ follows from N →β N′ then, by Definition 2.17 we have snN′,
and by CR2 of Lemma 2.27 we obtain Redα N′, therefore we can use the induction hypothesis on
snN′ and derive Redβ ((λxM)N′).

Now, to use the previous result in the main lemma, we are going to need a stronger induction hypoth-
esis in order to derive the third argument, namely ∀{P} → Redα P → Redβ (M[P / x ]). We shall see that
by stating the main lemma as next we can easily derive it:
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Lemma 3.5. main : ∀ {α M σ Γ} → Γ ` M : α → RedSubst σ Γ → Red α (M • σ)

Proof. By induction on the typing derivation:
• Case `var: If M is a variable, then the thesis follows directly from Definition 2.29.

• Case `abs: If M = λxM′ with type α ⇒ β , then we need to show Redβ (((λxM′) •σ)N) for
any Redα N. First of all, λxM′ •σ = λy(M′ • (σ ≺+ (x , y))) for some fresh name y. Now, to
use Lemma 3.4 we need to derive its hypothesis: (1) sn(M′ •σ ≺+ (x , y)); (2) snN; (3) for ev-
ery Redα P, Redβ ((M′ •σ ≺+ (x , y))[P / y ]), and; (4) Redα N. As to (1), by Lemma 2.31 we
have RedSubst(Γdx : α)(σ ≺+ (x , y)), thus by induction hypothesis Redβ (M′ •σ ≺+ (x , y)),
and so by CR1 of Lemma 2.27 we obtain the desired result. (2) follows immediately by CR1. As
to (3), first by Lemma 2.8 we have (M′ •σ ≺+ (x , y))[P / y ] ∼α M′ • σ ≺+ (x ,P). Next,
by Lemma 2.31, RedSubst(Γd x : α)(σ ≺+ (x ,P)), so by the induction hypothesis we have
Redβ (M′(σ ,P/x)). And finally, by Lemma 3.2 together with Lemma 2.22 we can derive the
desired result. (4) is an assumption already made. At last, having (1) through (4) we can use
Lemma 3.4 and derive Red(α ⇒ β )((λxM′) •σ), and so obtain Redβ (((λxM′) •σ)N) by Defi-
nition 2.21, as desired.

• Case `app: Immediate by the induction hypothesis.

Without further ado, we have the Strong Normalization Theorem:
Theorem 3.6. strongNormalization : ∀ {Γ M α} → Γ ` M : α → sn M

Proof. By Lemmas 2.30 and 3.5 we have Redα (M • ι), and so by CR1 of Lemma 2.27, sn(M • ι). Then,
by Lemma 2.7, M • ι ∼α M, and thus by Lemma 3.2 together with Lemma 2.19 it follows snM.

4 System T

Let C and .T be inductively defined:
data C : Set where

O : C; S : C; Rec : C

data _.T_ : Rel where

beta : ∀ {M N} → M .β N → M .T N

recO : ∀ {G H} → k Rec · G · H · k O .T G

recS : ∀ {G H N} → k Rec · G · H · (k S · N) .T H · N · (k Rec · G · H · N)

The syntax and theories of substitution, alpha- and beta-conversion for System T are then obtained by
instantiating the framework with both C and .T, and similarly to STLC as shown in the previous section.

The assignment of types in System T is extended from STLC and defined:
data _`_:_ (Γ : Cxt) : Λ → Type → Set where

`zro : Γ ` k O : nat

`suc : Γ ` k S : nat ⇒ nat

`rec : ∀ {α} → Γ ` k Rec : α ⇒ (nat ⇒ α ⇒ α) ⇒ nat ⇒ α

`var : ∀ {x} → (k : x ∈ Γ) → Γ ` v x : Γ 〈 k 〉
`abs : ∀ {x M α β} → Γ d x : α ` M : β → Γ ` ň x M : α ⇒ β

`app : ∀ {M N α β} → Γ ` M : α ⇒ β → Γ ` N : α → Γ ` M · N : β

nat is syntax-sugar for τ .



94 A Formal Proof of the Strong Normalization Theorem for System T

4.1 The Strong Normalization Theorem in System T

The proof of the Strong Normalization Theorem for System T follows the same structure as the one for
STLC: first, we have to prove that .T satisfies condition in Definition 2.26 so to derive the first step in
Girard’s method, i.e., CR1. Then, we need to have a main lemma and reason by induction on the syntax
(the typing judgment) to derive reducibiliy. Finally, the Strong Normalization Theorem for System T
follows exactly as Theorem 3.6.

So, to start with, we have that .T satisfies Definition 2.26 similar to STLC:

Lemma 4.1. cond.T : ∀ {x N} → Vec (v x) N → ∀ {Q} → ¬(N .T Q)

Thus, we inherit Lemma 2.27 in System T, particularly CR1.
As to the second part, i.e., the main lemma, we have to consider only the additional syntax; the

remaining cases follow identically. O and S are reducible by CR3 (similar to v0 in the proof of CR1).
As to Rec, we shall follow the same strategy as in STLC and have a separate lemma, namely the
recursion lemma. In the next section we cover this last case, while at the same time we present the
announced simplification.

4.2 Recursion

In this section, first we explain the induction used in the proof of the recursion lemma as presented in [11]
but using the terminology of our framework, then we present the simplification, and finally we formalize
the proof.

We must prove that the neutral term RecGH N is reducible for any reducible terms G, H and N.
First, we shall strengthen our induction hypothesis: by CR1 we know that G, H and N are sn, so we
can assume that these derivations are given as additional hypotheses. Also, we need some preparatory
definitions: let ν(M), `(M) and nf(M) be respectively the length of the longest reduction starting in
M, the count of S symbols in M, and the normal form of the (strongly normalizing) term M. Now,
to prove our thesis we shall proceed by induction on the strict component-wise order (henceforth, just
component-wise order) on the 4-tuple8 (snG,snH,ν(N), `(nf(N))), where in snG and snH we shall
use the structural order of sn, in ν(N) the complete order on natural numbers9, and in `(nf(N)) the
structural order on natural numbers. As we did in Lemma 3.4, we are going to use CR3 of Lemma 2.27
for the matter, and so we have to prove that every reductum of RecGH N is reducible. There are five
cases: (1) RecG′H N with G →β G′, (2) RecGH ′N with H →β H ′, (3) RecGH N′ with N →β N′, (4) G
with N = O, and (5) HN′(RecGH N′) with N = SN′. As to (1) and (2), we can directly use the induction
hypothesis on snG′ and snH ′. As to (3), we can suspect that ν(N′) < ν(N), and so we can proceed
likewise. (4) is a hypothesis. As to (5), it is immediate that `(nf(N′))< `(nf(SN′)).

We can simplify the induction schema used above by dispensing with nf, and instead proceed by
induction on the component-wise order of the 3-tuple (snG,snH,(ν(N), `(N))), where in snG and
snH we use the same order as above, but in (ν(N), `(N)) we use the lexicographic order on tuples10. As
to cases (1), (2) and (4), the induction is the same. As to (3), we have already assumed that ν(N′)< ν(N),
so we can use the (lexicographic-based) induction hypothesis on (ν(N′), `(N′)), and disregard if `(N′)
goes off. Finally, as to (5), on the one hand, it is immediate that `(N′)< `(SN′). On the other hand, we
can also guess that ν(N′) = ν(SN′), therefore we can proceed by induction on (ν(SN′), `(N′)).

8The component-wise order on a n-tuple is given by: ai <i b⇒ (a0 . . . ,ai . . . ,an)<i (a0 . . . ,b . . . ,an) for any i, n and b.
9The complete order on natural numbers is the same as transitive closure of the structural order on them.

10The lexicographic order on a tuple is given by: a < b⇒ (a,c)< (b,d) and b < c⇒ (a,b)< (a,c) for any a, b, c, d.
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Now, to formalize the recursion lemma based on the last induction schema, first we need to give
some definitions, as usual. Next is the function that computes the list of reductio for any given term M,
while at the same time proves it is sound, i.e., every element of the list is actually a reductum of M. We
present it in two separate parts, first redAux, which as the name suggest, is an auxiliary function, and
then reductio which is the complete and desired operation (we omit some code):

1 redAux : (M : Term) → List (Σ[ N ∈ Term ](M →β N))

2 redAux (ň x M · N) = [ (M [ N / x ] , ...) ]

3 redAux (k Rec · G · H · k O) = [ (G , ...) ]

4 redAux (k Rec · G · H · (k S · N)) = [ (H · N · (k Rec · G · H · N) , ...) ]

5 redAux _ = []

6

7 reductio : (M : Term) → List (Σ[ N ∈ Term ](M →β N))

8 reductio (k _) = []

9 reductio (v _) = []

10 reductio (ň x M) = mapL (mapΣ (ň x) abs) (reductio M)

11 reductio (M · N) = redAux (M · N) ++ ... (reductio M) ++ ... (reductio N)

mapΣ is the function that given two other functions and a tuple, it applies each function to one of the
components of the tuple. The purpose of the auxiliary function is to put together the cases of redexes,
and apart from the reductio definition, so to have a cleaner treatment in the case of applications in the
latter (see line 11).

The algorithm is also complete, i.e., it outputs all reductio of M, and its proof follows by induction
on the derivation of any given reduction:

Lemma 4.2. lemmaReductio : ∀ {M N} (r : M →β N) → (N , r) ∈’ (reductio M)

∈’ is the standard relation of membership in lists.
We can use the list returned by reductio to develop an algorithm that computes our first ordinal

ν , i.e., the length of the longest reduction beginning in some strongly normalizing term M given, by
recursively computing such a result for every reductum of M, then selecting the longest one, and finally
adding one for the first step. Notice that the length of longest path and the height of the derivation tree
of snM are synonyms, so we shall use them interchangeably:

ν : ∀ {M} → sn M → N
ν {M} (acc i) = 1 + max (mapL (λ{(N , M→N) → ν (i N M→N)}) (reductio M))

max is the function that returns the maximum element in a given list. The above definition is standard for
computing the height of any inductive type, except for that sn has an infinitary premise [1, p. 13]. This
means that we need to enumerate all possible applications to obtain every possible sub-tree. Since every
term M has a finite number of redexes, so there can only be finitely many applications of the premise,
i.e., reductions M →β N for some N, all of them being enumerated by the reductio algorithm, as proven
in Lemma 4.2.

The height of snN equals to the height of sn(SN), as guessed at the start of this section. This is
immediate since the prefix S does not add any redex to any reduction path:

Lemma 4.3. lemmaSν : ∀ {M} (p : sn M) (q : sn (k S · M)) → ν p ≡ ν q

Proof. By induction on either the derivation of p or q.
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Next we have that the height of snM decreases after a computation step is consumed, or in other
words, every (immediate) sub-tree of snM is strictly smaller. The name of the lemma is lemmaStepν ,
and its proof follows by properties of lists, and by using Lemma 4.2:

Lemma 4.4. ∀ {M N i} (p : sn M) → p ≡ acc i → (r : M →β N) → ν (i N r) < ν p

Notice the apparently clumsy way it was stated. i N r is a proof of snN. To require such a proof as
an argument would be inefficient since we already know snM and M →β N. Instead, by asking for the
argument p ≡ acc i we can obtain the premise i of snM (this can be easily supplied afterwards with
the constructor of ≡, refl), and apply it to N and r, and so obtain a proof of snN.

Next is our second ordinal:

Definition 4.5. ` : Term → N is the function that counts the number of occurrences of the S symbol in
any given term, and it is defined by recursion on the term.

Finally, we have the recursion lemma. Let <-lex be the lexicographic order on tuples of N. Then
Acc _<-lex_ is the type of pairs that are accessible by such an order; it is easy to prove that for any
proof p of snN for some N, it follows that (ν(p), `(N)) is in the accessible part of the lexicographic
order, hence such an argument can always be derived. Also, note that RecGH N is neutral for any G, H
and N. Then:

Lemma 4.6 (Recursion).

lemmaRec : ∀ {α G H N} → sn G → sn H → (p : sn N) → Acc _<-lex_ (ν p , ` N)

→ Red α G → Red (nat ⇒ α ⇒ α) H → Red α (k Rec · G · H · N)

Proof. By induction on the derivations of snG and snH, and on the lexicographic order of the tuple
(ν(p), `(N))11. As has already been said several times by now, we shall resort to CR3 of Lemma 2.27 for
the matter. So let us fast-forward til the reductum analysis:

• Case recO: If RecGH O →β G then the result is a hypothesis.

• Case recS: If RecGH (SN) →β HN(RecGH N) then, since we know both that ν(N) = ν(SN)
by Lemma 4.3, and that `(N) < `(SN) by definition of `, we can apply the induction hypothesis
and so obtain Redα (RecGH N). Finally, by Definition 2.21 on Red(nat⇒ α ⇒ α)H we obtain
Redα (HN(RecGH N)).

• Case appR: If RecGH N →β RecGH N′ follows from N →β N′ then, by Lemma 4.4 we know that
ν(N′)< ν(N), and so we can use the induction hypothesis to derive the desired result.

• Case appL: If the reduction follows from one either in G or H, then we can proceed directly by the
induction hypothesis.

5 Related work

In this development we have encoded the lambda terms using first-order abstract syntax (FOAS). In
contrast, other approaches use higher-order abstract syntax (HOAS) [17], i.e., binders and variables are

11In Agda, every function is structural recursive, and each one of them will successfully pass the type-checking phase if,
put it simply, there exists a subset of the arguments such that for every recursive call in any of its definiens, at least one of the
arguments is structurally smaller whilst the others remains the same. This is the same as saying that the induction is based on
the component-wise order of any arrangement of such a subset, i.e., on a tuple made up of such arguments.
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encoded using the same ones in the host language. These systems have the advantage that substitution
is already defined. The first such mechanization of the theorem for STLC was presented in [10], and
by using the ATS/LF logical framework [25]. However, the theory of (terminating) recursive functions
using FOAS is more established, and there are plenty of programming languages that support them.
This makes fairly easy to translate this mechanization to other system supporting standard principles of
induction.

A second difference with existing work is that in this paper we have used named variables instead
of de-Bruijn indices [5], e.g., in our framework the identity function can be written λxx for any x, while
in the latter λ0. Clearly, the former is visually more appealing, making it better suited for textbooks,
needless to say it is the actual way programs are written. The main disadvantage is that we do not identify
alpha-convertible terms, e.g., λv0v0 and λv1v1 are different objects, whereas by using indices there is
only one possible representative for each class of alpha-convertible terms, and so it is not necessary
to deal with alpha-conversion at all. To mention some renowned mechanizations of the theorem for
STLC using this encoding: in [3] the author uses the LEGO system [18], and; in [2] two different
mechanizations are presented, one in Agda and one in Coq [15].

As to System T, to the best of our knowledge there is not yet a mechanization of the Strong Normal-
ization Theorem.

6 Conclusions

We have presented a framework for the formal meta-theory of lambda calculi in FOAS with constants,
that does not identify alpha-convertible terms, and it is parameterised by a reduction schema. On top
of it, we have built a complete mechanization of Girard’s proof of the Strong Normalization Theorem
for System T. In addition, we were able to include a simplification on the principle of induction of the
original proof. Finally, we gave a new and different mechanization of the same method but for STLC.

In terms of size, the framework is ∼1800LOC long, counting import statements and the like, and of
which ∼90LOC belong to the first part of Girard’s proof, namely the reducibility properties. As to the
mechanizations of the proofs for STLC and System T, they are about 70 and 260LOC long repectively.

The proof for STLC presented here is significantly shorter than that of previous works using the
same framework. In [24], a proof of the Strong Normalization Theorem for STLC using Joachimski
and Matthes’ method was presented, and soon after, it was refactored to take alpha-conversion out of
the syntactic characterization of the strongly normalizing terms. The final proof was ∼400LOC long.
The mechanization presented here adds up to ∼160LOC, i.e., less than half the size. One of the main
differences is that the closure of the accessibility definition of the strongly normalizing terms under
alpha-conversion required just 3LOC, while its syntactical counterpart required about 100LOC.

Overall, during this work alpha-conversion was not much of a burden outside the framework. Once
the machinery has been set up, just a handful of lemmas were used at specific locations. Beta-reduction
was proven to be both alpha-commutative and alpha-compatible with substitution in Lemma 3.2, and
after that, both results were used in Lemmas 3.4 and 3.5 and Theorem 3.6, along with Lemmas 2.7, 2.8,
2.19 and 2.22, all of them having been previously defined in the framework. Alpha-conversion was not
used at all in the recursion lemma.

We hope that this paper can also serve as a tool to extend the proof method to related calculi and
different host languages. The method we have presented uses simple techniques and it is rich in details,
so hopefully it can be adjusted to different scenarios.
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