
P. Fontaine, D. Nantes-Sobrinho (Eds.):
Logical and Semantic Frameworks with Applications 2022 (LSFA’22)
EPTCS 376, 2023, pp. 16–33, doi:10.4204/EPTCS.376.4

© E. Grilo & B. Lopes
This work is licensed under the
Creative Commons Attribution License.

ReLo: a Dynamic Logic to Reason About Reo Circuits*

Erick Grilo
Instituto de Computação

Universidade Federal Fluminense

simas grilo@id.uff.br

Bruno Lopes
Instituto de Computação

Universidade Federal Fluminense

bruno@ic.uff.br

Critical systems require high reliability and are present in many domains. They are systems in which
failure may result in financial damage or even loss of lives. Standard techniques of software engineer-
ing are not enough to ensure the absence of unacceptable failures and/or that critical requirements
are fulfilled. Reo is a component-based modelling language that aims to provide a framework to
build software based on existing pieces of software, which has been used in a wide variety of do-
mains. Its formal semantics provides grounds to certify that systems based on Reo models satisfy
specific requirements (i.e., absence of deadlocks). Current logical approaches for reasoning over Reo
require the conversion of formal semantics into a logical framework. ReLo is a dynamic logic that
naturally subsumes Reo’s semantics. It provides a means to reason over Reo circuits. This work
extends ReLo by introducing the iteration operator, and soundness and completeness proofs for its
axiomatization.The core aspects of this logic are also formalized in the Coq proof assistant.

1 Introduction

In software development, service-oriented computing [31] and model-driven development [6] are ex-
amples of techniques that take advantage of software models. The first technique advocates computing
based on preexisting systems (services) as described by Service-Oriented Architecture (SOA), while the
latter is a development technique that considers the implementation of a system based on a model. A
model is an abstraction of a system (or some particular portion of it) in a specific language, which will
be used as a specification basis for the system’s implementation. It can be specified in languages such
as Unified Modeling Language (UML) or formal specification languages like B [1] or Alloy [16]. Re-
searchers also have applied approaches such as formal methods in software development to formalize
and assure that certain (critical) systems have some required properties [19, 30].

Reo [2] is a prominent modelling language, enabling coordination of communication between in-
terconnected systems without focusing on their internal properties. Reo models are compositionally
built from base connectors, where each connector in Reo stands for a specific communication pattern.
Reo has proven to be successful in modeling the organization of concurrent systems’ interaction, being
used in a variety of applications, from process modeling to Web-Services integration [4] and even in the
construction of frameworks to verify specifications in Reo [22, 34].

Reo’s ability to model communication between software interfaces has also attracted research on
verification of Reo circuits, resulting in many different formal semantics [17] like automata-based mod-
els [3, 7, 23], coalgebraic models [2], Intuitionistic Logic with Petri Nets [12] (to name a few), and some
of their implementations [22, 33, 35, 26, 29, 36, 23]. However, as far as the authors are concerned, there
is no logic apart from ReLo [13] to specific reason about Reo models naturally, where the usage of other
logic-based approaches requires conversion between different formal semantics.

*This work was supported by CNPq and FAPERJ.

http://dx.doi.org/10.4204/EPTCS.376.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

E. Grilo & B. Lopes 17

This work extends ReLo [13] by introducing an iteration operator and the soundness and complete-
ness proofs of its axiomatic system. A prototypical implementation of this framework in Coq proof
assistant, enabling the verification of properties of Reo programs in ReLo within a computerized envi-
ronment is available at http://github.com/frame-lab/ReoLogicCoq.

This work is structured as follows. Section 3 discusses briefly a related logic formalism with the
one hereby proposed and introduces Reo modelling language, along with some examples. Section 4
discuss ReLo’s main aspects, from its core definitions (such as language, models, transitions firing) and
its soundness and completeness proofs. Finally, Section 5 closes the work by discussing the obtained
results and assessing possible future work.

2 Related Work

The fact that Reo can be used to model many real-world situations has attracted attention from researchers
all around the world, resulting in a great effort directed in formalizing means to verify properties of Reo
models [18, 32, 20, 22, 28, 27, 17]. Such effort also resulted in the proposal of several formal semantics
for this modelling language [17], varying from operational semantics to coalgebric models.

One of the most known formal semantics for Reo consists of Constraint Automata [8], an operational
semantic in which Reo connectors are modelled as automata for T DS-languages [5]. It enables reasoning
over the data flow of Reo connectors and when they happened. Constraint Automata have been extended
to some variants which aim to enrich the reasoning process by capturing properties like the timing of the
data flows or possible actions over the data, respectively as Timed Constraint Automata [22] and Action
Constraint Automata [21]. Some of them are briefly discussed below, along with other formal semantics
for Reo.

The approach presented by Klein et al. [18] provides a platform to reason about Reo models using
Vereofy,1 a model checker for component-based systems, while Pourvatan et al. [32] propose an ap-
proach to reason about Reo models employing symbolic execution of Constraint Automata. Kokash &
Arbab [20] formally verify Long-Running Transactions (LRTs) modelled as Reo connectors using Vere-
ofy, enabling expressing properties of these connectors in logics such as Linear Temporal Logic (LTL)
or a variant of Computation Tree Logic (CTL) named Alternating-time Stream Logic (ASL). Kokash et
al. [22] use mCRL2 to encode Reo’s semantics in Constraint Automata and other automata-based seman-
tics, encoding their behaviour as mCRL2 processes and enabling the expression of properties regarding
deadlocks and data constraints which depend upon time. mCRL2 also supports model-checking of Reo
in a dynamic logic (with fixed points), where modalities are regular expressions, atomic actions are sets
of nodes that fire at the same time. Mouzavi et al. [28] propose an approach based on Maude to model
checking Reo models, encoding Reo’s operational semantics of the connectors.

Proof assistants have been used to reason about Reo connectors [25, 26, 29, 35, 36, 14]. The ap-
proaches adopted by Li et al. [25, 35, 14] are among the ones that employ Coq to verify Reo models
formally. In [25] a formalization of four of the Reo canonical connectors (Sync, FIFO1, SyncDrain,
and LossySync) along with an LTL-based language defined as an inductive type in Coq is presented,
while [35] proposes the formalization of five Reo canonical channels and a procedure that creates com-
posite channels by logical conjunction of the connectors modelled.

In [14], a framework to provide means of graphically model Reo connectors and validate the gener-
ated model in Constraint Automata using Coq and NuSMV2 is discussed. It also enables the automatic

1http://www.vereofy.de
2https://nusmv.fbk.eu/

http://github.com/frame-lab/ReoLogicCoq
http://www.vereofy.de
https://nusmv.fbk.eu/

18 ReLo a Dynamic Logic to Reason About Reo Circuits

generation of Coq code to a Haskell model employing the Coq code extraction apparatus. When re-
stricting the works considering logics and Reo, as far as the authors know there is only the work by [12]
which focuses on formalizing the semantics of Reo connectors Sync, LossySync, FIFO1, SyncDrain,
AsyncDrain, Filter, Transform, Merger, and Replicator in terms of zero-safe Petri nets [11], a special
class of Petri-nets with two types of places: zero and stable places. This encoding is then converted to
terms in Intuitionistic Temporal Linear Logic, enabling reasoning about Reo connectors in this logic.

3 Background

This section provides a succinct overview of Reo [2, 3], considering its main characteristics and a mod-
elling examples as it is the target language ReLo provides a formal semantic to reason over.

3.1 The Reo Modelling Language

As a coordination model, Reo focuses on connectors, their composition, and how they behave, not fo-
cusing on particular details regarding the entities that are connected, communicate, and interact through
those connectors. Connected entities may be modules of sequential code, objects, agents, processes, web
services, and any other software component where its integration with other software can be used to build
a system [2]. Such entities are defined as component instances in Reo.

Channels in Reo are defined as a point-to-point link between two distinct nodes, where each channel
has its unique predefined behavior. Each channel in Reo has exactly two ends, which can be of the
following types: the source end, which accepts data into the channel, and the sink end, which dispenses
data out of the channel. Channels are used to compose more complex connectors, being possible to
combine user-defined channels amongst themselves and with the canonical connectors provided by Baier
et al. [8]. Figure 1 shows the basic set of connectors as presented by Kokash et al. [22].

A B

(a) Sync

A B

(b)
LossySync

A B

(c) FIFO

A B

(d)
SyncDrain

A B

(e)
AsyncDrain

A B

(f) Filter

A B

(g) Transform

A

B
C

(h) Merger

A
B

C

(i) Replicator

Figure 1: Canonical Reo connectors

Channel ends can be used by any entity to send/receive data, given that the entity belongs to an
instance that knows these ends. Entities may use channels only if the instance they belong to is connected
to one of the channel ends, enabling either sending or receiving data (depending on the kind of channel
end the entity has access to).

The bound between a software instance and a channel end is a logical connection that does not rely
on properties such as the location of the involved entities. Channels in Reo have the sole objective to
enable the data exchange following the behaviour of the connectors composing the channel, utilizing I/O
operations predefined for each entity in an instance. A channel can be known by zero or more instances
at a time, but its ends can be used by at most one entity at the same time.

E. Grilo & B. Lopes 19

Figure 2 introduces a Reo connector known as Sequencer3. It models the data flow between three
entities sequentially. The data flows from the first FIFO connector (a buffer), which will be sequentially
synchronized with entities in port names names A, B, and C. The Sequencer can be used to model
scenarios where processes sequentially interact between themselves.

X Y

A

W

B

Z

C

Figure 2: Modelling of the Sequencer in Reo

In short, Reo circuits may be understood as data flowing from different interfaces (i.e., port names
connected to a node), where the connector itself models the communication pattern between two of these
interfaces. A ReLo program is composed of one or more Reo connectors as introduced in Figure 1.

4 A ReLo Primer

ReLo [13] was tailored to subsume Reo models’ behaviour naturally in a logic, without needing any
mechanism to convert a Reo model denoted by one of its formal semantics to some logical framework.
Each basic Reo connector is modelled in the logic’s language, which is defined as follows.

Definition 1 (ReLo’s language). The language of ReLo consists of the following:

• An enumerable set of propositions Φ.
• Reo channels as denoted by Figure 1
• A set of port names N
• A sequence SeqΠ = {ε,s1,s2, . . .} of data flows in ports of a ReLo program Π (defined below).

We define si ≤ s j if si is a proper (i.e., s j contains all of si’s data). Each sequence si denotes the
data flow of the Reo program Π (i.e., all ports that have data synchronized at a specific moment in
time) and ε is the empty sequence

• Program composition symbol : �
• A sequence t of data flows of ports p with data values {0,1}, which denotes whether p contains a

data item. This describes a data flow occurring in the Reo channel. A BNF describing t is defined
as follows:
〈t〉 ::= 〈portName〉 〈data〉 , 〈t〉 | 〈data〉 〈portName〉 〈data〉 , 〈t〉

| 〈data〉 〈portName〉 〈data〉 | 〈portName〉 〈data〉
〈portName〉 ::= p ∈N
〈data〉 ::= 0 | 1

• Iteration operator ?

A ReLo program is defined as any Reo model built from the composition of Reo channels πi. In ReLo
their composition is Π = (f ,b), Π = π1�π2�·· ·�πn, and πi = (f1,b1). � follows the same notion of
Reo composition, by “gluing” sink nodes of a connector to the source nodes of the other connector.

3http://arcatools.org/reo

http://arcatools.org/reo

20 ReLo a Dynamic Logic to Reason About Reo Circuits

The set f is the set of connectors p of the model where data flows in and out of the channel (the
connector has at least a source node and a sink node), namely Sync, LossySync, FIFO, Filter, Transform,
Merger and Replicator. The set b is the set of blocking channels (channels without sink nodes whose
inability to fire prevents the remainder of connectors related to their port names from fire), namely
SyncDrain and AsyncDrain.

The following is a simple yet intuitive example of the structure of data flows in ReLo. Let the
sequence t be t = {A1,B1C}. It states that the port A has the data item 1 in its current data flow, while
there is a data item 1 in the FIFO between B and C.

Definition 2 (ReLo formulae).
We define formulae in ReLo as follows: φ = p | > | ¬φ | φ ∧ψ | 〈t,π〉φ , such that p ∈ Φ. We use the
standard abbreviations>≡¬⊥,φ ∨ψ ≡¬(¬φ ∧¬ψ),φ →ψ ≡¬φ ∨ψ and [t,π]ϕ ≡¬〈t,π〉¬φ , where
π is some Reo program and t a data flow.

The connectors in Figure 3 exemplify compound Reo connectors. The model SyncFIFO is composed
of a FIFO and a Sync connector in which the data leaving the FIFO is sent to C from B synchronously.
Suppose that there is data in the FIFO and in port B (t = {A1B,B0}). If the FIFO from A to B is processed
first then the Sync between B and C, the data flow in B will be overwritten before it is sent to C, which is
not the correct behaviour. The Sync from B to C must fire before the FIFO from A to B.

Another example is denoted by the model Sync2Drain. Suppose there is data only in port name
A (t = {A1}). If the Sync from B to A is evaluated first then the SyncDrain between B and C, the
restriction imposed by the fact that the condition required for the SyncDrain to fire was not met (as C’s
data flow differs from B’s at this moment) is not considered, and data will wrongly flow from B to A.
The SyncDrain must be first evaluated before all flows as they may block the flow from data of its ports
to other channels.

A B C

(a) SyncFIFO

A B C

(b) Sync2Drain

Figure 3: Examples of Reo models

The next definition maps each canonical connector that composes a Reo model to a ReLo program.
The left hand side of each mapping rule in Definition 3 is the atomic Reo connector, while the right hand
size is the resulting ReLo atomic program πi = (fi,bi), with the same behaviour as of the Reo connector.

Definition 3 (parse base cases). Each canonical Reo connector is mapped to a ReLo program in parse:

• A B to A→ B
• A B to (A,A→ B)
• A B to f i f o(A,B)
• A B to SBlock(A,B)
• A B to ABlock(A,B)
• A B to Trans f orm(f ,A,B), f : Data→ Data is a transformation function.
• A B to Filter(P,A,B), P is a logical predicate over the data item in A.

• A

B
C

to (A→C,B→C)

•
A

B

C

to (A→ B,A→C)

E. Grilo & B. Lopes 21

Considering that each ReLo program Π is the composition of programs π1 � π2,�·· · � πn,πi =
(fi,bi) as Reo programs, parse is formalized in Definition 4. The symbol ◦ denote the addition of an
element to s, the resulting set of parse’s processing.

Definition 4 (parse function). The function that interprets the execution of a ReLo program is defined
as parse(f ,b,s). We define ε as an abbreviation to denote when there is no ReLo program left to process
(i.e. the base case when no program is parametrized). Its outcome is detailed as below.

• s, if f = b = ε

• parse(f j,b,s◦A→ B), if f = A B � f j

– s◦A→ B, if f = A B

• parse(f j,b,s◦ (A,A→ B)), if f = A B � f j

– s◦ (A,A→ B), if f = A B

• parse(f j,b,s)◦ f i f o(A,B), if f = A B � f j

– (s◦ f i f o(A,B)), if f = A B

• SBlock(A,B)◦ parse(f ,b j,s), if b = A B �b j

– (SBlock(A,B)◦ s), if b = A B

• ABlock(A,B)◦ parse(f ,b j,s), if b = A B �b j

– (ABlock(A,B)◦ s), if b = A B

• parse(f j,b,s◦Trans f orm(f ,A,B)), if f = A B � f j

– (Trans f orm(f ,A,B)◦ s), if f = A B

• parse(f j,b,s◦Filter(P,A,B)), if f = A B � f j

– (Filter(P,A,B)◦ s), if f = A B

• parse(f j,b,s◦ (A→C,B→C)), if f = A

B
C � f j

– (s◦ (A→C,B→C)), if f = A

B
C

• parse(f j,b,s◦ (A→ B,A→C)), if f = A
B

C
� f j

– (s◦ (a→ b,a→ c)), if f = A
B

C

We employ parse to interpret Reo programs Π as a sequence of occurrences of possible data flow
(where each flow corresponds to the execution of a Reo connector). These data flow may denote data
transfer (ReLo programs (A→B) and (A,A→B), flow “blocks” induced by connectors such as SyncDrain
and aSyncDrain (ReLo programs SBlock(A,B) and ABlock(A,B) — the first one requires that data flow
synchronously through its ports, while the latter requires that data flow asynchronously through its ports).
There is also the notion of a buffer introduced by FIFO connectors (ReLo program f i f o(A,B)), which
data flow into a buffer before flowing out of the channel, and merging/replicating data flow between
ports, respectively denoted by channels Merger and Replicator (ReLo programs (A→ C,B→ C) and
(A→ B,A→C) respectively).

There are also special data flows, denoting the “transformation” of some data flowing from A to B as
Trans f orm(f ,A,B) which will apply f with the data in A before it sends f (DA) (DA denoting the data

22 ReLo a Dynamic Logic to Reason About Reo Circuits

item in A) to B, and the filtering of data flow by some predicate as Filter(P,A,B), P as a quantifiable-free
predicate over the data item seen in A. Therefore, data will flow to B only if P(DA) is satisfied.

After processing π with parse, the interpretation of the execution of π is given by go(t,s,acc),go : s×
s→ s, where s is a string denoting the processed program π as the one returned by parse, and t is the
initial data flow of ports of the Reo program π . The parameter acc holds all connectors of the Reo circuit
that satisfy their respective required conditions for data to flow. In what follows we define ax ≺ t as an
operator which states that ax is in t, ax a single data of a port and t a structure containing data flows for
ports p ∈N .

Example 1 shows how parse functions and illustrates why it is necessary. The programs that depict
the FIFO connectors from Fig. 2 are the last programs to be executed, while the ones that denote “imme-
diate” flow (the Sync channels) come first. This is done to preserve the data when these connectors fire
(if eligible). Suppose that there is a data item in the buffer between X and Y and a data item in Y (i.e.,
t = X1Y,Y 0). If the data item leaves the buffer first then the data item in Y, the latter will be overwritten
and the information is lost.

Example 1. let π be the Reo program corresponding to the circuit in Fig. 2:
π = X Y � Y A � Y W � W B � W Z

� Z C � Z X

parse(π,{}) = {Y → A;W → B;Z→C;Z→ X ; f i f o(X ,Y); f i f o(Y,W); f i f o(W,Z)}

The usage of parse is required to eliminate problems regarding the execution order of π’s Reo chan-
nels, which could be caused by processing π the way it is inputted (i.e., its connectors can be in any
order). Consider, for example, the behavior of SyncDrain and aSyncDrain programs as “blocking” pro-
grams as discussed earlier. In a single step, they must be evaluated before the flow programs, because
if they fail to execute due to missing requirements, data should not flow from their port names to other
connectors. In a nutshell, parse organizes the program so this verification can be performed.

Therefore, the interpretation of a π program processed by parse is performed by go(t,s,acc), where
s is a string containing π as processed by parse, t is π’s initial data flow, and acc filters the connectors
of the ReLo program that can be fired if the requirements to do so are met.

Definition 5 will check for each of the Reo connectors processed by parse satisfies the required
condition to fire, following the connectors’ behaviour. Operator ≺ denotes whether the data flow is
within the current data flow t being evaluated. It is also used to denote whether the program currently
being evaluated in s repeats in Π. Operator \ denotes the removal of an connector from the accumulator
acc.

Definition 5 (Relation go for a single execution step). We define go(t,s,acc) as follows:

• s = ε : f ire(t,acc)
• s = A→ B◦ s′ :

– go(t,s′,acc◦ (A→ B)), iff Ax≺ t,(A→ B)⊀ s′

– go(t,s′,(acc◦ (A→ B))\ s′j)∪go(t,s′,acc), iff

Ax≺ t,
(A→ B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

• s = (A,A→ B)◦ s′ :
– go(t,s′,acc◦ (A→ B))∪go(t,s′,acc◦ (A→ A)), iff Ax≺ t,(A→ B)⊀ s′

E. Grilo & B. Lopes 23

– go(t,s′,(acc◦ (A→ B))\ s′j)∪go(t,s′,acc), iff

Ax≺ t,
(A→ B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

• s = f i f o(A,B)◦ s′ :
– go(t,s′,acc◦ (AxB)), iff Ax≺ t, f i f o(A,B)⊀ s′,(AxB)⊀ acc
– go(t,s′,acc◦ (AxB→ Bx)), iff AxB≺ t, f i f o(A,B)⊀ s′

– go(t,s′,(acc◦ (AxB→ Bx))\ s′j)∪go(t,s′,acc), iff

AxB≺ t,
f i f o(A,B)⊀ s′,
∃s′j ∈ acc | sink(s′j) = B

– go(t,s′,acc), otherwise
• s = Sblock(A,B)◦ s′ :

– go(t,s′,acc), iff

{
(Ax≺ t ∧Bx≺ t)∨ (Ax⊀ t ∧Bx⊀ t)
Sblock(A,B)⊀ s′

– go(t,halt(A,B,s′),acc), iff

{
(Ax≺ t ∧Bx⊀ t)∨ (Ax⊀ t ∧Bx≺ t)
Sblock(A,B)⊀ s′

• s = Ablock(A,b)◦ s′ :

– go(t,s′,acc), iff

{
(Ax⊀ t ∧Bx≺ t)∨ (Ax≺ t ∧Bx⊀ t)∨
(Ax⊀ t ∧Bx⊀ t),Ablock(A,B)⊀ s′

– go(t,halt(A,B,s′),acc), iff

{
(Ax≺ t ∧Bx≺ t),
Ablock(A,B)⊀ s′

• s = Trans f orm(f ,A,B)◦ s′ :

– go(t,s′,acc◦ (f (DA)→ B)), iff

{
ax≺ t
Trans f orm(f ,A,B)⊀ s′

– go(t,s′,(acc◦ (f (DA)→ B))\ s′j)∪go(t,s′,acc), iff

Ax≺ t,
Trans f orm(f ,A,B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

• s = Filter(f ,A,B)◦ s′ :

– go(t,s′,acc◦ (A→ B)), iff

Ax≺ t
P(DA) holds
Filter(f ,A,B)⊀ s′

– go(t,s′,(acc◦ (A→ B))\ s′j)∪go(t,s′,acc), iff

Ax≺ t,
P(DA) holds
Filter(f ,A,B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

The existing condition after each return condition of go denotes the case where two or more Reo
connectors within a circuit have the same sink node. This implies that if both of their respective source

24 ReLo a Dynamic Logic to Reason About Reo Circuits

nodes have data flowing simultaneously, their sink nodes will have data flowing nondeterministically.
Such condition models this scenario, considering when both cases may happen as two nondeterministic
“distinct” possible executions. Therefore, the operation acc◦ (X →Y))\ s′j removes every interpretation
of s′ which sink node equals Y , while go(t,s′,acc) denotes an execution containing the removed s′j but
not considering X→Y . The return condition s = ε denotes that the program as a whole has already been
processed.

Considering the cases including block programs induced by SyncDrain and AsyncDrain connectors,
halt(A,B,s′) is defined as a supporting function that will be used in the case the block program conditions
fail. Then, data flow that was in the ports of the SyncDrain/AsyncDrain evaluated cannot be further
considered in this execution steps: channels that have their sink node pointed to A or B.

Intuitively, go is a function that processes a program π with input t as the program’s data initially
available at ports p ∈ π and returns the next data configuration after processing all connectors and ver-
ifying whether they are eligible for data to flow. The return of go depends on a function f ire which is
bound to return the final configuration of the Reo circuit after an iteration (i.e., the last ports that data
flow). We define sink(s′j) as the sink node of a connector, in this case, the port name where a data item
flowing into a Reo connector is bound to. The operation denoted by ∪ is the standard set union.

Definition go employs a function named f ire : T × s→ T which returns the firing of all possible data
flows in the Reo connector, given the Reo program π and an initial data flow on ports of π . The set T
is the set of possible data flows as constructed by the BNF grammar in Definition 1. The function f ire
returns the resulting data flow of this execution step by considering the program processed by go as s and
the current step’s data flow t. Parameter s contains ReLo programs as yielded by parse.

Definition 6 (Data marking relation f ire).

f ire(t,s) =

ε, if s = ε

AxB◦ f ire(t,s′), if s = (AxB)◦ s′ and Ax≺ t
B(f (a))◦ f ire(t,s′), if s = (f (DA)→ B)◦ s′ and Ax≺ t

Bx◦ f ire(t,s′), if

{
s = (A→ B)◦ s′ and Ax≺ t,or
s = (AxB→ Bx)◦ s′ and axb≺ t

(1)

We define fReLo as the transition relation of a ReLo model. It denotes how the transitions of the model
fire, i.e., given an input t and a program π denoting a Reo circuit, fReLo(t,π) interfaces with go to return
the resulting data flow of π given that data depicted by t are flowing in the connector’s ports.

Definition 7. Transition relation fReLo(t,π) = go(t,(parse(π, [])), [])

We define fReLo(t,π?) as the application of fReLo(t,π) iteratively for the (nondeterministic finite)
number of steps denoted by ?, starting with t with π , and considering the obtained intermediate t ′ in the
steps.

A ReLo frame is a structure based on Kripke frames [24] formally defined as a tuple F = 〈S,Π,RΠ,δ ,
λ 〉, where each element of F is described by Definition 8.

Definition 8 (ReLo frame). S is a non-empty enumerable set of states and Π a Reo program.

• RΠ ⊆ S×S is a relation defined as follows.
– Rπi = {uRπiv | fReLo(t,πi) ≺ δ (v), t ≺ δ (u)}, πi is any combination of any atomic program

which is a subprogram of Π.
– Rπ?

i
= R?

πi
, the reflexive transitive closure (RTC) of Rπi .

E. Grilo & B. Lopes 25

• λ : S×N → R is a function that returns the time instant a data item in a data markup flows
through a port name of N .

• δ : S→ T , is a function that returns data in ports of the circuit in a state s ∈ S, T being the set of
possible data flows in the model.

From Definition 8, a ReLo model is formally defined as a tuple M = 〈F ,V〉 by Definition 9. In-
tuitively, it is a tuple consisting of a ReLo frame and a valuation function, which given a state w of the
model and a propositional symbol ϕ ∈Φ, maps to either true or f alse.

Definition 9 (ReLo models). A model in ReLo is a tuple M = 〈F ,V〉, where F is a ReLo frame and
V : S×Φ→{true, f alse} is the model’s valuation function

Definition 10 (Satisfaction notion).

• M ,s p iff V (s, p) = true
• M ,s > always
• M ,s ¬ϕ iff M ,s 1 ϕ

• M ,s ϕ1∧ϕ2 iff M ,s ϕ1 and M ,s ϕ2
• M ,s 〈t,π〉ϕ if there exists a state w ∈ S, sRπw, and M ,s ϕ

We denote by M ϕ if ϕ is satisfied in all states of M . By ϕ we denote that ϕ is valid in any state
of any model.

We recover the circuit in Fig. 2 as an example. Let us consider s = DX , (i.e. t = D1) and the
Sequencer’s corresponding model M . Therefore, M ,DX 〈t,π〉p holds if V (DX f i f oY , p) = true as
DX f i f oY is the only state where DX RΠDX f i f oY . For example, one might state p as “There is no port with
any data flow”, hence V (DX f i f oY , p) = true.

As another usage example, we formalize some properties which may be interesting for this connector
to have. Let us consider that the data markup is t = X1, M the model regarding the Sequencer, and the
states’ subscript denoting which part of the connector has data. The following example state that for this
data flow, after every single execution of π , it is not the case that the three connected entities have their
data equal to 1 simultaneously, but it does have data in its buffer from X to Y .

Example 2. [X1,π]¬(DA = 1∧DB = 1∧DC = 1)∧ t ′ = X1Y , where t ′ = fReLo(t,π)
M ,DX [X1,π]¬(DA = 1∧DB = 1∧DC = 1)∧ t ′ = X1Y .
M ,D X Y ¬(DA = 1∧DB = 1∧DC = 1)∧ t ′ = X1Y .
M ,D X Y ¬(DA = 1∧DB = 1∧DC = 1) and M ,D X Y t ′ = X1Y .

The notion of M ,DX 〈t,π?〉p holds if a state s is reached from DX by means of R?
π with V (s, p) =

>. If we state p as “the data item of port X equals 1”, it holds because DX R?
πDX and V (DX , p) = >. If

there is an execution of π that lasts a nondeterministic finite number of iterations, and there is data in C
equals to 1, then there is an execution under the same circumstances where the same data has been in B.

Example 3. 〈t,π?〉DC = 1→ 〈t,π?〉DB = 1
M ,DX 〈t,π?〉DC = 1→ 〈t,π?〉DB = 1
M ,DX ¬(〈t,π?〉DC = 1)∨〈t,π?〉DB = 1
M ,DX [t,π?]¬DC = 1∨〈t,π?〉DB = 1
M ,DX [t,π?]¬DC = 1 or M ,DX 〈t,π?〉DB = 1
M ,DX 〈t,π?〉DB = 1, because M ,DB DB = 1 and DX Rπ?RB.

26 ReLo a Dynamic Logic to Reason About Reo Circuits

4.1 Axiomatic System

We define an axiomatization of ReLo, discuss its soundness and completeness.

Definition 11 (Axiomatic System).

(PL) Enough Propositional Logic tautologies
(K) [t,π](ϕ → ψ)→ ([t,π]ϕ → [t,π]ψ)

(And) [t,π](ϕ ∧ψ)↔ [t,π]ϕ ∧ [t,π]ϕ
(Du) [t,π]ϕ ↔¬〈t,π〉¬ϕ

(R) 〈t,π〉ϕ ↔ ϕ iff fReLo(t,π) = ε

(It) ϕ ∧ [t,π][t(f ,b),π
?]ϕ ↔ [t,π?]ϕ , t(f ,b) =

fReLo(t,π)
(Ind) ϕ ∧ [t,π?](ϕ → [t(f ,b)? ,π]ϕ)→ [t,π?]ϕ ,

t(f ,b)? = fReLo(t,π?)

(MP) ϕ ϕ → ψ

ψ

(Gen)
ϕ

[t,π]ϕ

Lemma 1 (Soundness). Proof.
Axioms (PL), (K), (And) and (Du) are standard in Modal Logic literature, along with rules (MP) and
(Gen) [15]. Axiom (It) and (Ind) are similar from PDL. (R): 〈t,π〉ϕ ↔ ϕ iff fReLo(t,π) = ε

Suppose by contradiction that exists a state s from a model M = 〈S,Π,RΠ,δ ,λ ,V 〉 where (R) does not
hold. There are two possible cases.
(⇒) Suppose by contradiction M ,s 〈t,(f ,b)〉ϕ and M ,s 1 ϕ . M ,s 〈t,(f ,b)〉ϕ iff there is a state
v ∈ S such that sRπv. Because fReLo(t,(f ,b)) = ε,s = v (i.e., in this execution no other state is reached
from s). Therefore, M ,s ϕ , contradicting M ,s 1 ϕ .
(⇐) Suppose by contradiction M ,s ϕ and M ,s 1 〈t,(f ,b)〉ϕ . In order to M ,s 1 〈t,(f ,b)〉ϕ , for
every state v ∈ S such that sRπv, M ,v 1 ϕ . Because fReLo(t,(f ,b)) = ε,s = v (i.e., in this execution no
other state is reached from s). Therefore, M ,v 1 ϕ , contradicting M ,v ϕ .

4.2 Completeness

We start by defining the Fisher-Ladner closure of a formula as the set closed by all of its subformulae,
following the idea employed in other modal logic works [15, 9] as follows.

Definition 12 (Fisher-Ladner Closure). Let Φ be a the set of all formulae in ReLo. The Fischer-Ladner
closure of a formula, notation FL(ϕ) is inductively defined as follows:

• FL : Φ→ 2Φ

• FL(f ,b) : {〈t,(f ,b)〉ϕ}→ 2Φ, where (f ,b) is a ReLo program and ϕ a ReLo formula.

These functions are defined as

• FL(p) = {p}, p an atomic proposition;
• FL(ϕ → ψ) = {ϕ → ψ}∪FL(ϕ)∪FL(ψ)
• FL(f ,b)(〈t,(f ,b)〉ϕ) = {〈t,(f ,b)〉ϕ}
• FL(〈t,(f ,b)〉ϕ) = FL(f ,b)((〈t,(f ,b)〉ϕ)∪FL(ϕ)
• FL(f ,b)(〈t,(f ,b)?〉ϕ) = {〈t,(f ,b)?〉ϕ}∪FL(f ,b)(〈t,(f ,b)〉〈t,(f ,b)?〉ϕ)
• FL(〈t,(f ,b)?〉ϕ) = FL(f ,b)((〈t,(f ,b)?〉ϕ)∪FL(ϕ)

From the definitions above, we prove two lemmas that can be understood as properties that formulae
need to satisfy to belong to their Fisher-Ladner closure.

E. Grilo & B. Lopes 27

Lemma 2. If 〈t,(f ,b)〉ψ ∈ FL(ϕ), then ψ ∈ FL(ϕ)

Lemma 3. If 〈t,(f ,b)?〉ψ ∈ FL(ϕ), then 〈t,(f ,b)〉〈t,(f ,b)?〉ψ ∈ FL(ϕ)

The proofs for Lemmas 2 and 3 are straightforward from Definition 12. The following definitions
regard the definitions of maximal canonical subsets of ReLo formulae. We first extend Definition 12 to a
set of formulae Γ. The Fisher-Ladner closure of a set of formulae Γ is FL(Γ) =

⋃
ϕ∈Γ FL(ϕ). Therefore,

FL(Γ) is closed under subformulae. For the remainder of this section, we will assume that Γ is finite.

Lemma 4. If Γ is a finite set of formulae, then FL(Γ) also is a finite set of formulae

Proof. The proof is standard in literature [10]. Intuitively, because FL is defined recursively over a set
of formulae Γ into formulae ψ of a formula ϕ ∈ Γ, Γ being finite leads to the resulting set of FL(Γ) also
being finite (at some point, all atomic formulae composing ϕ will have been reached by FL).

Definition 13 (Atom). Let Γ be a set of consistent formulae. An atom of Γ is a set of formulae Γ′ that is
a maximal consistent subset of FL(Γ). The set of all atoms of Γ is defined as At(Γ).

Lemma 5. Let Γ a consistent set of formulae and ψ a ReLo formula. If ψ ∈ FL(Γ), and ψ is satisfiable
then there is an atom of Γ, Γ′ where ψ ∈ Γ′.

Proof. The proof follows from Lindembaum’s lemma. From Lemma 4, as FL(Γ) is a finite set, its
elements can be enumerated from γ1,γ2, . . . ,γn,n = |FL(Γ)|. The first set, Γ′1 contains ψ as the starting
point of the construction. Then, for i = 2, . . . ,n, Γ′i is the union of Γ′i−1 with either {γi} or {¬γi},
respectively whether Γ′i∪{γi} or Γ′i∪{¬γi} is consistent. In the end, we make Γ′ = Γ′n as it contains the
union of all Γi,1≤ i≤ n. This is summarized in the following bullets:

• Γ′1 = {ψ};

• Γ
′
i,=

{
Γ′i−1∪{γi}, if Γn−1∪{γn} is consistent
Γ′i−1∪{¬γi}, otherwise

for 1 < i < n;

• Γ =
⋃n

i=1 Γi

Definition 14 (Canonical relations over Γ). Let Γ a set of formulae, A,B atoms of Γ (A,B ∈ At(Γ)), Π a
ReLo program and 〈t,(f ,b)〉ϕ ∈ At(Γ). The canonical relations on At(Γ) is defined as SΓ

Π
as follows:

ASΓ
Π

B↔
∧

A∧〈t,(f ,b)〉
∧

B) is consistent , ASΓ
Π?B↔

∧
A∧〈t,(f ,b)?〉

∧
B) is consistent

Definition 14 states that the relation between two atoms of Γ, A and B is done by the conjunction of
the formulae in A with all formulae in B which can be accessed from A with a diamond formula, such
that this conjunction is also a consistent formula. Intuitively, it states that A and B are related in SΓ

Π
by

every formula ϕ of B which conjunction with A by means of a diamond results in a consistent scenario.
The following definition is bound to formalize the canonical version of δ as the data markup function.

Definition 15 (Canonical data markup function δ Γ
c).

Let F = {〈t1,(f1,b1)〉ϕ1,〈t2,(f2,b2)〉ϕ2, . . . ,〈tn,(fn,bn)〉ϕn} be the set of all diamond formula occurring
on an atom A of Γ. The canonical data markup is defined as δ Γ

c : At(Γ)→ T as follows:

• The sequence {t1, t2, . . . , tn} ⊆ δ (A) Therefore, {t1, t2, . . . , tn} ⊆ δ Γ
c (A). Intuitively, this states that

all the data flow in the set of formulae must be valid data markups of A, which leads to them to
also be valid data markups of δ Γ

c following Definition 14.
• for all programs π = (f ,b) ∈Π, fReLo((δ

Γ
c (A)),(f ,b))≺ δ Γ

c (B)↔ ASΓ
Π

B.

28 ReLo a Dynamic Logic to Reason About Reo Circuits

Definition 16 (Canonical model). A canonical model over a set of formulae Γ is defined as a ReLo model
M Γ

c = 〈At(Γ),Π,SΓ
Π
,δ Γ

c ,λc,V Γ
c 〉, where:

• At(Γ) is the set of states of the canonical model;
• Π is the model’s ReLo program;
• SΓ

Π
are the canonical relations over Γ;

• δ Γ
c is the canonical markup function;

• λc : At(Γ)×N →R;
• V Γ

c : At(Γ)×ϕ →{true, f alse}, namely V Γ
c (A, p) = {A ∈ At(Γ) | p ∈ A};

Lemma 6. For all programs π = (f ,b) that compose Π, t = δ Γ
c (A):

1. If fReLo(t,(f ,b)) 6= ε , then fReLo(t,(f ,b))≺ δ Γ
c (B) iff ASΓ

Π
B.

2. If fReLo(t,(f ,b)) = ε , then (A,B) /∈ SΓ
Π

.

Proof. The proof for 1. is straightforward from Definition 15. The proof for 2. follows from axiom R.
Because fReLo(t,(f ,b)) = ε , no other state is reached from the current state, hence no state B related with
A by RΓ

Π
can be reached.

The following lemma states that canonical models always exists if there is a formula 〈t,(f ,b)ϕ〉 ∈
FL(Γ), a set of formulae Γ and a Maximal Consistent Set A ∈ At(Γ). This assures that given the required
conditions, a canonical model can always be built.

Lemma 7 (Existence Lemma for canonical models). Let A be an atom of At(Γ) and 〈t,(f ,b)〉ϕ ∈FL(Γ).
〈t,(f ,b)〉ϕ ∈ A ⇐⇒ ∃ an atom B ∈ At(Γ) such that ASΓ

Π
B, t ≺ δ Γ

c (A) and ϕ ∈ B.

Proof. ⇒ Let A ∈ At(Γ) 〈t,(f ,b)〉ϕ ∈ FL(Γ) and 〈t,(f ,b)〉ϕ ∈ A . Because A ∈ At(Γ), from Defini-
tion 15 we have t ≺ δ Γ

c (A). From Lemma 5 we have that if ψ ∈ FL(Γ) and ψ is consistent, then there
is an atom of Γ, Γ′ where ψ ∈ Γ′. Rewriting ϕ as (ϕ ∧ γ)∨ (ϕ ∧¬γ) (a tautology from Propositional
Logic), an atom B ∈ At(Γ) can be constructed, because either 〈t,(f ,b)〉(ϕ ∧ γ) or 〈t,(f ,b)〉(ϕ ∧¬γ) is
consistent. Therefore, considering all formulae γ ∈ FL(Γ), B ∈ At(Γ) is constructed with ϕ ∈ B and
A∧ (〈t,(f ,b)〉ϕ

∧
B. From Definition 14, ASΓ

Π
B.

⇐ Let A ∈ At(Γ) and 〈t,(f ,b)〉ϕ ∈ FL(Γ). Also, let B ∈ At(Γ), ASΓ
Π

B, t ≺ δ Γ
c (A), and ϕ ∈ B. As ASΓ

Π
B,

from Definition 14, ASΓ
Π

B↔ (A∧〈t,(f ,b)〉
∧

B), ∀ϕi ∈ B is consistent. From ϕ ∈ B, (A∧〈t,(f ,b)〉ϕ)
is also consistent. As A ∈ At(Γ) and 〈t,(f ,b)ϕ ∈ FL(Γ), by Definition 13, as A is maximal, then
〈t,(f ,b)〉ϕ ∈ A.

The following lemma formalizes the truth notion for a canonical model M Γ
c , given a state s and a

formula ϕ . It formalizes the semantic notion for canonical models in ReLo.

Lemma 8 (Truth Lemma). Let M Γ
c = 〈At(Γ),Π,SΓ

Π
,δ Γ

c ,λ ,V
Γ
c 〉 be a canonical model over a formula γ .

Then, for every state A ∈ At(Γ) and every formula ϕ ∈ FL(γ): M Γ
c ,A ϕ ⇐⇒ ϕ ∈ A.

Proof. The proof proceeds by induction over the structure of ϕ .

• Induction basis: suppose ϕ is a proposition p. Therefore, M Γ
c ,A p. From Definition 16, M Γ

c ’s
valuation function is V Γ

c (p) = {A ∈ At(Γ) | p ∈ A}. Therefore, p ∈ A.
• Induction Hypothesis: Suppose ϕ is a non atomic formula ψ . Then, M Γ

c ,A ψ ⇐⇒ ψ ∈ A, ψ a
strict subformula of ϕ .

• Inductive step: Let us prove it holds for the following cases (we ommit propositional operators):

E. Grilo & B. Lopes 29

– Case ϕ = 〈t,(f ,b)〉φ . Then, M Γ
c ,A 〈t,(f ,b)〉φ ⇐⇒ 〈t,(f ,b)〉φ ∈ A:

⇒ Let M Γ
c ,A 〈t,(f ,b)〉φ . From Definition 14, there is a state B where ASΓ

Π
B and φ ∈ B.

By Lemma 7, 〈t,(f ,b)〉φ ∈ A. Therefore, it holds.
⇐ Let M Γ

c ,A 1 〈t,(f ,b)〉φ . From Definition 16’s valuation function V Γ
c and Lemma 5, we

have M Γ
c ,A ¬〈t,(f ,b)〉φ . Therefore, for every B where ASΓ

Π
B,M Γ

c ,B ¬φ . From the
induction hypothesis, φ /∈ B. Hence, From Lemma 7, 〈t,(f ,b)〉φ /∈ A.

– Case ϕ = 〈t,(f ,b)?〉φ . Then, M Γ
c ,A 〈t,(f ,b)?〉φ ⇐⇒ 〈t,(f ,b)?〉φ ∈ A:

⇒ Let M Γ
c ,A 〈t,(f ,b)?〉φ . From Definition 14, there is a state B where ASΓ

Π?B and φ ∈ B.
By Lemma 7, 〈t,(f ,b)?〉φ ∈ A. Therefore, it holds.
⇐ Let M Γ

c ,A 1 〈t,(f ,b)?〉φ . From Definition 16’s valuation function V Γ
c and Lemma 5, we

have M Γ
c ,A ¬〈t,(f ,b)?〉φ . Therefore, for every B where ASΓ

Π?B,M Γ
c ,B ¬φ . From the

induction hypothesis, φ /∈ B. Hence, From Lemma 7, 〈t,(f ,b)?〉φ /∈ A.

We proceed by formalizing the following lemma, which is bound to show that the properties that
define ? for regular ReLo models also holds in ReLo canonical models.

Lemma 9. Let A,B ∈ At(Γ) and Π a ReLo program. If ASΠ?B then AS?
Π

B

Proof. Suppose ASΠ?B. Define C = {C′ ∈ At(Γ) | AS?
Π

C} as the set of all atoms C′ which A reaches by
means of SΠ? . We will show that B ∈ C. Let Cc be the maximal consistent set obtained by means of
Lemma 5, Cc = {

∧
C1 ∨C2 ∨ . . .

∧
Cn}, where the conjunction of each Ci is consistent, and each Ci is a

maximal consistent set. Also, define t = δ Γ
c (Cc) as the canonical markup of Cc.

Note that Cc ∧〈t,(f ,b)〉¬Cc is inconsistent: if it was consistent, then for some D ∈ At(Γ) which A
cannot reach, Cc∧〈t,(f ,b)〉

∧
D would be consistent, which leads to

∧
C1∨C2∨·· ·∨Ci∨〈t,(f ,b)〉

∧
D

also being consistent, for some Ci. By the definition of Cc, this means that D ∈C but that is not the case
(because D∈Cc contradicts D not being reached from A and consequently Cc’s definition, as D∈Cc leads
to D being reachable from A). Following a similar reasoning,

∧
A∧〈t,(f ,b)〉Cc is also inconsistent and

therefore its negation,
∧
¬(A∧〈t,(f ,b)〉Cc) is consistent, which can be rewritten as

∧
A→ [t,(f ,b)]Cc.

Because Cc∧〈t,(f ,b)〉¬Cc is inconsistent, its negation ¬(Cc∧〈t,(f ,b)〉¬Cc) is valid, which can be
rewritten to ` Cc → [t,(f ,b)]Cc (I). Therefore, by applying generalization we have ` [t,(f ,b)?](Cc →
[t,(f ,b)]Cc). By axiom (It), we derive ` [t,(f ,b)]Cc → [t,(f ,b)?]Cc (II). By rewriting (II) in (I) we
derive Cc → [t,(f ,b)?]Cc. As

∧
A→ [t,(f ,b)]Cc is valid, from (II)

∧
A→ [t,(f ,b)?]Cc also is valid.

From the hypothesis ASπ?B and Cc’s definition,
∧

A∧〈t,(f ,b)?〉B and
∧

B∧Cc are consistent (the latter
from Cc’s definition). Then, there is a Ci ∈Cc such that

∧
B∧

∧
C is consistent. But because each Ci is a

maximal consistent set, it is the case that B =Ci, which by the definition of Cc leads to AS?
Π

B.

Definition 17 (Proper Canonical Model). The proper canonical model over a set of formulae Γ is defined
as a tuple 〈At(Γ),Π,RΓ

Π
,δ Γ

Π
,λc,V Γ

Π
〉 as follows:

• At(Γ) as the set of atoms of Γ;
• Π as the ReLo program;
• The relation R of a ReLo program Π is inductively defined as:

– Rπ = Sπ for each canonical program π;
– RΓ

Π? = (RΓ
Π
)?;

– Π = π1�π2�·· ·�πn a ReLo program, RΠ ⊆ S×S as follows:

30 ReLo a Dynamic Logic to Reason About Reo Circuits

* Rπi = {uRπiv | fReLo(t,πi) ≺ δ (v)}, t ≺ δ (u) and πi is any combination of any atomic
programs which is a subprogram of Π.

• δ Γ
Π

as the canonical markup function;
• λc : At(Γ)×N →R;
• V Γ

c (A, p) = {A ∈ At(Γ) | p ∈ A} as the canonical valuation introduced by Definition 16.

Lemma 10. Every canonical model for Π has a corresponding proper canonical model: for all programs
Π, SΓ

Π
⊆ RΓ

Π

Proof. The proof proceeds by induction on Π’s length

• For basic programs π , it follows from Definition 17:
• Π?: From Definition 8, Rπ? = R?

π . By the induction hypothesis, SΓ
Π
⊆ RΓ

Π
, also from the definition

of RTC, we have that if (SΓ
Π
)⊆ (RΓ

Π
), then (SΓ

Π
)? ⊆ (RΓ

π)
? (i). From Lemma 9, SΓ

Π? ⊆ (SΓ
Π
)?, which

leads to (SΓ
Π
)? ⊆ (RΓ

Π
)? by (i). Finally, (RΓ

Π
)? = (RΓ

Π?). Hence, (SΓ
Π?)⊆ (RΓ

Π?)

Lemma 11 (Existence Lemma for Proper Canonical Models). Let A ∈ At(Γ) and 〈t,(f ,b)〉ϕ ∈ FL(Γ).
Then, 〈t,(f ,b)〉ϕ ∈ A↔ exists B ∈ At(Γ),ARΓ

Π
B, t ≺ δ Γ

c (A) and ϕ ∈ B.

Proof. ⇒ Let 〈t,(f ,b)〉ϕ ∈ A. From Lemma 7 (Existence Lemma for canonical models), there is an
atom B ∈ At(Γ) where ASΓ

Π
B, t ≺ δ Γ

c (A) and ϕ ∈ B. From Lemma 10, SΓ
Π
⊆ RΓ

Π
. Therefore, there is an

atom B ∈ At(Γ) where ARΓ
Π

B, t ≺ δ Γ
c (A) and ϕ ∈ B.

⇐ Let B an atom, B∈At(Γ),ARΠB, t ≺ δ Γ
c (A) and ϕ ∈B. The proof follows by induction on the program

Π = (f ,b) as follows:

• a canonical program πi: this case is straightforward as from Definition 17, Sπi = Rπi , and conse-
quently ASπiB, t ≺ δ Γ

c (A) and (i) ϕ ∈ B. From Lemma 7 and (i), 〈t,(f ,b)〉ϕ ∈ A.
• Π?: from Definition 17, RΠ? = R?

Π
. Then, let B ∈ At(Γ),ARΠ?B, t ≺ δ Γ

c (A) and ϕ ∈ B. This means
that there is a finite nondeterministic number n where ARΠ?B = ARΠA1RΠA2 . . .RΠAn, where An =
B. The proof proceeds by induction on n:

– n = 1: ARΠB and ϕ ∈ B. Therefore, from Lemma 7,〈t,(f ,b)〉ϕ ∈ A. From axiom Rec, one
may derive 〈t,(f ,b)〉ϕ → 〈t,(f ,b)?〉ϕ . By the definition of FL and A’s maximality (as it
is an atom of Γ) 〈t,(f ,b)?〉ϕ ∈ A.

– n > 1: From the previous proof step and the induction hypothesis, 〈t,(f ,b)?〉 ∈ A2 and
〈t,(f ,b)〉〈t,(f ,b)?〉 ∈ A1. From axiom Rec, one can derive
 〈t,(f ,b)〉〈t,(f ,b)?〉ϕ→ 〈t,(f ,b)?〉ϕ . By the definition of FL, and A’s maximality (as it is
an atom of Γ), 〈t,(f ,b)?〉ϕ ∈ A.

Lemma 12 (Truth Lemma for Proper Canonical Models). Let M Γ
c = 〈At(Γ),Π,RΓ

Π
,δ Γ

Π
,λc,V Γ

Π
〉 a proper

canonical model constructed over a formula γ . For all atoms A and all ϕ ∈ FL(γ). M ,A ϕ↔ ϕ ∈ A.

Proof. The proof proceeds by induction over ϕ .

• Induction basis: ϕ is a proposition p. Therefore, M Γ
c ,A p holds from Definition 17 as V Γ

c (p) =
{A ∈ At(Γ) | p ∈ A}.

• Induction hypothesis: suppose ϕ is a non atomic formula ψ . Then, M ,A ϕ ⇐⇒ ϕ ∈ A, ψ a
strict subformula of ϕ .

E. Grilo & B. Lopes 31

• Inductive step: let us prove it holds for the following cases (we show only for modal cases):

– Case ϕ = 〈t,(f ,b)〉φ . Then, M Γ
c ,A 〈t,(f ,b)〉φ ⇐⇒ 〈t,(f ,b)〉φ ∈ A:

⇒ Let M Γ
c ,A 〈t,(f ,b)〉φ . From Definition 14, there is an atom B where ASΓ

Π
B and φ ∈ B.

By Lemma 11, 〈t,(f ,b)〉φ ∈ A. Therefore, it holds.
⇐ Let M Γ

c ,A 1 〈t,(f ,b)〉φ . From Definition 16’s valuation function V Γ
c and Lemma 5,

we have M Γ
c ,A ¬〈t,(f ,b)〉φ . Therefore, for every B where ASΓ

Π
B,M Γ

c ¬φ . From the
induction hypothesis, φ /∈ B. Hence, from Lemma 11 〈t,(f ,b)〉φ /∈ A.

– Case ϕ = 〈t,(f ,b)?〉φ . Then, M Γ
c ,A 〈t,(f ,b)?〉φ ⇐⇒ 〈t,(f ,b)?〉φ ∈ A:

⇒ Let M Γ
c ,A 〈t,(f ,b)?〉φ . From Definition 14, there is a state B where ASΓ

Π?B and φ ∈ B.
By Lemma 7, 〈t,(f ,b)?〉φ ∈ A. Therefore, it holds.
⇐ Let M Γ

c ,A 1 〈t,(f ,b)?〉φ . From Definition 16’s valuation function V Γ
c and Lemma 5, we

have M Γ
c ,A ¬〈t,(f ,b)?〉φ . Therefore, for every B where ASΓ

Π?B,M Γ
c ,B ¬φ . From the

induction hypothesis, φ /∈ B. Hence, From Lemma 7, 〈t,(f ,b)?〉φ /∈ A.

Theorem 1 (Completeness of ReLo). Proof. For every consistent formula A, a canonical model M can
be constructed. From Lemma 5, there is an atom A′ ∈At(A) with A∈A′, and from Lemma 12, M ,A′ A.
Therefore, ReLo’s modal system is complete with respect to the class of proper canonical models as
Definition 17 proposes.

5 Conclusions and Further Work

Reo is a widely used tool to model new systems out of the coordination of already existing pieces of
software. It has been used in a variety of domains, drawing the attention of researchers from different
locations around the world. This has resulted in Reo having many formal semantics proposed, each one
employing different formalisms: operational, co-algebraic, and coloring semantics are some of the types
of semantics proposed for Reo.

This work extends ReLo, a dynamic logic to reason about Reo models. We have discussed its core
definitions, syntax, semantic notion, providing soundness and completeness proofs for it. ReLo naturally
subsumes the notion of Reo programs and models in its syntax and semantics, and implementing its core
concepts in Coq enables the usage of Coq’s proof apparatus to reason over Reo models with ReLo.

Future work may consider the integration of the current implementation of ReLo with ReoXplore4,
a platform conceived to reason about Reo models, and extensions to other Reo semantics. Investigations
and the development of calculi for ReLo are also considered for future work.

References

[1] JR Abrial (1991): B-Tool Reference Manual. B-Core (UK) Ltd.

[2] Farhad Arbab (2004): Reo: a channel-based coordination model for component composition. Mathematical
Structures in Computer Science 14(3), p. 329–366, doi:10.1017/S0960129504004153.

[3] Farhad Arbab (2006): Coordination for Component Composition. Electronic Notes in Theoretical Computer
Science 160, pp. 15 – 40, doi:10.1016/j.entcs.2006.05.013. Proceedings of the International Workshop on
Formal Aspects of Component Software (FACS 2005).

4https://github.com/frame-lab/ReoXplore2

https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1016/j.entcs.2006.05.013
https://github.com/frame-lab/ReoXplore2

32 ReLo a Dynamic Logic to Reason About Reo Circuits

[4] Farhad Arbab, Natallia Kokash & Sun Meng (2008): Towards using reo for compliance-aware business
process modeling. In: International Symposium On Leveraging Applications of Formal Methods, Verification
and Validation, Springer, pp. 108–123, doi:10.1007/978-3-540-88479-8 9.

[5] Farhad Arbab & Jan JMM Rutten (2002): A coinductive calculus of component connectors. In: International
Workshop on Algebraic Development Techniques, Springer, pp. 34–55, doi:10.1007/978-3-540-40020-2 2.

[6] Colin Atkinson & Thomas Kuhne (2003): Model-driven development: a metamodeling foundation. IEEE
software 20(5), pp. 36–41, doi:10.1109/MS.2003.1231149.

[7] Christel Baier (2005): Probabilistic Models for Reo Connector Circuits. J. UCS 11(10), pp. 1718–1748.
[8] Christel Baier, Marjan Sirjani, Farhad Arbab & Jan Rutten (2006): Modeling component connectors in Reo by

constraint automata. Science of computer programming 61(2), pp. 75–113, doi:10.1016/j.scico.2005.10.008.
[9] Mario Benevides, Bruno Lopes & Edward Hermann Haeusler (2018): Towards reasoning about Petri

nets: A Propositional Dynamic Logic based approach. Theoretical Computer Science 744, pp. 22–36,
doi:10.1016/j.tcs.2018.01.007.

[10] Patrick Blackburn, M De Rijke & Y Venema (2001): Cambridge tracts in theoretical computer science.
[11] Roberto Bruni & Ugo Montanari (2000): Zero-safe nets: Comparing the collective and individual token

approaches. Information and computation 156(1-2), pp. 46–89, doi:10.1006/inco.1999.2819.
[12] Dave Clarke (2007): Coordination: Reo, nets, and logic. In: International Symposium on Formal Methods

for Components and Objects, Springer, pp. 226–256, doi:10.1007/978-3-540-92188-2 10.
[13] Erick Grilo & Bruno Lopes (2020): ReLo: a dynamic logic to reason about Reo circuits1. In: Pre-Proceedings

of the 15th International Workshop on Logical and Semantic Frameworks, with Applications (LSFA), p. 32.
[14] Erick Grilo, Daniel Toledo & Bruno Lopes (2022): A logical framework to reason about Reo circuits. Journal

of Applied Logics 9, pp. 199–254.
[15] David Harel, Dexter Kozen & Jerzy Tiuryn (2001): Dynamic logic. In: Handbook of philosophical logic,

Springer, pp. 99–217, doi:10.1007/978-94-017-0456-4 2.
[16] Daniel Jackson (2002): Alloy: a lightweight object modelling notation. ACM Transactions on Software

Engineering and Methodology (TOSEM) 11(2), pp. 256–290, doi:10.1145/505145.505149.
[17] Sung-Shik TQ Jongmans & Farhad Arbab (2012): Overview of Thirty Semantic Formalisms for Reo. Scien-

tific Annals of Computer Science 22(1), doi:10.7561/SACS.2012.1.201.
[18] Joachim Klein, Sascha Klüppelholz, Andries Stam & Christel Baier (2011): Hierarchical modeling and

formal verification. An industrial case study using Reo and Vereofy. In: International Workshop on Formal
Methods for Industrial Critical Systems, Springer, pp. 228–243, doi:10.1007/978-3-642-24431-5 17.

[19] John C Knight (2002): Safety critical systems: challenges and directions. In: Proceedings of the 24th
International Conference on Software Engineering, ACM, pp. 547–550.

[20] Natallia Kokash & Farhad Arbab (2011): Formal design and verification of long-running transac-
tions with extensible coordination tools. IEEE Transactions on Services Computing 6(2), pp. 186–200,
doi:10.1109/TSC.2011.46.

[21] Natallia Kokash, Behnaz Changizi & Farhad Arbab (2010): A semantic model for service composition with
coordination time delays. In: International Conference on Formal Engineering Methods, Springer, pp. 106–
121, doi:10.1007/978-3-642-16901-4 9.

[22] Natallia Kokash, Christian Krause & Erik De Vink (2012): Reo+ mCRL2: A framework for model-checking
dataflow in service compositions. Formal Aspects of Computing 24(2), pp. 187–216, doi:10.1007/s00165-
011-0191-6.

[23] Natallia Kokash, Christian Krause & Erik P de Vink (2010): Data-aware design and verification of service
compositions with Reo and mCRL2. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
pp. 2406–2413, doi:10.1145/1774088.1774590.

[24] Saul A Kripke (1959): A completeness theorem in modal logic. The journal of symbolic logic 24(1), pp.
1–14, doi:10.2307/2964568.

https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1016/j.tcs.2018.01.007
https://doi.org/10.1006/inco.1999.2819
https://doi.org/10.1007/978-3-540-92188-2_10
https://doi.org/10.1007/978-94-017-0456-4_2
https://doi.org/10.1145/505145.505149
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.1007/978-3-642-24431-5_17
https://doi.org/10.1109/TSC.2011.46
https://doi.org/10.1007/978-3-642-16901-4_9
https://doi.org/10.1007/s00165-011-0191-6
https://doi.org/10.1007/s00165-011-0191-6
https://doi.org/10.1145/1774088.1774590
https://doi.org/10.2307/2964568

E. Grilo & B. Lopes 33

[25] Yi Li & Meng Sun (2015): Modeling and verification of component connectors in Coq. Science of Computer
Programming 113, pp. 285–301, doi:10.1016/j.scico.2015.10.016.

[26] Yi Li, Xiyue Zhang, Yuanyi Ji & Meng Sun (2017): Capturing Stochastic and Real-Time Behavior in Reo
Connectors. In: Formal Methods: Foundations and Applications - 20th Brazilian Symposium, SBMF 2017,
Recife, Brazil, November 29 - December 1, 2017, Proceedings, pp. 287–304, doi:10.1007/978-3-319-70848-
5 18.

[27] Yi Li, Xiyue Zhang, Yuanyi Ji & Meng Sun (2019): A Formal Framework Capturing Real-Time and Stochas-
tic Behavior in Connectors. Science of Computer Programming, doi:10.1016/j.scico.2019.02.005.

[28] Mohammad Reza Mousavi, Marjan Sirjani & Farhad Arbab (2006): Formal semantics and analysis of
component connectors in Reo. Electronic Notes in Theoretical Computer Science 154(1), pp. 83–99,
doi:10.1016/j.entcs.2005.12.034.

[29] M. Saqib Nawaz & Meng Sun (2018): Reo2PVS: Formal Specification and Verification of Component Con-
nectors. In: The 30th International Conference on Software Engineering and Knowledge Engineering, Hotel
Pullman, Redwood City, California, USA, July 1-3, 2018., pp. 391–390, doi:10.18293/SEKE2018-024.

[30] Jonathan S Ostro (1992): Formal methods for the specification and design of real-time safety critical systems.
Journal of Systems and Software 18(1), pp. 33–60, doi:10.1016/0164-1212(92)90045-L.

[31] Mike P Papazoglou (2003): Service-oriented computing: Concepts, characteristics and directions. In: Web
Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth International Conference
on, IEEE, pp. 3–12, doi:10.1109/WISE.2003.1254461.

[32] Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat & Farhad Arbab (2009): Automated analysis of Reo
circuits using symbolic execution. Electronic Notes in Theoretical Computer Science 255, pp. 137–158,
doi:10.1016/j.entcs.2009.10.029.

[33] Meng Sun & Yi Li (2014): Formal modeling and verification of complex interactions in e-government ap-
plications. In: Proceedings of the 8th International Conference on Theory and Practice of Electronic Gover-
nance, ACM, pp. 506–507, doi:10.1145/2691195.2691296.

[34] Samira Tasharofi & Marjan Sirjani (2009): Formal modeling and conformance validation for WS-
CDL using Reo and CASM. Electronic Notes in Theoretical Computer Science 229(2), pp. 155–174,
doi:10.1016/j.entcs.2009.06.034.

[35] Xiyue Zhang, Weijiang Hong, Yi Li & Meng Sun (2016): Reasoning about connectors in Coq. In: Inter-
national Workshop on Formal Aspects of Component Software, Springer, pp. 172–190, doi:10.1007/978-3-
319-57666-4 11.

[36] Xiyue Zhang, Weijiang Hong, Yi Li & Meng Sun (2019): Reasoning about connectors using Coq and Z3.
Science of Computer Programming 170, pp. 27–44, doi:10.1016/j.scico.2018.10.002.

https://doi.org/10.1016/j.scico.2015.10.016
https://doi.org/10.1007/978-3-319-70848-5_18
https://doi.org/10.1007/978-3-319-70848-5_18
https://doi.org/10.1016/j.scico.2019.02.005
https://doi.org/10.1016/j.entcs.2005.12.034
https://doi.org/10.18293/SEKE2018-024
https://doi.org/10.1016/0164-1212(92)90045-L
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1016/j.entcs.2009.10.029
https://doi.org/10.1145/2691195.2691296
https://doi.org/10.1016/j.entcs.2009.06.034
https://doi.org/10.1007/978-3-319-57666-4_11
https://doi.org/10.1007/978-3-319-57666-4_11
https://doi.org/10.1016/j.scico.2018.10.002

	1 Introduction
	2 Related Work
	3 Background
	3.1 The Reo Modelling Language

	4 A ReLo Primer
	4.1 Axiomatic System
	4.2 Completeness

	5 Conclusions and Further Work

