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In this paper we present our current development on a new formalization of nominal sets in Agda. Our
first motivation in having another formalization was to understand better nominal sets and to have a
playground for testing type systems based on nominal logic. Not surprisingly, we have independently
built up the same hierarchy of types leading to nominal sets. We diverge from other formalizations
in how to conceive finite permutations: in our formalization a finite permutation is a permutation
(i.e. a bijection) whose domain is finite. Finite permutations have different representations, for
instance as compositions of transpositions (the predominant in other formalizations) or compositions
of disjoint cycles. We prove that these representations are equivalent and use them to normalize (up
to composition order of independent transpositions) compositions of transpositions.

1 Introduction

Nominal sets were introduced to Computer Science by Gabbay and Pitts to give an adequate mathemat-
ical universe that permits the definition of inductive sets with binding [8]. Instead of taking equivalence
classes of inductively defined sets (as in a formal treatment of, say, the Lambda Calculus) or a particular
representation of the variables (as in the de Bruijn approach to Lambda Calculus), nominal sets have
a notion of name abstraction that ensures all the properties expected for binders; in particular, alpha-
equivalent lambda terms are represented by the same element of the nominal set of lambda terms.

In this paper we present a new mechanization [10] of nominal sets. Most of the current mecha-
nizations of nominal sets represent finite permutations as compositions of transpositions, where trans-
positions are represented by pairs of atoms and compositions as lists. In contrast, our starting point
is permutations (i.e. bijective functions); finite permutations are permutations that can be represented
by composition of transpositions. Moreover they conflate the set of atoms mentioned in a list with the
domain of the (represented) permutation. Pondering about this issue, we decided to develop a “normal-
ization” procedure for representations of finite permutations; in order to prove its correctness, we were
driven to introduce a cycle notation.

The rest of this paper is structured into four sections. In Sect. 2 we summarize the fundamentals
of Nominal Sets; in Sect. 3 we explain the different representations of finite permutations and their
equivalence; then, in Sect. 4 we present the most salient aspects of our mechanization in Agda; and
finally in Sect. 5 we conclude by mentioning related works and contrasting them with our approach,
indicating also our next steps. We assume some knowledge of Agda, but also hope that the paper can be
followed by someone familiar with any other language based on type theory.

*Most of this work was done in a research leave in ORT Uruguay, financed by Agencia Nacional de Investigación e Inno-
vación (ANII) of Uruguay.
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2 Fundamentals of Nominal Sets

In this section we summarize the main concepts underlying the notion of Nominal Sets; for a more
complete treatment we refer the reader to [13]. We repeat the basic definitions of group and group action.
A group is a set G with a distinguished element (ε ∈ G, the unit), a binary operation ( · : G×G→ G,
the multiplication), and a unary operation ( −1 : G→ G, the inverse), satisfying the following axioms:

Associativity: g1 · (g2 ·g3) = (g1 ·g2) ·g3 ,∀g1,g2,g3 ∈ G

Inverse element: g · (g−1) = ε = g−1 ·g ,∀g ∈ G

Identity element: ε ·g = g = g · ε ,∀g ∈ G

Although a group is given by the tuple (G,ε, · , −1) (and the proofs that these operations satisfy the
axioms) we will refer to the group simply by G. A sub-group of G is a subset H ⊆G such that ε ∈H and
H is closed under the inverse and multiplication.

Let G be a group. A G-set is a set X with an operation • : G×X→ X (called the action) satisfying:

Identity: ε • x = x ,∀x ∈ X

Compatibility: g1 • (g2 • x) = (g1 ·g2)• x ,∀g1,g2 ∈ G,∀x ∈ X

A morphism between G-sets X and Y is a function F : X → Y that commutes with the actions:

F (g• x) = g•F x ,∀g ∈ G,∀x ∈ X

These are called equivariant functions. Since idX is equivariant and the composition of equivariant
functions yields an equivariant function we can talk of the category of G-Sets.

Any set X can be seen as a G-set by letting g • x = x; such a G-set is called the discrete G-set.
Moreover any group acts on itself by the multiplication.

One can form the (in)finitary product of G-sets by defining the action of G on a tuple in a pointwise
manner:

g• 〈x1, x2〉 = 〈g• x1, g• x2〉 ,∀g ∈ G,∀x1 ∈ X1,∀x2 ∈ X2

The projections and the product morphism 〈F,H〉 are equivariant, assuming that F and H are also equiv-
ariant. G-set, as a category, also has co-products.

If X and Y are G-sets one can endow the set Y X of functions from X to Y with the conjugate action:

(g•F)x = g• (F (g−1 • x)) ,∀g ∈ G,∀x ∈ X .

G-sets over the Permutation Group The group of symmetries over a set X consists of G = Sym(X),
where Sym(X) is the set of bijections on X ; the multiplication of Sym(X) is composition, the inverse is
the inverse bijection, and the unit is the identity.

Let Perm(X) be the subset of Sym(X) of bijections that changes only finitely many elements; i.e.,
f ∈ Perm(X) if supp( f ) = {x ∈ X | f x 6= x} is finite. It is straightforward to prove that Perm(X) is a sub-
group of Sym(X). Of course, if X is finite, then Perm(X) = Sym(X). Notice that X itself is a Perm(X)-set
with the action being function application: π • x = π x .

In particular, the transposition (or swapping) of a pair of elements x,y ∈ X is the finite permutation
(x y) ∈ Perm(X) given by

(x y)z =


y if z = x
x if z = y
z otherwise
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A basic result (in [9] is proved as Theorem 6.3 and Corollary 6.5) is that every π ∈ Perm(X) can be
expressed as a composition of disjoint cycles

π = (x1 x2 . . . xn)◦ · · · ◦ (z1 z2 . . . zk)

and every cycle can be expressed as a composition of transpositions

(x1 x2 . . . xn) = (x1 x2)◦ (x2 x3)◦ · · · ◦ (xn−1 xn)

Therefore every π ∈ Perm(X) can be expressed as a composition of transpositions. We elaborate on the
equivalence of the representations in Sect. 3. Let us exhibit this with a concrete example.

Example 1. Let f : N→ N be defined as

f x =

{
(x+2) mod 6 if x≤ 5
x else

Function f is a finite permutation, because it has finite support: {x ∈N | 0≤ x≤ 5}. Therefore it can be
expressed as the composition of two cycles: (1 3 5)◦ (0 2 4), or alternatively, it can also be expressed as
a composition of four transpositions: (1 3)◦ (3 5)◦ (0 2)◦ (2 4).

Nominal Sets If we let X be the set of variables for the lambda calculus, then a permutation on X is a
renaming; such a permutation can be lifted to an action over the set of lambda terms (taking care of the
bound variables). In the nominal parlance one says that X is the set of atoms or that variables are atomic
names: an atomic name has no structure in itself. We only assume that a set of atoms is a countable
infinite set with decidable equality; from now on we will use A to refer to a set of atoms.

Let X be a Perm(A)-set. We say that x ∈ X is supported by A⊆ A if

∀π. (∀a ∈ A. π a = a) =⇒ π • x = x .

We say that X is a nominal set if each element of X is supported by some finite subset of A. Since each
finite permutation can be decomposed as a composition of transpositions, then one can prove that the
above definition is equivalent to

∀a,a′ ∈ A\A. (a a′)• x = x .

The following are some examples of nominal sets:

• The discrete Perm(A)-set X is nominal, because any x ∈ X is supported by /0.

• A itself is nominal once equipped with the action π •a = π a, because any a ∈ A is supported by
{a}. More in general, any S⊆ A containing name a is a support for a.

• The set λTerm of λ -calculus terms, inductively defined by t ::= V (a) | A(t, t) | L(a, t) where
a ∈ A, equipped with the action • : Perm(A)×λTerm→ λTerm such that

π •V (a) = V (π a)

π •A(t1, t2) = A(π • t1, π • t2)

π •L(a, t) = L(π a, π • t)

is nominal because any t ∈ λTerm is supported by supp(t) = FreeVars(t).
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In his book [13] Pitts uses classical logic to prove that if x is supported by some finite set A, then
there exists a least supporting set, called the support of x. As shown by Swan [14] one cannot define the
least support in a constructive setting; therefore a formalization in a constructive type theory should ask
for “some” finite support. This affects the notion of freshness: in classical logic we have

x is fresh for y ⇔ supp(x)∩ supp(y) = /0,

with x ∈ X and y ∈ Y being elements of different nominal sets; but in a constructive setting one has to
limit this relation to atoms, that is

a ∈ A is fresh for x ∈ X ⇔ a 6∈ supp(x),

where supp(x) is the set supporting x, not necessarily the least one. Notice that the definition is the same
(“there exists some finite support for each element”), but in classical logic that is sufficient to obtain the
least support.

3 Finite Permutations

As we have already said, a finite permutation on a set A can be explicitly given by:

1. a bijection f : A→ A together with its support supp( f ) ⊆fin A; i.e., a ∈ supp( f ) if and only if
f a 6= a;

2. a composition of disjoint cycles; concretely, we can think of this as a finite set R⊆fin A∗ of disjoint
cycles, each of them without repeated elements;

3. a composition of transpositions; that is, a finite sequence of pairs p : (A×A)∗.

We present our proof that these definitions are equivalent. It basically boils down to define a predicate
on sequences of elements in A not containing repeated elements ensuring that they are cycles for f . We
use the usual notation (a b) to denote the bijection {(a,b),(b,a)}.

Definition 1 (List of transpositions from a cycle). We define toFP : A×A∗→ (A×A)∗.

toFP(a,ρ) =

{
[] if ρ = []

(a,b) : toFP(b,ρ ′) if ρ = b : ρ ′

If we know that ρ = a : ρ ′, then we also write toFP(ρ) to mean toFP(a,ρ ′).

Definition 2 (Permutation from a list of transpositions). Let as : (A×A)∗, then JasK : A→ A is defined
by recursion on as:

JasK =

{
id if as = []

(a b) · Jas′K if as = (a,b) : as′

Definition 3 (Prefixes). We say that a non-empty sequence ρ = [a1, . . . ,an] : A∗ is a prefix with head a0
for bijection f if:

1. a0 ∈ supp( f ),

2. f ai = ai+1, and

3. a0 6∈ ρ .
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A prefix ρ is closed if f an = a0. Since ρ is non-empty, we denote with last(ρ) its last element.

From this simple definition we can deduce:

Lemma 1 (Properties of prefixes). Let ρ be a prefix with head a.

1. If ρ ′ is a prefix with head last(ρ), then its concatenation ρρ ′ is a prefix with head a.

2. ρ has no duplicates.

3. If ρ is closed and b ∈ (a : ρ), then f b = JtoFP(a,ρ)Kb.

4. If b 6∈ (a : ρ), then JtoFP(a,ρ)Kb = b.

We can extend this definition to a sequence of sequences: let R = [(a1,ρ1), . . . ,(am,ρm)] : (A×A∗)∗,
then R is a list of prefixes, with its head, if each ρi is a prefix and ρi∩ρ j = /0.

Lemma 2 (Correctness of prefixes). Let R = [(a1,ρ1), . . . ,(am,ρm)] be a list of closed prefixes, then
JtoFP(a1,ρ1) . . . toFP(am,ρm)Ka = f a.

This proves that from a representation with cycles one can get a representation with transpositions. If
we can produce a list of closed prefixes from a finite permutation (as a bijection with its support explicitly
given) then we have the equivalence. First we define a function cycle f : N×A→A∗ such that cycle f (n,a)
computes a prefix with head a of length at most n+1 by recursion on n:

cycle f (0,a) = [ f a]

cycle f (n+1,a) =

{
ρ if f b = a
ρ[ f b] otherwise

where ρ = cycle f (n,a) and b = last(ρ)

We can extend this definition to compute a list of prefixes from a list of atoms:

cycles f (n, [],R) = R

cycles f (n,a : as,R) =

{
cycles f (n,as,R) if a ∈

⋃
R

cycles f (n,as,ρ : R) otherwise

where ρ = a : cycle f (n,a)

Lemma 3 (Correctness of computed cycles). If f : A→A is a bijection and a∈ supp( f ), then cycle f (n,a)
is a prefix with head a, for all n ∈ N. Moreover if |supp( f )|6 n, then cycle f (n,a) is closed.

If R is a list of prefixes and as⊆ supp( f ), then cycles f (n,as,R) is a list of prefixes; if |supp( f )|6 n,
then cycles f (n,as,R) is a list of closed prefixes.

Theorem 1. If f : A→A is a bijection, then R= cycles f (|supp( f )|,supp( f ), []) is a list of closed prefixes.
Therefore JtoFP∗(R)Ka = f a, for all a ∈ A.

Notice that a composition of transpositions might mention elements that are not in the support of
the induced permutation; for example, both (1 1) and (1 2)(2 1) are equal to the identity permutation.
One can get a “normalized” representation by composing our functions. As a matter of fact, this was our
motivation to formalize cycles.

Corollary 1 (Normalization of transpositions). Let p be a list of transpositions and ats= supp(toFP(p)).
Moreover, let R = cyclestoFP(p)(|ats|,ats, []). Then JtoFP∗(R)K = JasK; moreover every atom in toFP∗(R)
is in its support.
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4 Our Formalization in Agda

Our formalization is developed on top of the Agda’s standard library v1.7 [15]. Figure 1 shows a high
level view of the project. The standard library includes an algebraic hierarchy going beyond groups; it
lacks, however, a formalization of group actions. The module GroupAction includes G-Sets, equivariant
functions and constructions like products and co-products. We also have a Permutation module which
includes the concepts of finite permutations, cycles, normalization and the permutation group. And last,
in the module Nominal we formalize the concepts of support, nominal set, equivalence between different
notions of support, normalization and again constructions like products and co-products.

Algebra

GroupAction Permutation

Nominal

Group

Finite permutations
Cycles
Normalization
Perm(A) group

G-Sets
Equivariant

functions
Constructions

Support
Equivalence
Constructions

Figure 1: High level view of the modular organization in the project.

We first present the definition of Group in the standard library in order to introduce some terminology
and concepts:

record Group c ` : Set (suc (c t `)) where
field
Carrier : Set c
_≈_ : Rel Carrier `
_·_ : Op2 Carrier
ε : Carrier
_−¹ : Op1 Carrier
isGroup : IsGroup _≈_ _·_ ε _−¹

A Group is a bundle where the components of its definition (the carrier set, the unit, the inverse, the com-
position) are explicitly mentioned plus a proof, given by isGroup, that they satisfy the axioms. Notice
that one of the fields is a relation ≈ ; that relation should be an equivalence relation over the carrier: es-
sentially this amounts to say that the Carrier has a setoid structure. Setoids allows for greater flexibility
as they enable to work with a notion of equality that is not the propositional equality; Func X Y is the
set of functions between setoids X and Y that preserve the equality; sometimes these functios are called
respectful.

G-Sets Our first definition is the structure that collects the equations required for an action. In the
following, we are under a module parameterized by G : Group.
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record IsAction (F : Func (G.setoid ×s X) X) : Set _ where
_•_ : Carrier G → Carrier X → Carrier X
g • x = Func.f F (g , x)
field
ida : ∀ x → ε ·a x ≈X x
compa : ∀ g' g x → g' • g • x ≈X (g' · g) • x

Notice that the record-type IsAction is a predicate over respectuful functions from the setoid G×X to
X . The definition of G-Set is straightforward and follows the pattern of the standard library

record G-Set : Set _ where
field
set : Setoid `1 `2
action : Func (G.setoid ×s set) set
isAction : IsAction action

In order to introduce the notion of equivariant function1 we first introduce the predicate IsEquivariant
stating when H : Func X Y is equivariant for respectful functions FX and FY.

IsEquivariant :
{X : Setoid `1 `2} →
{Y : Setoid `3 `4} →
(FX : Func (G.setoid ×s X) X) →
(FY : Func (G.setoid ×s Y) Y) →
(H : Func X Y) → Set (`1 t `4 t c`)
IsEquivariant {Y = Y} FX FY H = ∀ x g → F.f (g •X x) ≈Y (g •Y F.f x)

where _•X_ = _•_ {F = FX} ; _•Y_ = _•_ {F = FY} ; _≈Y_ = _≈_ Y
open module F = Func H

Now we pack a respectful function between the setoids of G-Sets together with a proof of it being
equivariant.

record Equivariant (X : G-Set) (Y : G-Set) : Set _ where
field
F : Func (set X) (set Y)
isEquivariant : IsEquivariant (action X) (action Y) F

In the following snippet we show how to construct binary products of G-Sets (we use copatterns to
define record objects).

variable X Y : G-Set G
private

open module GX = G-Set X ; open module GY = G-Set Y
G-Set-× : G-Set G
set G-Set-× = GX.set ×s GY.set
f (action G-Set-×) (g , (x , y)) = g GX.• x , g GY.• y
cong (action G-Set-×) (g=g' , (x=x' , y=y')) =

Func.cong GX.action (g=g' , x=x') , Func.cong GY.action (g=g' , y=y')
ida (isAction (G-Set-×)) (x , y) = GX.ida x , GY.ida y
compa (isAction (G-Set-×)) g g' (x , y) = GX.compa g g' x , GY.compa g g' y

1We note that both Choudhury and Paranhos define equivariant functions only for the group of finite permutations.
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We now prove that the first projection is equivariant; notice that G-Set-× is the product of X and Y
introduced with the variable keyword.

π1 : Equivariant G G-Set-× X
f (F π1) = proj1
cong (F π1) = proj1
isEquivariant π1 _ _ = refl (set X)

Permutations Now we focus on the module Permutation. We start by introducing the group Sym(A)
using the definitions of inverses from the standard library; notice that the equivalence relation is given
by the point-wise (or extensional) equality of functions.

-- In this context A-setoid is a Setoid (not necessarily decidable).
A = Carrier A-setoid ; _≈A_ = _≈_ A-setoid
Perm = Inverse A-setoid A-setoid
_≈p_ : Rel Perm _
F ≈p G = (a : A) → f F a ≈A f G a

Sym : Group (` t `') (` t `')
Carrier Sym = Perm
_≈_ Sym = _≈p_
_·_ Sym = _◦p_ -- composition of Perm, from the stdlib
ε Sym = idp A-setoid -- identity Perm, from the stdlib
_′ Sym = _−¹ -- inverse permutation, from the stdlib
isGroup Sym = record { ... } -- ommited

If we ask the setoid A-setoid to be decidable, then we can define the swapping permutation.

module Perm (A-setoid : DecSetoid ` `') where
open DecSetoid A-setoid renaming (Carrier to A)
transp : A → A → A → A

transp a b c with does (c
?
= a)

... | true = b

... | false with does (c
?
= b)

... | true = a

... | false = c

transp-perm : (a b : A) → Perm
transp-perm a b = record {

f = transp a b ; f−¹ = transp a b
; cong1 = transp-respects-≈ a b ; cong2 = transp-respects-≈ a b
; inverse = transp-involutive a b , transp-involutive a b

}

Our next goal is to define the group Perm(A) of finite permutations of atoms. As we explained
before, finite permutation can be given by a bijective map, as a composition of transpositions, or as a
composition of disjoint cycles.

In other works the group of finite permutations is explicitly defined as lists of pairs, where each pair
represents a transposition and the empty list is the identity permutation: appending a pair (a,b) to a list
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p amounts to compose the transposition (a b) to the permutation denoted by p. Concatenation of lists
p and p′ also induces their composition. This choice has the advantage of being explicit and avoids
having alternative expressions for composing permutations. On the other hand it still allows different
representatives for the same permutation; in fact, [(a,a)], [(b,a),(a,b)], and [] are all representations
of the identity permutation. It is clear that the setoid of finite permutations should equate those three
versions of the identity, therefore the equivalence relation used is that of inducing the same permutation.

We started with the following syntactic representation of Finite Permutations, which is close to that
of lists but in terms of S-expressions; since we cannot ensure canonicity with lists, why not to be more
liberal also on associativity?

data FinPerm : Set ` where
Id : FinPerm
Swap : (a b : A) → FinPerm
Comp : (p q : FinPerm) → FinPerm

The permutation associated with a FinPerm is given by

J_K : FinPerm → Perm
J Id K = idp setoid
J Swap a b K = transp-perm a b
J Comp p q K = J q K ◦p J p K

Before introducing our concrete formalization of Perm(A) let us exploit the fact that we have a decidable
setoid of atoms to prove that the equivalence of finite permutation is also decidable. In order to do that,
we define a relation _⊆s_ on FinPerm; p ⊆s q holds when q coincides with p in the support of the
latter. Since we can compute the support of FinPerms and the equality of atoms is decidable, then we
can decide _⊆s_.

_⊆s_ : Rel FinPerm (` t `')
p ⊆s q = All (λ a → f J p K a ≈ f J q K a) (support p)

?⊆s : ∀ p q → Dec (p ⊆s q)

?⊆s p q = all? (λ a → f J p K a
?
= f J q K a) (support p)

Moreover we can prove that the mutual containment is equivalent to denoting the same permutation; thus
we can decide the equality of finite permutations as given by FinPerm:

_≈s_ : Rel FinPerm (` t `')
p ≈s q = p ⊆s q × q ⊆s p

≈s-dec : ∀ p q → Dec (p ≈s q)
≈s-dec p q = (?⊆s p q) ×-dec (?⊆s q p)
-- We omit the proofs of these lemmas.
≈s⇒≈p : ∀ p q → p ≈s q → J p K ≈p J q K
≈p⇒≈s : ∀ p q → J p K ≈p J q K → p ⊆s q

_
?
=p_ : ∀ p q → Dec (J p K ≈p J q K)

Furthermore we can normalize a FinPerm to have an equivalent permutation where every occuring atom
is in its support.

Let us first revisit the Example 1 now in Agda where we see how to encode a finite permutation as a
composition of cycles.
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Perm × List A

List CycleFinPerm

to-cycles< J_K , atoms! >

cycles-to-FP

Figure 2: The mappings between different representations of permutations.

f : N → N
f x with x 6? 5
... | yes p = (x + 2) mod 6
... | no ¬p = x

We represent cycles simply as lists of atoms; we certainly could also have used fresh lists to represent
cycles. A composition of cycles is a list of cycles.

Cycle = List A

cycle0 cycle1 : Cycle
cycle0 = 1 :: 3 :: 5 :: []
cycle1 = 0 :: 2 :: 4 :: []
f-cycles : List Cycle
f-cycles = cycle0 :: cycle1 :: []

Or alternatively, it can also be expressed as a composition of four transpositions:

f-swaps : FinPerm
f-swaps = Comp (Comp (Swap 1 3) (Swap 3 5)) (Comp (Swap 0 2) (Swap 2 4))

In Figure 2 we show the three representations of finite permutations. The normalization of FinPerm is
simply the composition of the mappings:

norm : FinPerm → FinPerm
norm = cycles-to-FP ◦ cycles-from-FP

The functions cycles-to-FP maps lists of disjoint cycles to FinPerm and cycles-from-FP goes in
the reverse direction, producing a list of disjoint cycles from a FinPerm (this is the composition of the
diagonal arrows in Fig. 2).

The correctness of the normalization follows the proof presented in Sec. 3. Although we do not
enforce neither freshness for cycles nor disjointness of cycles we keep that as an invariant when we
compute the cycles in to-cycles.

module Thm (p : FinPerm) where
ats = atoms! p -- Fresh list of the atoms in the support of p.
-- from-atom-˜* is the proof of Lemma 3.
rel = from-atoms-˜* J p K ats []* (fp-supp p) (dom⊇atoms! p)
-- the representation as composition of cycles
ρs = to-cycles J p K (length ats) ats []
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-- This property follows from Lemma 3.
∈-dom⇒∈ρs : (_∈-dom J p K) ⊆ (_∈ concat ρs)

norm-corr : J p K ≈p J norm p K
norm-corr x with x ∈? concat ρs
... | yes x∈at = ˜*-out J p K rel x∈at -- Item 3 of Lemma 1.
... | no x/∈at = trans -- f J p K x = x = f J norm p K x

(¬∈-dom⇒/∈-dom {J p K} (contraposition ∈-dom⇒∈ρs x/∈at))
(˜*-out-fresh J p K rel x/∈at) -- Item 4 of Lemma 1.

We also have other correctness result to prove that the FinPerm obtained from a Perm and its support is
equivalent to it:

module Thm’ (F : Perm) {ats : List A} (is-sup : ats is-supp-of F)
(incl : (_∈ ats) ⊆ (_∈-dom F)) where

ρs = to-cycles p (length ats) ats []
norm-corr : F ≈p J cycles-to-FP ρs K

Let us remark that FinPerm is just a representation and the set of finite permutation, PERM, is the
subset of Perm corresponding to the image of J_K:

PERM : Set _
PERM = Σ[ p ∈ Perm ] (Σ[ q ∈ FinPerm ] (p ≈p J q K))

A disadvantage of using this encoding is that we need to deal with triples; for instance, the identity PERM
is represented by Id.

ID : PERM
ID = idp setoid , Id , λ _ → refl

The group Perm(A) is explicity defined as:
Perm-A : Group (` t `') (` t `')
Carrier Perm-A = PERM
_≈G_ Perm-A = _≈p_ on proj1
_·_ Perm-A = _◦P_
ε Perm-A = ID
_′ Perm-A = _−¹P
isGroup Perm-A = record { ... }

We alleviate the burden of working with triples by proving lemmas characterizing the action of PERMs
in terms of the finite permutation, for instance for Id:

-- In this context the group acting on G-Sets is Perm-A.
module Act-Lemmas {X-set : G-Set {`1 = `x} {`2 = `x'}} where
_≈X_ = Setoid._≈_ set
id-act : ∀ (π : PERM) (x : X) → proj1 π ≈p J Id K → (π • x) ≈X x
id-act π x eq = trans (cong1 {π} {ID} x eq) (ida x)

Nominal Sets Remember that a subset A ⊆ A is a support for x if every permutation fixing every
element of A fixes x, through the action. A subset of a setoid A can be defined either as a predicate or as
pairs (just as in PERM where the predicate is λ p → Σ[ q ∈ FinPerm ] (p ≈p J q K)) or as another
type, say B, together with an injection ι : Injection B A.
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variable
X : G-Set
P : SetoidPredicate A-setoid

is-supp : Pred X _
is-supp x = (π : PERM) → (predicate P ⊆ _/∈-dom (proj1 π)) → (π • x) ≈X x

The predicate λ a → f (proj1 π) a ≈A a is _/∈-dom (proj1 π); therefore, if P a iff a ∈ A, then
predicate P ⊆ _/∈-dom (proj1 π) is a correct formalization of ∀a ∈ A. π a = a.

Our official definition of support is the following:

_supports_ : Pred X _
_supports_ x = ∀ {a b} → a /∈s P → b /∈s P → SWAP a b • x ≈X x

Here SWAP is a PERMutation equal to JSwap a bK. We formally proved that both definitions are equivalent,
which is stated by the mutual implications:

is-supp⊆supports : ∀ x → is-supp x → _supports_ x
supports⊆is-supp : _supports_ ⊆ is-supp

Let us note that the second implication uses explicitly the normalization of finite permutations and its
correctness.

In order to define nominal sets we need to choose how to say that a subset is finite; as explained by
Coquand and Spiwak [7] there are several possibilities for this. We choose the easiest one: a predicate is
finite if there is a list that enumerates all the elements satisfying the predicate.

finite : Pred (SetoidPredicate setoid) _
finite P = Σ[ as ∈ List Carrier ] (predicate P ⊆ (_∈ as))

A G-Set is nominal if all the elements of the underlying set are finitely supported.

record Nominal (X : G-Set) : Set _ where
field
sup : ∀ x → Σ[ P ∈ SetoidPredicate setoid ] (finite P × P supports x)

It is easy to prove that various constructions are nominals; for instance any discrete G-Set is nominal
because every element is supported by the empty predicate ⊥s:

∆-nominal : (S : Setoid _ _) → Nominal (∆ S)
sup (∆-nominal S) x = ⊥s , ⊥-finite , (λ _ _ → S-refl {x = x})

where open Setoid S renaming (refl to S-refl)

We have defined G-Set-⇒ X Y corresponding to the G-Set of equivariant functions from X to Y; now we
can prove that G-Set-⇒ X Y is nominal, again with ⊥s as the support for any F : Equivariant X Y.

→-nominal : Nominal (G-Set-⇒ X Y)
sup (→-nominal) F = ⊥s , ⊥-finite , λ _ _ → supported

where supported : ∀ {a b} x → f ((SWAP a b) ·→ F) x ≈Y f F x

5 Conclusion

Nominal techniques have been adopted in various developments. We distinguish developments borrow-
ing some concepts from nominal techniques to be applied in specific use cases (e.g. formalization of
languages with binders like the λ or π calculus with their associated meta-theory) [2, 6, 5, 4] from more
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general developments aiming to formalize at least the core aspects of the theory of nominal sets. We are
more concerned with the later type.

The nominal datatype package for Isabelle/HOL [16] developed by Urban and Berghofer implements
an infrastructure for defining languages involving binders and for reasoning conveniently about alpha-
equivalence classes. This Isabelle/HOL package inspired Aydemir et al. [1] to develop a proof of concept
for the Coq proof assistant, however it had no further development. In his Master thesis [3], Choudhury
notes that none of the previous developments following the theory of nominal sets were based on con-
structive foundations. He showed that a considerable portion (most of the first four chapters of Pitts
book [13]) of the theory of nominal sets can also be developed constructively by giving a formalization
in Agda. Pitts original work is based on classical logic, and depends heavily on the existence of the
smallest finite support for an element of a nominal set. However, Swan [14] has shown that in general
this existence cannot be constructively guaranteed, as it would imply the law of the excluded middle.

Choudhury works with the notion of some non-unique support. In order to formalize the category of
Nominal Sets, Choudhury preferred setoids instead of postulating functional extensionality. As far as we
know, Choudhury is still the most comprehensive mechanization in terms of instances of constructions
having a nominal structure.

Recently Paranhos and Ventura [11] presented a constructive formalization in Coq of the core notions
of nominal sets: support, freshness and name abstraction. They follow closely Choudhury’s work in
Agda [3], acknowledging the importance of working with setoids. They claim that by using Coq’s type
class and setoid rewriting mechanism, much shorter and simpler proofs are achieved, circumventing the
“setoid hell” described by Choudhury. In his master thesis [12] Paranhos further developed the library.

Both of those two formalizations in type theory take a very pragmatic approach to finite permutations:
a finite permutation is a list of pairs of names. In our approach, we start with the more general notion
of bijective function from which the finite permutations are obtained as a special case; moreover having
different representations allowed us to state and prove some theorems that cannot even be stated in the
other formalizations. So far, our main contributions are: the representation of finite permutations and the
normalization of composition of transpositions; the equivalence between two definitions of the relation
“A supports the element x”; and proving that the extension of every container type can be enriched with
a group action (notice that this cover lists, trees, etc.).

Our next steps are the definition of freshness. We are studying an alternative notion of support that
would admit having a freshness relation between elements of two nominal sets (in contrast with other
mechanization that only consider “the atom a is fresh for x”) and name abstraction. In parallel we hope
to be able to prove that extensions of finite containers on nominal sets are also nominal sets. We also
hope to streamline further some rough corners of our development.
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