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The Krivine machine is an abstract machine implementindittear head reduction of-calculus.
Ehrhard and Regnier gave a resource sensitive versiommetuthe annotated form of A-term
accounting for the resources used by the linear head reductihese annotations take the form of
terms in the resourck-calculus.

We generalize this resource-driven Krivine machine to tieeof the algebraik-calculus. The
latter is an extension of the pufecalculus allowing for the linear combination afterms with
coefficients taken from a semiring. Our machine associafeseamM and a resource annotation
with a scalara in the semiring describing some quantitative propertietheflinear head reduction
of M.

In the particular case of non-negative real numbers andgefoahic term$/ representing prob-
ability distributions, the coefficientr gives the probability that the linear head reduction atyual
uses exactly the resources annotatetl. by the general case, we prove that the coefficeectin be
recovered from the coefficient bin the Taylor expansion d¥l and from the normal form df

1 Introduction

The Krivine machine is an abstract machine implementindittear head reduction [1] on the puke
calculus. Ehrhard and Regnier gave a resource sensitig@uel3] returning the annotated form of a
A-term accounting for the resources used by the linear hehgttien. These annotations take the form
of terms in the resourck-calculus. As an example, the ordinary teffi x.(x)x)A x.x)co which reduces
to the constanty is annotated by the following resource te¢ti x.(x)x') (Ax.x)2)c3. This resource term
informs us thaf x.x is used twice during the reduction ar@ndcy are used once.

We generalize this resource-driven Krivine machine to geeof the algebrailc—calculu. The lat-
ter is an extension of the pufecalculus allowing for the linear combination dfterms with coefficients
taken from a semiring. Some properties enjoyed by the orglihecalculus do not hold anymore in the
case of the algebrait-calculus and some results become nontrivial. Our maclsseciates a -term
M and a resource annotatibmith a scalara in the semiring describing some quantitative properties of
the linear head reduction ®. We will only consider terms reducing to a multiple of a camstfor the
sake of convenience.

In the particular case of non-negative real numbers androfs® representing probability distri-
butions, the coefficientr gives the probability that the linear head reduction attuades exactly the
resources annotated byln the general case, we prove that the coefficeeictin be recovered from the
coefficient oft in the Taylor expansion df1 and from the normal form of. A more detailed report
concerning this work can be foundiattp://allioux.iiens.net/taylor/report.pdf.

1This machine has been implemented and is available onlinetat: //allioux.iiens.net/taylor/.
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Algebraic equalities of th8-module

M+0=49gM (M+N)+P=agM+ (N+P) M+N =49 N+M
a(M+N)=agaM+aN aM+BM =y4 (0 + )M a(BM) =4 (a )M
Linear properties

AX.(M+N) =ag AXM+AX.N AX.(aM) =ag 0 (AX.M) AX.0=440
(O)M =440 (aM)N =z4 a(M)N (M+N)P =4 (M)P+(N)P

Table 1: Algebraic equalities of the algebraiecalculus

2 Algebraic lambda calculus

The algebraicA -calculus is an extension of the pukecalculus allowing for the linear combination of
A-terms. More precisely, we endow it with a structure of f&fihodule wheres is a semiring. We shall
follow the presentation of the algebraiccalculus given in[[5].

2.1 Grammar

Let x be a variable in/, the set of variables, and let be a scalar itf. The grammar of the algebraic
A-calculus is the following:

NAs MN:=x|AXxM | (M)N|aM |M+N|O 1)

We denote=,4 the equivalence relation described in Tdble 1 makiggnto a leftS-module and pro-
viding linear properties to terms. We consider the term$iefquotient sef\s/ =aiq Up to a-conversion
and we call thenalgebraic termsWe define free variables amd-conversion as iri [5].

2.2 Algebraic states

The behaviour of the Krivine machine is defined on some sirastwe callstateswith which we can
associate a unigue algebraic term rather than on algelmantstdirectly. A state is a snapshot of the
abstract machine at a given time and represents the dmseftauniqueA -term.

Algebraic environment An algebraic environment is a finite partial functi@mapping variables to
closures. We introduce the notatiéy_. to refer to the environment which behaves likgor
variables other thar and which mapsto I .

Algebraic closure An algebraic closuré€ is a pair(M,E) composed of an algebraic tefsh € Ag and
of an environmenk such that FYM) C Dom(E) where F(M) denotes the free variables of
and Don{E) denotes the domain &.

Algebraic state An algebraic state is a nonempty stack of closures. We chioatenote states as triples
(M,E, M) where(M,E) is the first closure of the stack aftis the stack of the remaining closures.
Indeed, our Krivine machine implementing the linear heatliction, we reduce according to the
structure of the first closure and we give it a special statfs.refer to the set of the algebraic
states by (As).
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The intuition behind algebraic states can be made exploitdfining the function T.(As) — As
which given an algebraic state returns its unique assatcatgbraic term.

Given any algebraic closuf®, E) and any stack of algebraic closuiies .. .,I", with n> 0, we first
define T on closures and then extend it to states as follows:

T(M,E) = M[T(E(X))/Xxcpom(e)
T(M,E,(T1,...,Tn)) = (.. (T(M,E))T(F1)...)T(Tn)

2.3 Krivine machine

In this particular section the semirifigis complete — its sum is infinitary.

We give a description of the Krivine machine as the lilditof the sequencéKn)ney defined by
induction on(n,M) lexicographically ordered whermis a non-negative integer aM is an algebraic
term. The induction om turns the reduction df1 into a finite process even for non-normalizing terms.
We also enrich the grammar of the algebraicalculus with the constamy as we restrict our study to
closed terms reducing to this constant.

e Ko(M,E,M) =0,

Kn+1(CO7 E 0) = COI

Knt1(X, E, M) = Kn(E(x),MN) if xe Dom(E),

Knr1(AXM,E[T i M) = Kp(M, Exr, M) assuming ¢ Dom(E),
Knr1((MINLE, M) = Ka(M,E, (NLE) :: ).

These rules, excluding the first two ones, are the ones of tigghal Krivine machine. As the
algebraicA -calculus is just an extension of the ordinancalculus, it suffices to add the two following
rules to the description of the Krivine machine to handle it:

hd Kn+l(aM7E7n) = aKn+1(M>E>n)’
L4 Kn-l—l(M + NaEan) = Kn+1(M7E7n) + Kn+1(N7E7n)-

Finally we setK = lim,_c Kp.

3 Resource lambda calculus

We recall the syntax and the reduction of the resodramlculus which has been definedlin [4]. Indeed,
we will define the Taylor expansion of an algebraic term imigiof a sum of resource terms.

3.1 Grammar

The resourca -calculus shares its syntax with the ordinancalculus with the exception that the appli-
cation takes multisets of terms as argument. We use thepincdtive notation to denote multisets so the
multiplicative unit 1 is the empty multiset. For exampfé is the multiset formed of two occurrences of
sand one occurrence bf Multisets are commutative. The multiset unionSHNndT is denotedST. The
multiplicity of an element in a multisetT is given byT (t). The support off, denoted sup{ ), is the
set of elements of whose multiplicity is nonzero.
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The grammar osimple termsn the resourcé -calculus is:
A:stusi=x|Axt| (t)S (2)

wherex,y,--- € ¥, the set of variables and whe8ds a finite multiset of simple terms. We denote
the set of simple term& and we refer to its elements using lower case letdrs... The set of finite
multisets of simple terms is denotéd. We call its elements simplgoly-terms and we refer to them
using upper case lette®T,.... When a term can either be a simple term or a simple poly-term we say
itisin AY) =AuUA"

When denoting an application, we use the Krivine notatiofictviive recall: for any simple term
and any simple poly-termS,...,S,, we denote the applicatiofi.. (t)S; ...)S, by the simplified form
tHS...S.

The moduleS(A(!)> is the set of linear combinations of simple (poly-)termshacoefficients in
S. We call its elements (poly-)terms in oppositionsionple(poly-)terms which are not part of a linear
combination. These combinations can not be expressed aythax of the resourck-calculus contrarily
to the algebraic -calculus. We refer to (poly-)terms using the letter§.7,.... We denote¥s the
coefficient of the (poly-)ternsin .. Finally we extend the grammar of the resouicealculus to all
(poly-)terms by multilinearity so that x.(t + u) = Axt+Ax.u, (S+t)T = (ST + ({)T and(s+1t)T =
ST+1T.

3.2 Linear substitution and reduction

The reduction of the resource-calculus is based on a particular notion of linear suldstitu What
distinguishes linear substitutions from classical stsbins is that, in the former case, substituted terms
have to be used once and only once whereas this restrictesrda apply in the latter case.

For a variablecand a terrs, we define degs) to be the number of occurrencesxah sand we call
it the degree ix of s.

Let Sbe the resource term obtained from a resource tdignrenaming its different occurrencesyof
to X1,..., X%, with n=deg(s). §is such that for all € [1,n], deg, (§) = 1 ands= §X/X1,...,Xn].

Letsbe a simple term and I&t. . . t, be any poly-term withn being a non-negative integer, the linear
substitution ofsbyt; .. .t, is defined as follows:

Z §[tf(1)/X1,...,tf(n)/Xn] if degx(s) =N
O(Sty...tg) ={ f&an (3)

0eS(Q) if deg,(s) #n

with G" being the group of permutations on the $&f...,n}. This construction can be extended to
simple (poly-)terms.

We extend this notation to the linear substitution of sevesaables. For all poly-term3y,..., T,
with n being a non-negative integer,

axl Xn(S,Tl,,Tn) :axn(axl(S,Tl),,Tn) (4)

This substitution does not depend on the order of the iteérsuibstitutions as the variablgsg ..., X
are pairwise distincts.

We derive thg3-reduction relation for the resourdecalculus from this linear substitution. A redex
in the resourca -calculus is of the form{Ax.s)T and reduces as followgAx.s)T —p 0x(s, T).
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We extend this relation t8(A") x S(A")) by defining it as being the least relation closed under the
following rules, assuming —p .~ with s€ A and.”” € S(A):
(T = ()T (WST —p ().sT AX.S—g AX..S stu—g .Y +uU

This relation is confluent and strongly normalizing fo= N as proved in[[2] and we derive NF, the
unique normalization mali(A®)) — N(AL), wheren, stands for the set of normal simple terms.

3.3 Resource states

Similarly to the case of the algebralecalculus, we define resource closures, resource envinaisraed
resource states in a mutually recursive fashion.

Resource environmentA resource environment is a total function from the set ofaldes ¥ to re-
source closuress is the empty environment mapping any variablefirto the empty closure 1.
We use the notatiofx — c| to refer to the environment which maps the variable the closure
c and all the other variables to the closure 1. Given two erwitentse’ and€”’, we define their
pointwise concatenatiogl€’ such that for all variables, €€’ (x) = €(x)€’ ().

Resource closureA resource closure is defined as a paie (T,e) whereT is a simple poly-term and
eis a resource environment. A resource closure is said todmeegltary when its multisét is a
singleton. The empty closure is=1(1,ey). We use letters, c,,... for general resource closures
andy, y1, ... for elementary resource closures.

Resource stateA resource state is a triplg, e, 1) where(t,e) is an elementary resource closure and
wherertis a stack of resource closures. We denote the set of resstates (A).

4 Quantitative Krivine machine and Taylor expansion

4.1 Quantitative Krivine machine

In turn we define our quantitative Krivine machirgk(AM ) K@ which draws its inspiration from the one
described in[[3]. This definition is the main contributiontbis paper. It is important to note that for the
sake of convenience we will only consider closed algeberims$ which reduce to the constapgt From
now on, we therefore enrich the syntax of the resouramlculus with this same constam

The following machine computes a coefficient associatel antalgebraic state and a resource state.
We remind that an algebraic state corresponds to a umigtegm and a resource state corresponds to
a unique sum of resource terms. Therefore, in the case dbraligeterms whose sums correspond to
probability distributions, this coefficient will be the suphthe probabilities that each resource term in
the sum describe a resource usage of the reduction of thieralgéerm tocy.

Definition 4.1. (Quantitative Krivine machine) The quantitative Krivineaghine is defined as a matrix
K € §7 ()< It is defined by induction on the paisize(t, e, ), size(M, E, M) lexicographically
ordered K(M,E, M)« ¢ n denotes the coefficient ik associated with the paf(M,E, M), (t, e, m)).

° K(Co, E’m)(co.eo,@) =1,

o K(X,E,M)xem = K(E(X),M)ex),n if x€ Dom(E) andeis such thavy # x,e(y) = 1,

o K(AXM,E,T M) ixuecin = KM, Exosr, M) e,.c,m if &%) =1 and where w.l.o.g ¢ Dom(E),

2This machine has been implemented and is available onlinetat: //allioux.iiens.net/taylor/.
3The size of a term is its number of symbols.
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o K(M)N.E,M)(tyTem =3 (¢.¢) KIM,E,(N,E) 1 ) e (Ter):m)»
del—e

The major difference with the case of the ordinargalculus appears in the following two cases:
e K(aM,E,M)em = aK(M,E, M)t em),
e KIM+N,E,M)em =KM,E,M)ten +KN,EMiten,
e OtherwiseK(M,E, M) em = 0.
As we do not want to deal with states directly, we hide theméfinihgK which takes terms instead
of states.
Definition 4.2. For any algebraic terivl and any resource tertn

K(M); = K(M,0,0) o0 (5)

This machine is defined for all semirings and in the particoése ofQ* computes a coefficient we
shall characterize in Theordm #.5.

We shall give some examples of execution. Bet AX.(X)X,] = AxX T = Axyx andF = Axy.y.
Consider the two exampléga)lco and(A)(pl +qF)co, wherep,q € S.

({(AX.()X) (Ax.X)?)co +— 1
-—0

K((8)Ico) :{

Table[2 exposes the succession of states taken by the madhicie are associated with a nonzero
coefficient during the execution of this example. In facthiis very case all the states have the coefficient
1 in K. We shall detail the transition from th&4o the 3" state as this is the only one which involves a
sum with several summands even though only one of these sndsgnonzero.

Let S; be the algebraic staféx)x, {x+— (Ax.x,0)},[(co,0)]) and letS, be the algebraic state, {x —
(AXX,0)}, [(X,{X— (AXX,0)}); (Co,D)]).

Then the transition from thé'to the 3" state in Tabl€]2 given by Definitidn 4.1 is:

K(S1) (% {0+ (Axx02 20} [(co.80)]) = K (S2) (x {303 (Axxen) (6 (A xx,e0) })i(Gor0)])
+ K(S2) (x {51, [ (3= (Ax X2 00)}); (Co.60)])
+ K(S2) (x (A% %12 00) 1[0 D0 1) (co,0)])

But bothK(S2) i -1, fox e (1002 e0)}i(co.e0)]) ANAK(S2) s (4202 0) (x. (2-1)i(co.0))) @TE €U
to 0 according to Definition 411.

That is why we only show the pair of state%, (X, {x+— (Ax.X,€) }, [(X, {X— (AXX,€)}); (Co,€0)]))
in Table2.

We will not give the full breakdown of the execution of the e for the next example.

(AX(X)X)12)co > p?
K((A)(pI +0aF)co) = § (AX- () 1)F)co— g
-—0
There are two non-deterministic reductions(af(pl + qF)co which lead tocy. The first one with

multiplicity p? and the second one with multiplicity which correspond to the two non-deterministic
choices induced by the supi + gF.
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Algebraic state Resource state
Term Env. Stack Term Env. Stack
(A% (9x)AxX)co 0 [ (%% (Ax%)%)co & [
AX(X)X)AXX 0 [(©.0)] X0 (Axx) & [(Co. )]
AX. (X)X 0 [(Axx,0); (co,0)] AX (X)X Y [((Ax.x)%, &p); (Co, €0)]
X X (Axx0)} (CX) x x (X% e0)) [(Co, )]
X {x— (Axx,0)} [(x,{x— (Axx,0)}); (Co,0)] X {X— (AxX &)} [(x,{x— (Ax.x,€0)}); (Co,€0)]
AXX 0 (% {x— (Axx,0)}); (co,0)] AX.X =) [(x,{x— (Ax.x,€0)}); (Co,€0)]
X X (6 {x— (Axx 0)})} (c0,0) X X (x {x— (Axx.e)})} (S0, €0)
X {x— (Axx,0)} (Co,0) X {Xx— (AxX )} (o, &)
AXX 0 (co,0) AXX =) (co,€n)
X x> (c0.0)} [ X x> (co. )} [
C o l e & [

Table 2: Breakdown of the execution of the Krivine machine

4.2 Taylor expansion

In this setting we choose to restrigtthe semiring over which is defined our algebraicalculus, to any
semiring having a multiplicative inverse such@s. Taylor expanding an algebraic term then comes
down to expanding its applications according to the follugviormula:

(P =5 LP)Q" ©

whereM* denotes the Taylor expansion of the algebraic thtrand whereQ™" is the sum of multisets
of cardinalityn whose elements are in the support@fassociated with a coefficient we will not detail
here but which can be found in the report.

We justify the terminology “Taylor expansion” by pointingitothat in analysis the Taylor series of
an infinitely differentiable functiorf at 0 iy (W (0)x". This is, indeed, quite similar to the form
of the Taylor expansion of the application in thecalculus. See [2] for more details.

This operation can alternatively be defined by means of @iefitis defined inductively on algebraic
and resource terms. To this effect, we recall the coeffigiedescribed in[[4] accounting for the intrinsic
contribution of a resource tertrto its coefficient in the Taylor expansion of an algebraiotéf and we
introduce the weightss which account for the dependanceMhof this coefficient.

Definition 4.3. The multiplicity m of a resource termh and the weighiv of a resource ternh in an
algebraic ternM are inductively defined as follows:

m(x) =1 w(x,x) =1
m(Ax.t) = m(t) W(AXt,AXM) = w(t,M)
m((£)T) = m(t) [T ®)!m) " w((t)T, (M)N) = w(t,M) []w(t,N)"®

tesuppT) tesupy(T)
w(t,aM) = aw(t,M)
w(t,M+N) =w(t,M)+w(t,N)

The coefficientm(t) corresponds to the number of permutations of variable oenoes oft pre-
serving the name of the variables and letting the termchanged. Finally, contrary to the case of the
ordinaryA-calculus, the multiplicity of in the Taylor expansion d¥l does not only depend drbut also
depends oM. The weightsw account for this phenomenon and represent one of the cotitrils of
this paper.



A. Allioux 31

We shall give some examples to enlighten the reader abasg twefficients.

m((Axx)((y)2)?) = m(Axx)2!m((y)Z*)?
= m(x)2(m(y)3!m(2)°)?
=2 (31)?
=2%x36=72
As for the weights, their use is motivated by terms of the fdfimt N andaM. Otherwise, if a term
M is a pureA-term and not an algebraic term then for dny A, w(t,M) is equal to 1 it € M* and 0

otherwise.
Consider the following example:

W((X)X, (%) (2x+Y) + (X) (X+2)) = W((X)X, () (2x+Y)) +W((X)x, (X) (X +2)
= W(X, X)W(X, 2X+ Y)3 + w(x, x)w(x, x+ 2)3
= W(X, X) (2W(X, X) +W(X,y))2 +W(X, X) (W(X, X) +W(x,2))*
=2°+1=9

Therefore, there are 9 ways to deripex® from () (2x+y) + (X) (X + 2).
Finally, the expression of the Taylor expansion can altarely be given by the following definition:

Definition 4.4. (Taylor expansion) Given an algebraic tel its Taylor expansion is:

t,M
& mb)
It is easy to show this definition leads to an inductive dgéinibf the Taylor expansion on the shape
of algebraic terms which is compatible with Equatidon 6. Thistivates our terminology.

4.3 Connection between the gKAM and the Taylor expansion

The following theorem, which is one of the main contribus@f this paper, along with the definition of
theqKAM , links the behaviour of thgk AM with the Taylor expansion of algebraic terms.

Theorem 4.5. For all algebraic terms Me Ag, for all resource terms € A and provided tha$ has a
multiplicative inverse,

~

K(M)t = M{NF(t)g (8)
where M is the coefficient of t in MandNF(t)c, is the coefficient ofcin NF(t).

This theorem is a particular case of a more general resulyiagpto any algebraic state and any
resource state. It can be found in the report.

4.4 Computational complexity

At first, it seemed that Theorefn 4.5 informed us of an efficigay to computek(M,0,0). Indeed,
the Krivine machine reducdd to compute a subset of its Taylor expansion whereas the iequg)
gave hope we could obtain the same result more efficientihesight-hand side does not involve the
reduction ofM. Although M;* can be computed statically by means of the coefficiem&ndw, it is
folklore that determining Nf)c, is NP-complete
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