
I. Cervesato and M. Fernández (Eds): Fourth InternationalWorkshop
on Linearity 2016 (LINEARITY’16)
EPTCS 238, 2017, pp. 44–53, doi:10.4204/EPTCS.238.5

This work is licensed under the
Creative Commons Attribution License.

Linear β -reduction∗

Stefano Guerrini
LIPN, Institut Galilée, Université Paris Nord 13, Sorbonne Paris Cité

stefano.guerrini@univ-paris13.fr

Linear head reduction is a key tool for the analysis of reduction machines forλ -calculus and for
game semantics. Its definition requires a notion of redex at adistance named primary redex in the
literature. Nevertheless, a clear and complete syntactic analysis of this rule is missing. We present
here a general notion ofβ -reduction at a distance and of linear reduction (i.e., not restricted to the
head variable), and we analyse their relations and properties. This analysis rests on a variant of
the so-calledσ -equivalence that is more suitable for the analysis of reduction machines, since the
position along the spine of primary redexes is not permuted.We finally show that, in the simply
typed case, the proof of strong normalisation of linear reduction can be obtained by a trivial tuning
of Gandy’s proof for strong normalisation ofβ -reduction.

1 Introduction

Linear head reduction is a key tool for the analysis of reduction machines forλ -calculus and for game
semantics. A detailed analysis of it, and more generally of anotion of reduction at a distance, has been
given by Accattoli [1] in terms of proof nets and explicit substitutions. Linear head reduction is usually
presented in terms of the so-calledσ -equivalence introduced by Regnier in [8]. In the following, we
introduce a variant of theσ -equivalence, which has the main advantage of leaving unchanged the order
of primary redexes (a notion ofβ -redex that will be discussed later). Such a new equivalenceis more
suitable for the analysis of abstract reduction machines based on linear head reduction, as for instance
Danos and Regnier’s Pointer Abstract Machine (PAM) [3], which has been analysed in detail by the
author and Pellitta in [5]. Indeed, most of the material thatwe shall present in this paper has been
developed for formalising the results in [5].

The key tool of our approach is a notion of context which is indeed an implicit representation of
environments mapping variables to their values. By means ofthese contexts, one can define aβ -reduction
at a distance and its linearised version. Both of these reduction rules preserveβ -equivalence, and both
of them are strongly normalising in the case of simply typedλ -calculus. However, the proof of strong
normalisation is not at all evident. In fact, linear reduction does not erase any term, it just replaces one
of the occurrences of a variable with a (larger)λ -term; in other words, the size of the reducing term
always increases along the reduction. Surprisingly, this apparent difficulty can be trivially overcome by
a small tuning of Gandy’s proof for strong normalisation ofβ -reduction [4]. Just by changing a detail in
the interpretation of variable occurrences—it suffices to increase by 1 their measure—we can adapt the
measure used in Gandy’s proof to the case of linear reduction. Moreover, the new measure obtained in
this way simultaneously proves strong normalisation ofβ -reduction and of its linearised version.

As already remarked, linear reduction has been studied in detail by Accattoli [1] by means of linear
logic proof nets. Such an approach has been inspired by the structural calculus introduced by Accattoli

∗Partially supported by the Project ELICA (ref. ANR-14-CE25-0005), of the ANR program “Fondements du numérique
(DS0705) 2014”.

http://dx.doi.org/10.4204/EPTCS.238.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

S. Guerrini 45

and Kesner [2], a calculus with explicit substitutions and reduction rules at a distance. In the present
paper, our goal is to analyse linear reduction directly onλ -calculus, without introducing explicit sub-
stitutions or without going down to the low level analysis ofreduction that can be achieved by means
of proof nets. As we shall see later, such a goal is achieved byintroducing a variant ofσ -equivalence,
named E-equivalence, which is more suitable for investigating reduction machines based on pointers, as
for instance the PAM. Moreover, the proof of strong normalisation that we shall give is much simpler
then the one based on reducibility candidates required in the case of proof nets. Recently, Pedrot and
Saurin [7] have proposed a call-by-need variant ofλ µ-calculus defined in terms of a notion of closure
contexts. Such closure contexts correspond to the E-contexts introduced in the following by Definition 2,
but extended toλ µ-calculus too. We remark that most of the material that we shall present below is a
by-product of the study of the PAM started in [5], and that oneof the further developments mentioned
in [5] is the extension of the PAM to theλ µ-calculus; Pedrot and Saurin’s call-by-need closure contexts
seem to be the right tool for formalising such an extension.

2 Preliminaries

The set of theλ -termsΛ is defined by the abstract grammars, t ::= x | λx.t | st, wherex ∈ V andλx
is a binder for the variablex. The set of the free variables of a termt is denoted byFV(t). The key
computational step ofλ -calculus isβ -contraction(λx.t)s→β t{s/x}, wheret{s/x} denotes that every
free occurrence of the variablex in t is replaced bys, provided that such a replacement does not cause
any name clash of some free variable ofs; otherwise, if this is not the case, one has to preliminarilyapply
a suitable sequence of variable renamings, orα-rules, tot. (Theα-congruence is the least congruence
induced by theα-rule λx.t = λy.t{y/x}, in whichy replaces all the free occurrences ofx in t andy does
not occur int.) As usual,→∗

β denotes the reflexive and transitive closure of the binary relation defined by
the β -rule, and=β denotes the corresponding equivalence (closing by symmetry also). Such notations
will extend to the other rewriting rules that we shall see in the paper.

In order to avoid the bureaucratic problems connected toα-congruence, we can assume to work
modulo it, and that all the bound variables in the terms that we shall consider have thedistinct names
property(sometimes referred to as Baredrengt variable names convention). A term has the distinct names
property if no free variable in it has the same name of a bound variable, and all the bound variables have
distinct names. Remarkably, for everyλ -term there is anα-congruent one which has the distinct name
property. In this way, no name clash can arise by replacings for x in t in the β -reduction of(λx.t)s.
However, even if correct, the resulting termt{s/x} might not have the above distinct names property. In
order to guarantee thatt{s/x} preserves the distinct names property of(λx.t)s, we can assume to replace
each occurrence ofx with a freshcopy ofs, in which every bound variable has a fresh name which has
not been already used in the term or in another copy ofs.

In the simply typedλ -calculus, every term has a type. The set of types is given by the abstract
grammarτ ,σ ::= o | τ → σ , where the constanto is the uniquebase typeand any typeτ → σ is said
a functional type. The setΛ→ of the simply typed terms is the subset ofΛ whose terms respect the
following typing rules: (i) each variablex has a given typeτ ; (ii) if the variablex has typeτ , and the term
t has typeσ , thenλx.t has typeτ → σ ; (iii) if the terms has typeτ → σ andt has typeτ , thenst has
typeσ . We shall writet : τ or tτ to denote that a termt has typeτ . Theβ -rule preserves typing; namely,
if t →∗

β sandt : τ , thens : τ .
A reduction strategy is a set of rules specifying how to reduce aλ -term. Roughly speaking, given a

reducible termt, a reduction strategy is a function that selects the redex (or the redexes) oft that must

46 Linearβ -reduction

(or among which we can choose the redex to) be reduced at the next step. A reduction strategy defines
a sub-rewriting system ofβ -reduction and, in some cases, if someβ -reducible termt contains no valid
redex for the given reduction strategy, it introduces new normal forms.

2.1 Head reduction

Let us say that aβ -redex(λx.t)s is in outermost head position1 in vwhenv= λy1. . . .λyk.(λx.t)su1 . . .uh,
and thatvhead reduces tov′ =λy1. . . .λyk.t{s/x}u1 . . .uh, writtenv→h v′, by reducing its outermost head
redex. A termv is in head normal formwhenλy1. . . .λyk.xu1 . . .uh, which in general is not aβ -normal
form, sinceu1, . . . ,uh may containβ -redexes. Indeed, theβ -normal form oft, if it exists, can be found by
head reducing a termt to its head normal formλy1. . . .λyk.xu1 . . .uh (if any) first, and then by recursively
applying the head reduction strategy to everyui and to the subterms of their head normal forms.

2.2 Head contexts

As usual, a contextC is a term with a hole� (a sort of dummy free variable occurring exactly once in
the term)C ::= � | λx.C | Ct | tC. Given any termt, by C[t] we denote the term obtained by replacing
the hole of the contextC with the termt, without performing any variable renaming; therefore, when the
hole is under the scope of aλ -abstraction binding the variablex, any free occurrence ofx in t is captured
in C[t], and becomes bound.

Definition 1 (H-context, head variable) A head context, or H-context, is a context whose hole appears
in head position. More precisely, H-contexts are defined by the following grammar

H ::=� | λx.H | Ht.

A head context of a termt is any H-contextH s.t. t = H[s], for some terms, that we shall say to be in
head position int. In particular, for everyλ -term t, there is a unique head contextH of t (themaximal
head contextof t) and a unique variablex= hv(t) (thehead variableof t) s.t.t = H[x]. ✷

2.3 Spine

A spineλ -abstraction/application of a termt is anyλ -abstraction/application in head position int. The
spineof t = H[x], and of its head contextH, is the sequence of its spineλ -abstractions/applications
ordered from the head variable oft (the hole ofH) to its root. A variablex bound by a spine abstraction
is aspine variable, while the right subterm of a spine application is aspine argumentof t. By SV(t) and
SV(H) we denote the set of the spine variables of a termt and of a H-contextH, respectively.

A H-contextHλ is aλ -contextif its spine is formed ofλ -abstractions only (equivalently,Hλ has no
spine arguments). A H-contextH@ is a @-contextif its spine is formed of applications only (equivalently,
H@ has no spine variables).

1Usually this is simply referred to ashead position. In the following we shall however present a larger notion ofhead
position, in which aβ -redex may be in head position even if it is inside the body of aβ -redex in head position. According to
such a new notion of head position, the redex reduced by the head reduction is the outermostβ -redex in head position.

S. Guerrini 47

3 β -reduction at a distance

3.1 Environment contexts

Definition 2 (E-context) An environment context, or E-context, is a particular H-context in which spine
λ -abstractions and spine applications are balanced. E-contexts are defined by the grammar

E1,2 ::= � | E1[λx.E2]t

An E-contextE contains an equal number#pE of spine variables and of spine arguments. For every
E-contextE 6= �, there is a unique pair(x, t) s.t. E = E1[λx.E2]t, for some pair of E-contextsE1,E2.
Therefore, every E-context defines a unique bijection between its spine variables and its spine arguments.
Such a correspondence can be formalised in terms of environments. Anenvironmentη = t1/x1, . . . , tk/xk

is an ordered sequence of variable substitutionsti/xi (whereti is a term replacing the variablexi). Given
an environmentη , we definet{η}= t{t1/x1, . . . , tk/xk}= t{t1/x1} . . .{tk/xk}.

Definition 3 The environmentη(E) associated to an E-context is inductively defined by

η(�) = ε and η(E1[λx.E2]t) = η(E2), t/x,η(E1)

According to the above definition, every pair of matching spine argument/variable corresponds to a
substitutiont/x in η(E). We remark that the order of the substitutions in an environment is relevant,
since fori < j, the occurrences ofx j in the termti are replaced by the termt j , while this is not the case
for any occurrence ofx j in a termtk with k ≥ j. In particular, the order of the spine variables inη(E)
corresponds to the order in which they appear inE, assuming to move from the inner head position to
the root. In other words,x precedesy in η(E) iff the binder ofx is in the scope of the binder ofy.

Lemma 1 Let E be an E-context. For everyλ -term t, E[t]→∗
β t{η(E)}. ✷

3.2 Primary redexes andβ -contraction at a distance

Any pair of matching spine argument/variable in an E-environment is as a sort of redex at a distance.

Definition 4 (Primary β -redex) A β -redex at a distanceis a termE[λx.t]s, whereE is an E-context. A
primary β -redexis aβ -redex at a distance occurring in a head position. ✷

As a particular case, forE = �, anyβ -redex is aβ -redex at a distance.β -redexes at a distance can
be reduced as usualβ -redexes, by defining the following generalisation at a distance of theβ -rule

E[λx.t]s→βd
E[t{s/x}]

and by taking theβd-reduction as the closure by contexts of the above rule. The H-contextE[λx.�]s
of a β -redex at a distance is an E-context. Then, every pairt/x of matching spine argument/variable of
anE-context (and therefore every substitution inη(E)) forms a primary redex. As a consequence, it is
readily seen thatE[t]→∗

βd
t{η(E)} for every E-contextE and every termt. More generally,β -reduction

at a distance is sound w.r.t. the usualβ -reduction.

Proposition 1 Let t→∗
βd

s, then t=β s. Moreover, s is a normal form for→βd
iff it is a β -normal form.✷

48 Linearβ -reduction

4 Spine permutation equivalence ofλ -terms

Thehead canonical E-contextsare a particular case of E-contexts in which every redex at a distance is
also aβ -redex. Head canonical E-contexts are defined by the grammarEc ::=� | (λx.Ec)t, and any head
canonical E-context has the shape(λxn. . . . (λx2.(λx1.�)t1)t2 . . .)tn. An environmentη can be seen as
the explicit representation of a head canonical E-contextE (η) in which the order of theβ -redexes along
the spine is the inverse of the substitution pairs in the environment

t1/x1, t2/x2, . . . , tn/xn
E

7−→ (λxn. . . . (λx2.(λx1.�)t1)t2 . . .)tn

Which corresponds to the inductive definitionE (ε) =�, andE (t/x,η) = E (η)[(λx.�)t].

4.1 Surface E-equivalence

By Lemma 1, we have thatE1 =β E2, for every pair of E-contextsE1 andE2 s.t.η(E1) = η(E2). We can
then define the following equivalence.
Definition 5 (Surface E-equivalence on E-contexts)The surface E-equivalence on E-contextsis the
least equivalence∼E defined by

E1[λx.E2]t ∼E E1[(λx.E2)t] if FV(t)∩SV(E1) = /0

E1[E2]∼E E′
1[E

′
2] if Ei ∼E E′

i for i = 1,2

Such an equivalence captures exactly the equivalence classes of E-contexts{E | E (η(E)) = Ec},
whereEc is head canonical, as formally stated by the following lemma.
Lemma 2 For every E-context E, there is a unique canonical E-contextEc ∼E E, which is also the unique
normal form of the terminating rewriting system→E obtained by orienting the E-equivalence rules of
Definition 5 from the left to the right

E1[λx.E2]t →E E1[(λx.E2)t] if FV(t)∩SV(E1) = /0

E1[E2]→E E′
1[E

′
2] if Ei →E E′

i and Ej = E′
j , with i, j ∈ {1,2}, and i 6= j

Moreover, Ec = E (η(E)), and therefore E∼E E′ iff η(E) = η(E′). ✷

Example 1 Let E = E1[λx.E2]t with E1 = (λy.�)s andE2 = �. The E-contextEc = (λy.(λx.�)t)s is
the unique canonical E-context∼E-equivalent toE = (λy.λx.�)st. ✷

4.2 Canonicalλ -terms

The E-equivalence can be extended to terms. In the corresponding head canonical forms, along the spine,
one finds first all the unmatched spine abstractions, then theE-context formed of the primary redexes,
and finally the unmatched spine arguments.
Definition 6 (Surface E-equivalence on terms)Thesurface E-equivalence on termsis the least equiv-
alence defined by the E-equivalence rules on E-contexts of Definition 5, plus

Hλ [E[λx.s]]∼E Hλ [λx.E[s]] if x 6∈ FV(E)

Hλ [E[s]t]∼E Hλ [E[st]] if FV(t)∩SV(E) = /0

Hλ [E1[s]]∼E Hλ [E2[s]] if E1 ∼E E2

whereHλ is aλ -context, andE,E1,E2 are E-contexts. The equivalence naturally extends to H-contexts,
by replacing� for s in the above equations. ✷

S. Guerrini 49

Definition 7 (head canonicalλ -term) Let us say thatH is ahead canonical H-contextwhen

H = Hλ [Ec[H@]]

whereHλ is a λ -context,H@ is an @-context, andEc is a head canonical E-context. The spineλ -
abstractions ofHλ are theheadλ -abstractionsof H, while the spine arguments ofH@ are thehead
argumentsof H. Theλ -termt is head canonicalwhen its maximal head context is head canonical.✷

Summing up, any head canonicalλ -termt has the shape

t = λx1. . . .λxn.Ec[zt1 . . . tm]

= λx1. . . .λxn.(λy1.(. . . (λyp.zt1 . . . tm)sp) . . .)s1)

and we can define#λ t = n, #@t = m, η(t) = Ec, and#pt = #pEc = p.
Every H-contextH, and then everyλ -term t = H[x], has a unique E-equivalent head canonical form

Hc, or Hc[x] for terms. Moreover, as shown by Theorem 1 below,Hc preserves the same relative positions
of unmatched spineλ -abstractions, unmatched spine arguments, and primary redexes ofH. (A spineλ -
abstraction/argument is unmatched when it is not involved in a primary redex.) More precisely, thei-th
headλ -abstraction ofHc is thei-th unmatchedλ -abstraction on the spine ofH, thei-th head argument of
the head canonical form is thei-th unmatched spine argument on the spine ofH, the i-th primary redex
of Hc is thei-th primary redex on the spine ofH.
Theorem 1 For any H-context H, there is a unique head canonical contextHc ∼E H. More precisely,

1. for every H-context H, there is a unique sequence of spine variables x1, . . .xn, a unique sequence
of spine arguments t1, . . . , tm, and a unique sequence of E-contexts E0,E1, . . . ,En+m s.t.

H = E0[H1]

Hi = λxi .Ei[Hi+1] for 1≤ i ≤ n

Hn+ j = En+ j [Hn+ j+1]tm− j+1 for 1≤ j ≤ m

Hn+m+1 =�

that is
H = E0[λx1.E1[λx2.E2[. . . [λxn.En[En+1[. . . [En+m−1[En+mt1]t2] . . .]tm]] . . .]]]

2. there is a unique head canonical context Hc ∼E H, and Hc = Hλ [E[H@]] is equal to

Hλ = λx1. . . .λxn.�

H@ =�t1 . . . tm

Ec = Ẽ0[Ẽ1[. . . [Ẽn+m]]]

that is
H ∼E Hc = λx1. . . .λxn.Ec[� t1 . . . tm]

whereẼi = E (η(Ei))∼E Ei is the unique head canonical E-context equivalent to Ei;

3. the canonical context Hc of H is the unique normal form of the rewriting system→E obtained by
orienting from the left to the right the surface E-equivalences on terms of Definition 6. Namely,

Hλ [E[λx.s]]→E Hλ [λx.E[s]] if x 6∈ FV(E)

Hλ [E[s]t]→E Hλ [E[st]] if FV (t)∩SV(E) = /0

Hλ [E1[s]]→E Hλ [E2[s]] if E1 →E E2

plus the rules for E-contexts in Lemma 2. ✷

50 Linearβ -reduction

4.3 E-equivalence

The surface E-equivalence permutes the arguments on the spine of a term without modifying them. The
E-equivalence is obtained by recursively applying the surface E-equivalence to spine arguments too. If
we denote byarg(t, i) the i-th head spine argument of the termt (which corresponds to thei-th spine
argument in the head @-context of its head canonical form) and by arg(t,−i) the spine argument of the
i-th primary redex oft (which corresponds to thei-th spine argument in the head canonical E-context
Ec of the head canonical form oft), we define≃E as the least equivalence s.t.t1 ≃E t2 if t1 ∼E t2, and
arg(t1, i)≃E arg(t2, i), for 1≤ i ≤ #@t1 = #@t2 or −#pt2 =−#pt1 ≤ i ≤−1.

4.4 σ -equivalence

Theσ -equivalence[8] is the least congruence induced by

((λx.u)v)w≃σ (λx.uw)v with x 6∈ FV(w)

(λx.λy.u)v≃σ λy.(λx.u)v with y 6∈ FV(v)

The rewriting system obtained by orienting the latterσ -equivalences from the left to the right is
terminating—its head canonical forms are the same already defined for the E-equivalence—but is not
confluent. Indeed, theσ -equivalence contains the E-equivalence, but it equates head canonical forms
E1 andE2 s.t. the environmentsη(E1) andη(E2) are equivalent modulo the following permutation rule
t1/x1, t2/x2 ∼ t2/x2, t1/x1 if x1 6∈ FV(t2) andx2 6∈ FV(t1).

Example 2 Let us take theλ -term u = E[v] = (λy.λx.v)st, whereE is theE-context of Example 1.
Its unique head E-canonical form is(λy.(λx.v)t)s, which can be also obtained by applying the firstσ -
rule. However, since by applying the secondσ -rule, u →σ (λx.(λy.v)s)t too, theλ -term u has two
σ -equivalent canonical forms. ✷

Summing up, the E-equivalence is a variant of theσ -equivalence which equates less terms then the
latter one. The definition of theσ -equivalence is simpler and more elegant, and has a direct and nice
interpretation in terms of linear logic proof nets. However, the better rewriting properties of the E-
equivalence—canonical form uniqueness and preservation of primary redexes relative positions—makes
it more suitable for a finer analysis of reduction machines requiring a reduction at a distance based on
σ -equivalence, as for instance the PAM. Theσ -equivalence can be recovered from the E-equivalence by
adding the following permutation equivalence of primary redexes

E1[(λx1.(λx2.E2)t2)t1]∼ E1[(λx2.(λx1.E2)t1)t2]

if x1 6∈ FV(t2) andx2 6∈ FV(t1), to the E-equivalence of E-contexts.

5 Linear head reduction

5.1 Linear reduction

Let (λx.t)s be a redex s.t. the termt contains at least one occurrence ofx. For any occurrence ofx in t,
we can take the contextC obtained by replacing such an occurrence ofx with �. The following reduction
rule (λx.C[x])s⊸β (λx.C[s′])s, wheres′ is a fresh copy ofs, is a linearised variant of the usualβ -rule
in which, instead of removing the redex after replacing all the occurrences of the bound variablex, the

S. Guerrini 51

redex is kept and only one occurrence ofx is replaced by a fresh copy of the arguments. Such a linear
β -reduction can be extended to be applied at a distance too. Weobtain then thelinear reduction rule(at
a distance)

E[λx.C[x]]s⊸ E[λx.C[s′]]s

wheres′ is a fresh copy ofs. When the termt in E[λx.t]s does not contain any occurrence ofx, we can
instead take the followinggarbage rule(which is just a degenerated case ofβ -reduction at a distance)

E[λx.t]s→g E[t] if x 6∈ FV(t)

Given aβ -redex (at a distance), by iterating the linearβ -reduction (at a distance), we can eventually
obtain a redex (at a distance) to which apply thegarbage rule. Therefore,β -reduction (at a distance) can
be simulated by a sort of affine reduction→a which is the union of linear and garbage reduction.

Proposition 2 Let→a=⊸ ∪→g.

1. If t →∗
β s, then t→∗

a s. Moreover, there is s′ s.t. t⊸∗ s′ →∗
g s.

2. If t →∗
a u, then u=β t. Therefore, there is t→∗

β s s.t. u→∗
a s. ✷

As a consequence of the above proposition, a term has a normalform for →a iff it has aβ -normal
form; moreover, the two normal forms coincide. We also remark the second part of the first item of
Proposition 2. This is a particular case of a more general property stating that garbage reductions can be
always postponed; that is, for everyt →∗

a s, there iss′ s.t.t ⊸∗ s′ →∗
g s.

5.2 Linear headβ -rule

A particular case of linear reduction arises when the occurrence to be replaced is the head variable.

Definition 8 (Linear head reduction) The linear head reductionis the least reduction which contains
the linear headβ -rule

E[λx.H[x]]s⊸h E[λx.H[s′]]s

wheres′ is a fresh copy ofs, and which is closed by head contexts. ✷

Linear head reduction is strongly related to headβ -reduction, as shown by the following statements.

Proposition 3 Let t⊸∗
h s. There is t→∗

h s′ s.t. s→∗
h s′. ✷

Corollary 1 A term t has a linear head normal form iff it has a head normal form. Moreover, let s be
the linear head normal form of t.

1. The head normal form of s is obtained byβ -reducing all the primary redexes in s.

2. The head normal form of s is the head normal form of t, indeed. ✷

6 Strong normalisation

All the rewriting systems defined above are strong normalising on simply typedλ -terms. The proof
of strong normalisation is however not at all evident. In fact, since linear reduction does not erase
the reducing redex—it just replaces the occurrence of a variable by a (larger)λ -term—the size of the
reducing term increases at each step. Accattoli [1], in its analysis of proof nets linear reduction, proved
strong normalisation by applying reducibility candidates. Here, we show that, surprisingly, the proof

52 Linearβ -reduction

of strong normalisation of linear reduction is simpler thenone might have thought, as it can be easily
obtained by a trivial tuning of the proof of strong normalisation originally proposed by Gandy forβ -
reduction [4]. In Gandy’s proof, each typeτ is interpreted as a well-founded ordered set[τ]. In particular,
any functional typeτ → σ is mapped into a set of increasing functions from[τ] to [σ]. A measure is
then associated to every term by interpreting anyt : τ as an element[t] ∈ [τ]. Strong normalisation is a
consequence of the fact that anyβ -reductiont →β ssends[t] to a lower element[s].

The original measure defined for the analysis ofβ -reduction does not directly work for the case
of linear reduction, since such a measure does not change along linear reduction (i.e.,[t] = [s], when
t ⊸ s). Indeed, Gandy’s measure just counts the number ofλ -abstractions erased along aβ -reduction.
However, by taking the successor of the usual interpretation of a variable occurrence, one obtains a new
measure which counts the number of variable occurrences replaced by someλ -term. Such a new measure
decreases along linear reduction, and allows to prove at thesame time the strong normalisation of all the
rewriting systems described in the present papers.

In the following, we shall follow the presentation of Gandy’s proof given by Miquel [6]. Let us
interpret the base typeo as the strict partial order(N,<), and every functional typeτ → σ as the strict
partial order of the increasing functions from the interpretation ofτ to the interpretation ofσ . Formally,
for every typeτ , let us inductively define([τ],≺τ) by

[τ → σ] = { f ∈ [τ]→ [σ] | ∀v,w∈ [τ] : v≺τ w⇒ f (v)≺σ f (w)}

∀ f ,g∈ [τ → σ] : f ≺τ→σ g iff ∀v∈ [τ] : f (v)≺σ g(v)

with [o] =N and≺o =<. We define then the binary operation+τ : [τ]×N→ [τ] as

n+o k= n+k f +[τ→σ] k= (λv∈ [τ]. f (v)+σ k)

for n,k∈N and f ∈ [τ → σ]. It is readily seen thatv+τ 0= v, that(v+τ k)+h= v+τ +(k+h), and that
k< h impliesv+τ k≺ v+τ h, for everyv∈ [τ] andk,h∈ N.

For every typeτ , let us defineτ∗ ∈ [τ] andτ∗ : [τ]→ N by

o∗ = 0 (τ → σ)∗ = (λv∈ [τ].σ∗+σ τ∗(v))

o∗(n) = n (τ → σ)∗(f) = σ ∗(f (τ∗))

for n∈N and f ∈ [τ → σ]. By induction, we can see thatτ∗ is increasing (that is,τ∗(v)< τ∗(w), for all
v,w∈ [τ] s.t.v≺τ w).

A valuationis a functionφ associating an element of[τ] to every variablex : τ . Given a valuationφ ,
a variablex : τ , and a valuev∈ [τ], we shall denote byφ [x 7→ v] a new valuation s.t.φ [x 7→ v](x) = v, and
φ [x 7→ v](y) = φ(y), wheny 6= x.

Given a valuationφ , any typedλ -term tτ can be interpreted as an element[t]φ ∈ [τ] by application
of the following inductive definition

[x : τ]φ = φ(x)+τ 1

[λx.t : τ → σ]φ = λv∈ [τ].[t]φ [x7→v]+σ (τ∗(v)+1)

[sτ→σ t : σ]φ = [s : τ → σ]φ [t : σ]φ

For every valuationφ , we can also define the measureµφ : Λ→ → N, by µφ (tτ) = τ∗[t]φ .

Remark 1 The only difference w.r.t. the usual interpretation used inthe proof of strong normalisation
of β -reduction is the interpretation of variables. Indeed, oneusually takes[x : τ]φ = φ(x) (see [6]). With
this choice, however, we would get[t] = [s] whent ⊸ s. ✷

S. Guerrini 53

Lemma 3 For every valuationφ , every C[xτ] : σ , and every t: τ , we have that

1. [C[xτ]]φ [x7→[t]φ] ≺σ [C[t]]φ ;

2. if t →a s, then[s]φ ≺σ [t]φ andµφ (s) < µφ (t). ✷

By the previous lemma, and the fact that there is at least a valuation (for instance, the valuationφ0

defined byφ0(xτ) = τ∗), we can eventually get the strong normalisation result.

Theorem 2 The rewriting systems→a, ⊸, →βd
, →β , →h, and⊸h are strongly normalising. ✷

7 Conclusions

In the paper we have analysed linearβ -reduction in terms of a notion of evaluation context, and wehave
seen how a simple adaptation of the semantical proof of strong normalisation for the simply typedλ -
calculus allows to prove the same result for the linear case.The proof is surprisingly simple and its idea
might be adapted to prove strong normalisations of otherλ -calculi in which theβ -rule is decomposed in
more elementary steps, as for instance in the case of explicit substitutionλ -calculi.

References

[1] Beniamino Accattoli (2013):Linear Logic and Strong Normalization. In Femke van Raamsdonk, editor:
24th International Conference on Rewriting Techniques andApplications (RTA 2013), LIPIcs 21, Schloss
Dagstuhl–Leibniz-Zentrumfuer Informatik, Dagstuhl, Germany, pp. 39–54, doi:10.4230/LIPIcs.RTA.2013.39.

[2] Beniamino Accattoli & Delia Kesner (2010):The Structuralλ -Calculus. In Anuj Dawar & Hel-
mut Veith, editors: Computer Science Logic, LNCS 6247, Springer Berlin Heidelberg, pp. 381–395,
doi:10.1007/978-3-642-15205-430.

[3] Vincent Danos & Laurent Regnier (2004):Head Linear Reduction. Http://iml.univ-mrs.fr/ reg-
nier/articles/pam.ps.gz.

[4] R. O. Gandy (1980):Proofs of strong normalisation. In J. P. Seldin & J. R. Hindley, editors:To H. B. Curry:
Essays in Combinatory Logic, Lambda Calculus, and Formalism, Academic Press, pp. 457–477.

[5] Stefano Guerrini & Giulio Pellitta (2016):Dissecting the PAM. Submitted.

[6] Alexandre Miquel:A combinatorial proof of strong normalisation for the simply typed -calculus. Unpublished
draft.

[7] Pierre-Marie Pédrot & Alexis Saurin (2016):Classical By-Need. In Peter Thiemann, editor:Programming
Languages and Systems. 25th European Symposium on Programming, ESOP 2016, LNCS9632, Springer, pp.
616–643, doi:10.1007/978-3-662-49498-124.

[8] Laurent Regnier (1994):Uneéquivalence sur les lambda-termes. Theoretical Computer Science126(2), pp.
281–292, doi:10.1016/0304-3975(94)90012-4.

http://dx.doi.org/10.4230/LIPIcs.RTA.2013.39
http://dx.doi.org/10.1007/978-3-642-15205-4_30
http://dx.doi.org/10.1007/978-3-662-49498-1_24
http://dx.doi.org/10.1016/0304-3975(94)90012-4

	1 Introduction
	2 Preliminaries
	2.1 Head reduction
	2.2 Head contexts
	2.3 Spine

	3 -reduction at a distance
	3.1 Environment contexts
	3.2 Primary redexes and -contraction at a distance

	4 Spine permutation equivalence of -terms
	4.1 Surface E-equivalence
	4.2 Canonical -terms
	4.3 E-equivalence
	4.4 -equivalence

	5 Linear head reduction
	5.1 Linear reduction
	5.2 Linear head -rule

	6 Strong normalisation
	7 Conclusions

