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Session types capture precise protocol structure in concurrent programming, but do not specify prop-
erties of the exchanged values beyond their basic type. Refinement types are a form of dependent
types that can address this limitation, combining types with logical formulae that may refer to pro-
gram values and can constrain types using arbitrary predicates. We present a pi calculus with assume
and assert operations, typed using a session discipline that incorporates refinement formulae written
in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement
types, together with the well established benefits of linearity, allows very fine-grained specifications
of communication protocols in which refinement formulae aretreated as logical resources rather than
persistent truths.

1 Introduction

Session types[9] are a practical and expressive type-based verification methodology for concurrent
programming, and have proved excellent in modeling typed computations predominantly consisting of
client-server message passing. As a simple example, assigning the type !int.?bool.end to a communica-
tion channel means that a value of typeint will be sent (!int), then abool will be received (?bool), and
the channel cannot be used any further. Communication soundness is ensured when the “other end” of
the communication channel is used in a complementary (or dual) way: !int.?bool.end= ?int.!bool.end.

Refinement types, as defined for ML [6], are a form of dependent types that allowthe programmer to
attach formulae to types, thus narrowing down the set of values inhabiting a given type. For instance, the
type{x : int |0 ≤ x∧ x≤ 10} describes integer values in the range 0..10. Such fine-grained types have
met increasing attention, with several notable works on type checking for functional programming, such
as hybrid type checking [5], liquid types [16], or the blame calculus [19]. In the context of this work, let
us note that refinements for ML written in Intuitionistic Linear Logic have been introduced in [11]. A
detailed overview is in [8].

With regard to refinement formulae, the most common approachis to use classical first-order logic,
which is certainly enough for many examples, but cannot provide a satisfactory treatment of refine-
ments on resources. In particular, it does not allow one to control finer computational properties: a type
{x: ccard |use(x)} may mean that we can use a credit card, but it does not mandate that we can do so
just once. To achieve such finer distinctions between types, we specify refinements in a fragment of
multiplicative linear logic(MLL) [7], most notably without exponentials or additives.

Building on previous work on session types [18], we combine sessions and linear refinements to ob-
tain an original system oflinearly refined session types, noting that until now neither linear nor classical
refinements have been studied in the context of session types, according to our knowledge. The result
is a system in which typed message exchange, refinement, and resources are combined, providing for a
very fine control ofprocess behaviour. We show that well-typed programs do not get stuck when trying
to verify logical properties.
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The rest of the paper is structured as follows. Section 2 introduces the language and its operational
semantics, as well as the running example. Section 3 describes the typing system and Section 4 the main
results. We conclude the paper with related work and future directions.

2 The pi calculus with assume and assert

Consider a simple online Store that accepts a product request from a Client, and interacts with a Bank
to perform the payment. The Store and the Client share a private channel in which the Client sends the
product p, the credit card number c and the price it is willingto pay,e100. The Store acts dually by
accepting the product, the credit card, and the amount to be charged, and by immediately charging, using
Charge(c,a), the amounta to the credit cardc.

Client = s1!p.s1!c.s1!100.0 Store= s2?p.s2?c.s2?a.Charge(c,a)

In the code above,s1!p means to send the value p on channel endpoints1, dually s2?p means to read
a value froms2 binding it to variablep, and0 denotes the terminated process. Value p should not be
confused with variablep. In our language processes read and write within sessions byusing distinct
variables to identify the two ends of the channel,s1 ands2 in this case.

In order to charge the Client, the Store calls the Bank service, and sends the credit card number and
the amount to be charged.

Bank = ∗r1?y.y?c.y?a.0 Charge(c,a) = (new b1b2)(r2!b2.b1!c.b1!a.0)

In the Bank code,∗ prefixes a replicated process that can be used an unbounded number of times, as
one would expect in this example. TheCharge process creates a new channel with the(new b1b2)
constructor, whose purpose is to establish a private, bidirectional channel with the bank. To set up the
session, the channel endpointb2 is passed to the bank and the other,b1, is retained locally for interaction
with the bank. Note that the language is explicitly typed, but for brevity we ignore the type annotations
in our examples.

The overall system is the parallel composition of the three processes connected by two channels:
r1r2, the public Bank-Store channel, ands1s2, the private Client-Store channel.

(new r1r2)(new s1s2)(Client | Store | Bank)

The syntax of processes is presented in Figure 1. The linear nature of sessions, for example in the
sessions1s2 between Client and Store, can ensure some security properties. By enriching such a calculus
with cryptography primitives, more properties can be captured, such as authentication requirements and
privacy of communication (e.g. [2]). However, even if such properties are satisfied the system can contain
unintended uses of given permissions by authorized processes. In the above example, the Store can
wrongly compute the amount to be charged, which will be detected only later by the Client.

Store1 = s2?p.s2?c.s2?a.Charge(c,a+10)

A more subtle situation is when two threads try to charge the Client for the same purchase.

Store2 = s2?p.s2?c.s2?a.(Charge(c,a) | Charge(c,a))

Our language enriches pi calculus withassume andassert commands, using formulaeϕ built over a
set of uninterpreted predicatesA,A1,A2, . . ., the linear logic connective of tensor,⊗, and its identity,1.
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ϕ ::= Formulae: P ::= Processes:

A(v1, . . . ,vn) predicate onv1, . . . ,vn x!v.P output

ϕ ⊗ϕ joining x?x.P input

1 identity P | P parallel composition

∗P replication

v ::= Values: 0 inaction

x variable (new xx: T)P scope restriction

() unit (assume ϕ)P assume

assert ϕ .P assert

Figure 1: The syntax of processes

The predicates may refer to channel names or base-values such as integers and strings, which are rep-
resented here by the unit value,(); therefore, refinements form dependent types. Enhanced with these
commands, the Client may assume acharge(c,100) capability on the values sent to the Store. And the
Bank, in turn, will assert that exact capability.

Client1 = (assume charge(c,100))Client Bank1 = ∗r1?y.y?c.y?a.assert charge(c,a).0

In order to explain the interplay betweenassume andassert, we turn our attention to the operational se-
mantics of the language. We say that variableyoccursboundin processP within x?y.P and(new xy: T)P,
in typeU within q?y: T.U andq!y: T.U , and in formulaϕ within {y: T|ϕ}. Also, variablex occurs
bound in(new xy: T)P. A variable that occurs in a non-bound position within a process, type, or formula
is said to befree. The sets of free variables in a processP, a typeT or a formulaϕ , denoted by fv(P),
fv(T) and fv(ϕ), are defined accordingly and so is alpha-conversion. We workup to alpha-conversion
and follow Barendregt’s variable convention, whereby all variables in binding occurrences in any math-
ematical context are pairwise distinct and distinct from the free variables.

The standard capture-freesubstitutionof variablexby valuev in processP, a typeT or a formulaϕ , is
denoted byP[v/x], ϕ [v/x] andT[v/x]. This follows the standard treatment for dependent session/channel
types [12, 20]. For example, the substitution((new xy: T)P)[v/z] is defined as(new xy: T[v/z])P[v/z].

From the operational semantics we factor out aheating relationmeant to simplify the statement of
the reduction relation, by structurally adjusting processes. Both relations, heating and reduction, are
defined in Figure 2. We start with reduction. The relation includes the rule for communication, R-COM,
adapted from [18] to handle dependent refinements, and the usual rules for reduction underneath parallel
composition and restriction, R-PAR, R-RES, and under heating with R-HEAT. It also includes two
novelties: an axiom R-ASSERTfor cutting assertions, and a rule that allows reduction under assumptions,
R-ASSUME. The correspondence of R-ASSERTwith the logical cut is evident, noting that a choice has
been made for assumptions to define a scope and for the cut to take place against enclosed assertions. The
alternative would be for the cut to take place between anassume and anassert in parallel, but at the typing
level this would require a form of negation which would effectively identify assumptions and assertions;
instead of assertingϕ one could assumeϕ⊥ and the two possibilities would be indistinguishable at the
typing environment level. As a result, two assumes could cancel out each other, and similarly for two
asserts, thus compromising the intended usage of assertions.
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Heating relation, P⇛ Q (P≡ Q meansP⇛ Q andQ⇛ P)

P | Q≡ Q | P (P | Q) | R≡ P | (Q | R) P | 0≡ P ∗P≡ P | ∗P (new xy: T)0≡ 0

(new xy: T)(P | Q)≡ (new xy: T)P | Q (new wz: T)(new xy: U)P≡ (new xy: U)(new wz: T)P

(new xy: T)(assume ϕ)P≡ (assume ϕ)(new xy: T)P (assume 1)P≡ P assert 1.P≡ P

(assume ϕ1)(assume ϕ2)P≡ (assume ϕ2)(assume ϕ1)P assert ϕ1.assert ϕ2.P≡ assert ϕ2.assert ϕ1.P

assert ϕ1⊗ϕ2.P≡ assert ϕ1.assert ϕ2.P (assume ϕ1⊗ϕ2)P≡ (assume ϕ1)(assume ϕ2)P

(assume ϕ)P | Q⇛ (assume ϕ)(P | Q) (new xy: T)P≡ (new xy: U)P if T ≡U

Reduction relation, P→ Q

(new xy: (q!w: T.U))(x!v.P | y?z.Q | R) → (new xy: U [v/w])(P | Q[v/z] | R) (R-COM)

(assume ϕ)(assert ϕ .P | Q) → P | Q (R-ASSERT)

P → Q
(assume ϕ)P → (assume ϕ)Q

P → Q
(new xy: T)P → (new xy: T)Q

(R-ASSUME, R-RES)

P → Q
P | R → Q | R

P⇛ P′ P′ → Q′ Q′
⇛ Q

P → Q
(R-PAR, R-HEAT)

Figure 2: Operational semantics

On what concerns heating, the rules in the first two lines are standard in the pi calculus, those in the
following three lines manipulateassume andassert processes, as well as linear logic formulae, in the ex-
pected way. The last line introduces the only truly directional rule, allowing the scope of an assumption
to encompass another process. The reason why the rule is not bidirectional is because we want to keep as-
sertions in the scope of assumptions; take for example a processP of the form(assume A)(0 | assert A.0).
We have thatP reduces in one step to0, but (assume A)0 | assert A.0 is stuck. With assume, and un-
like scope extrusion, i.e.,(new xy)P | Q≡ (new xy)(P | Q), we do not have bound variables to control the
application of the rule. The last rule in the figure allows to expand a recursive type, paving the way appli-
cations of rule R-COM. Notice that we do not mention the usual sideconditions, e.g., thatx,y /∈ fv (Q)
in the scope extrusion rule, since the variable convention can be assumed to provide this guarantee.

In the example, by heating, the(assume charge(c,100)) can be extended to encompass theStore
process, and then moved to a position before session creation (new s1s2) to allow the interaction between
the Client and the Store on channels1s2, via the R-COM rule.

(new s1s2)(Client1 | Store)⇛

(assume charge(c,100))(new s1s2)(s1!p.s1!c.s1!100.0 | s2?p.s2?c.s2?a.Charge(c,a))→→→

(assume charge(c,100))Charge(c,100)

Next, the process is ready to perform the communication betweenBank1 andStore. Rule R-ASSERT

matches the assume with the assert, and the process is concluded.

(new r1r2)(assume charge(c,100))(Charge(c,100) | Bank1)≡

(assume charge(c,100))(new r1r2)(Charge(c,100) | r1?y.y?c.y?a.assert charge(c,a) | Bank1)→→→

assume charge(c,100)assert charge(c,100).0 | (new r1r2)Bank1 → (new r1r2)Bank1
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Clearly, if Store1 is used, the reduction will yield a process where the assumption and the assertion
do not match.

(new r1r2)(new s1s2)(Client | Store1 | Bank1)→ ··· →

assume charge(c,100)assert charge(c,110).0 | (new r1r2)Bank1 6→

In turn, if Store2 replacesStore1 in the above process, then we reach a situation where one assertion
is left unmatched.

(new r1r2)(new s1s2)(Client | Store2 | Bank1)→ ··· → assert charge(c,100).0 | (new r1r2)Bank1 6→

These two processes are stuck due to assume/assert problems— in both cases we find an assert for
which no corresponding assume exists in the enclosing scope— and will be identified as unsafe by the
typing system.

If somehow the client wants to be charged twice, then it canassume charge(c,100), twice in a row.
Alternatively it may utilise a more compact variant by usingjoining (tensor).

Client2 = (assume charge(c,100)⊗charge(c,100))s1!p.s1!c.s1!100.0

Then, by taking advantage of the heating rule that allows breaking the(⊗), as well as reduction under-
neath assumptions, we can easily see that:

(new r1r2)(new s1s2)(Client2 | Store2 | Bank1)→ ··· → (new r1r2)Bank1

We conclude this section by defining what we mean by a safe process. First we introduce the notion
of canonical processes. A process is in canonical form if it is of the form:

(new x1y1 : T1) · · · (new xkyk : Tk)(assume A1) · · · (assume Am)(P1 | · · · | Pn) with k,m≥ 0,n> 0

and everyPi is neitheranew, nor anassume nor a parallel composition. A simple induction on the struc-
ture of processes easily allows us to conclude that all processes can be heated to a process in canonical
form.

Then, we say that a processQ is safeif, for all processesP in the canonical form above such that
Q⇛ P and everyPi of the formassert Bi.Ri, there is a 1≤ j ≤ m such thatBi = A j . In other words, safe
processes do not get stuck at assertion points. The next section introduces a type assignment system that
guarantees that processes typable under unrestricted contexts are safe.

Notice that eachAi andBi are atomic formulae; if not, then the heating relation may “break” the
tensors (⊗) and eliminate the identities (1), so that in the end we may match assumptions on atomic
formulae against assertions on atomic formulae.

3 Typing system

The syntax of types is presented in Figure 3. Letproduct, ccard andnat be the types of the products sold
by the store, credit cards, and natural numbers respectively (all denoted byunit in the figure). The types
of the two endsr1r2 of the Client-Store channel, and also of the Bank-Store channel s1s2, are as follows.

s1 : lin!product.lin!ccard.lin!nat.end s2 : lin?product.lin?ccard.lin?nat.end

r1 : µα .un?(lin?ccard.lin?nat.end).α r2 : µα .un!(lin?ccard.lin?nat.end).α
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q ::= Qualifiers: q p qualified session

lin linear {x: T|ϕ} refinement

un unrestricted α type variable

p ::= Session types: µα .T recursive type

?x: T.T receive Γ ::= Contexts:

!x: T.T send · empty

T ::= Types: Γ,x: T type assumption

unit unit Γ,ϕ formula

end termination

Figure 3: The syntax of types and typing contexts

In types, as in processes, ! means output and ? means input,end denotes a channel on which no further
interaction is possible, and theµ construct is used to write recursive types. Qualifierslin andun are used
to control the number of threads holding references to the channel end: exactly one in thelin case, zero or
more for theun case. The Client-Store channel islin at all times, so that a third process cannot interfere in
the interaction. The Bank-Store channel isun at all times, so that multiple stores may connect to the bank.
Such aun channel is used to pass alin channel (of typelin?ccard.lin?nat.end), thus establishing a private
channel between the Bank and the Store. In our example, we assume that the private Client-Store channel
was created via a similar mechanism, based on some shared channel provided by the store. It should be
easy to see that the typelin!product.lin!ccard.lin!nat.end of the s1 end of the channel naturally describes
theClient’s interactions1!p.s1!c.s1!100.0, and that the typeun!(lin?ccard.lin?nat.end) . . . closely explains
theStore’s interactionr1?y.y?c.y?a. . .

The above typing context is correct for processClient | Store | Bank, but it remains so even if one
replacesStore by Store1 or by Store2, since in both of these cases the usage of the channels match the
prescribed behavior. Thus, traditional session types are not enough to control and discipline the use of
resources.

In order to incorporate logical information into session types, the syntax is augmented with logical
refinements,{x: T|ϕ}. Further, and in order for formulaeϕ to be able to refer to data appearing “previ-
ously” in types, we name the object of communication: in typeq?x: T.U we allow typeU to refer to the
value received before via variablex. Types can be refined with the exact same formulae used for assert-
ing and assuming in processes. For example, the types for channelss1 andr1 can be logically refined in
such a a way that the amountx to be charged is subject to “permission”charge(c,x), wherec denotes the
credit card number received in a previous communication.

s1 : lin!p: product.lin!c: ccard.lin!a: {x: nat|charge(c,x)}.end

r1 : µα .un?y: (lin?c: ccard.lin?a: {x: nat|charge(c,x)}.end).α

We will get back to our running example after introducing thetype system.
For recursive types, type variableα occurs bound in typeµα .T. Such types are required to be

contractive, i.e., containing no subexpression of the formµα1 . . .µαn.α1. We further require types not
to contain subexpressions of the formµα1 . . .µαn.{x: T | ϕ}, so that the only interesting recursive types
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The dual of a type, T = T

q?x: T.U = q!x: T.U q!x: T.U = q?x: T.U end = end µa.T = µa.T a= a

Unrestricted types and contexts, un(T) andun(Γ)

un(unit) un(end) un(un p)

un(·) un(Γ,x: T) if un(Γ) andun(T)

Well-formed formulae,Γ ⊢wf ϕ , well-formed types,Γ ⊢wf T, and well-formed contexts,⊢wf Γ

fv(ϕ)⊆ dom(Γ)
Γ ⊢wf ϕ

fv(T)⊆ dom(Γ)
Γ ⊢wf T

⊢wf ·
⊢wf Γ Γ ⊢wf T

⊢wf Γ,x : T
⊢wf Γ Γ ⊢wf ϕ

⊢wf Γ,ϕ

Figure 4: Type duality, unrestricted predicates, and well formed predicates

are session types. We leave the treatment of recursive refinement types for future work, where they may
represent the introduction of persistent formulae, i.e., the exponentials of linear logic. We again follow
Barendregt’s variable convention, this time on type variablesα .

Type equivalenceis a central ingredient in dependent type systems. Here we stick to a rather simple
notion. The equivalence relation of formulae is the smallest equivalence relation, denoted by≡, contain-
ing the axiomsϕ1⊗ϕ2 ≡ ϕ2⊗ϕ1 andϕ ⊗ 1≡ ϕ . For types, we include in the equivalence relation a
recursive typeµα .T and its unfoldingT[µα .T/α ], as well as refinement types that differ on equivalent
formulae only. The definition, omitted, is co-inductive.

Duality plays a central role in the theory of session types. The two ends of a channel are supposed
to be of a dual nature at certain points in typing derivations, namely at scope restriction(new xy: T)P.
Examples include the types for variabless1 ands2, as well as those for variablesr1 andr2 above. The
definition is in Figure 4. Duality is defined only for session types (input, output,end, and recursion); in
particular it is undefined for refinement types in very much the way as it is undefined forunit [18].

Typing contextsare defined in Figure 3 and include type assumptions for variables,x: T, as well as
formulaeϕ known to hold. The domain of a contextΓ, denoted dom(Γ), is defined as{x | x: T ∈ Γ}.

Types (and contexts) can be classified asunrestrictedor linear; we only need the first notion; the
definition is in Figure 4. Unrestricted types, denotedun(T), areunit, end andun p for all p. Unrestricted
contexts may contain unrestricted types only, in particular they cannot contain formulae (for these are
linear).

Formulae may contain program variables. Because types may include formulae, types may con-
tain free program variables. Formulae and types are well formed with respect to a context if their free
variables are in the domain of the context. Contexts containformulae and types. Formulae and types ap-
pearing in a context must be well formed with respect to the “initial” part of the context. The definitions
of well formed contexts is in Figure 4. In particular, our system does not include (implicitly or explicitly)
the exchange rule; contextx: unit,A(x) is well formed butA(x),x: unit not.

Central to our type system is thecontext splitoperator that distributes incoming formulae and linear
types to one of the output contexts while duplicating incoming unrestricted types to both the output
contexts. The definition, a straightforward extension of the one in [18] that can now handle formulae,
is in Figure 5. Formulae in contexts are handled very much like linear type assumptions: there is one
rule to “send” the formula (or type assumption) to the left context and one rule to send it to the right.
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Context split, Γ = Γ◦Γ

/0= /0◦ /0
Γ = Γ1◦Γ2 Γ1 ⊢wf lin p

Γ,x: lin p= (Γ1,x: lin p)◦Γ2

Γ = Γ1◦Γ2 Γ2 ⊢wf lin p
Γ,x: lin p= Γ1◦ (Γ2,x: lin p)

Γ = Γ1◦Γ2 un(T)
Γ,x: T = (Γ1,x: T)◦ (Γ2,x: T)

Γ = Γ1◦Γ2 Γ1 ⊢wf ϕ
Γ,ϕ = (Γ1,ϕ)◦Γ2

Γ = Γ1◦Γ2 Γ2 ⊢wf ϕ
Γ,ϕ = Γ1◦ (Γ2,ϕ)

Context update, Γ+x: T = Γ

x /∈ dom(Γ) Γ ⊢wf T
Γ+x: T = Γ,x: T

un(T)
(Γ,x: T)+x: T = (Γ,x: T)

Figure 5: Context split and context update

There are however new assumptions,Γ ⊢wf ϕ andΓ ⊢wf linp, meant to guarantee that the output of context
splitting are well-formed contexts. The context update operator is used to update the type of a channel,
after its prefix has been used. It is used in the typing rules for input and output processes.

We are finally in a position to introduce the type system; the rules are in Figure 6. Sequents for
extracting formulae from contexts are of the formΓ ⊢ ϕ ; sequents for values are of the formΓ ⊢ v: T,
and for processes of the formΓ ⊢ P. The rules for formulae should be easy to understand. All ourrules
make sure that at the leaves of derivations there are only well-formed, unrestricted contexts, so as to
make sure all linear entities (formulae and types) are used in a derivation. The rules for values follow
a similar pattern; they include conventional rules for refinement introduction and for type conversion.
The first six rules for processes are taken from [18]. For instance, the rule for output splits the incoming
context in three parts, one to type the subjectx of communication, the other to type the objectv, and the
third to type the continuation processP. The context forP is updated with the new type forx, that is the
continuation typeU with the appropriated substitution applied.

For example, in order to type the final parts1!100.0 of theClient1 process under context:

c: ccard,s1 : lin!a: {x: nat|charge(c,x)}.end,charge(c,100),

we split the context in three parts:c: ccard,s1 : lin!a: {x: nat|charge(c,x)}.end to type variables1, con-
textc: ccard,charge(c,100) to type value 100 and contextc: ccard+s1 : end[100/a] = c: ccard,s1 : end to
type the continuation process0. From the context for value 100, we build the type{x: nat|charge(c,x)}
that matches the “initial” part of the type fors1. Formulacharge(c,100) is introduced in the context via
the typing rule for assume (see below).

The novelties of the type system are the rules forassume andassert, and should be easy to understand.
Rule T-ASSUME adds to the context the formula assumed in the process. Rule T-ASSERTworks in the
opposite direction, removing from the context the assertion. Also novel to our type system are the three
rule for the elimination of1, ⊗ and refinement types. These rules work in the context, hence are rules
for processes. The corresponding introduction rules work on the entities (types and formulae) extracted
from the context, and are thus rules for formulae and values.

Back to the running example, letB2= µα .un!y: (lin?c: ccard.lin?a: {x: nat|charge(c+10,x)}.end).α
be the type of a bank as seen from the side of theStore1 (the type ofr2). Even though we can derive

s1 : lin!p: product.lin!c: ccard.lin!a: {x: nat|charge(c,x)}.end,

s2 : lin?p: product.lin?c: ccard.lin?a: {x: nat|charge(c+10,x)}.end, r2 : B2 ⊢ Client | Store1
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Typing rules for formulae, Γ ⊢ ϕ

⊢wf Γ un(Γ)
Γ ⊢ 1

⊢wf Γ1,ϕ ,Γ2 un(Γ1,Γ2)

Γ1,ϕ ,Γ2 ⊢ ϕ
Γ1 ⊢ ϕ1 Γ2 ⊢ ϕ2

Γ1◦Γ2 ⊢ ϕ1⊗ϕ2
(T-1I,T-FORM,T-⊗I)

Typing rules for values, Γ ⊢ v : T

⊢wf Γ un(Γ)
Γ ⊢ () : unit

⊢wf Γ1,x: T,Γ2 un(Γ1,Γ2)

Γ1,x: T,Γ2 ⊢ x: T
Γ1 ⊢ ϕ [v/x] Γ2 ⊢ v: T
Γ1◦Γ2 ⊢ v: {x: T | ϕ}

Γ ⊢ v: T1 T1 ≡ T2

Γ ⊢ v: T2

(T-UNIT ,T-VAR,T-REFI,T-CONV)

Typing rules for processes, Γ ⊢ P

⊢wf Γ un(Γ)
Γ ⊢ 0

Γ1 ⊢ P1 Γ2 ⊢ P2

Γ1◦Γ2 ⊢ P1 | P2

Γ ⊢wf T Γ,x: T,y: T ⊢ P
Γ ⊢ (new xy: T)P

un(Γ) Γ ⊢ P
Γ ⊢ ∗P

(T-END,T-PAR,T-RES,T-REP)

Γ1 ⊢ x: (q!y: T.U) Γ2 ⊢ v: T Γ3+x: U [v/y] ⊢ P
Γ1◦Γ2◦Γ3 ⊢ x!v.P

(T-OUT)

Γ1 ⊢ x: (q?y: T.U) (Γ2,z: T)+x: U [z/y] ⊢ P
Γ1◦Γ2 ⊢ x?z.P

(T-IN)

Γ2 ⊢ ϕ Γ1◦Γ2 ⊢ P
Γ1 ⊢ (assume ϕ)P

Γ1 ⊢ ϕ Γ2 ⊢ P
Γ1◦Γ2 ⊢ assert ϕ .P

(T-ASSUME,T-ASSERT)

Γ ⊢ P
Γ,1⊢ P

Γ1,ϕ1,ϕ2,Γ2 ⊢ P
Γ1,ϕ1⊗ϕ2,Γ2 ⊢ P

Γ1,x: T,ϕ [x/y],Γ2 ⊢ P
Γ1,x: {y: T | ϕ},Γ2 ⊢ P

(T-1E,T-⊗E,T-REFE)

Figure 6: Typing rules

we cannot deriver2 : B2 ⊢ (new s1s2)(Client1 | Store) for the types fors1 ands2 are not dual, because
type{x: nat|charge(c,x)} is not equivalent to{x: nat|charge(c+10,x)}, as required by rule T-RES.

The case ofStore2 is of a different nature, and in particular it is not typable due to the impossibility
of a suitable context split. One would like to typeStore2 under context:

s2 : lin?p: product.lin?c: ccard.lin?a: {x: nat|charge(c,x)}.end, r2 : B′
2

whereB′
2 is typeB2 above withcharge(c,x) replacingcharge(c+ 10,x). Typing the initial part of the

process, using rule T-IN three times, we introduce in the context the following entries: p: product,
c: ccard, anda: {x: nat|charge(c,x)}. Then, using refinement elimination rule, T-REFE, we convert the
last entry ina: nat,charge(c,a). Now, in order to type the continuationCharge(c,x) | Charge(c,x), we
have to split the context, but there is one only formulacharge(c,a) in the incoming context, so that only
one of the threads will be typable.

On the other hand, consider the case ofClient2 above that assumes twice the capabilitycharge(c,100).
By duality of sessions, the type of the value received by the store will also be refined with a double ca-
pability, a: {x: nat|charge(c,x)⊗ charge(c,x)}. Then we use T-REFE followed by T-⊗E to obtain
a: nat,charge(c,a),charge(c,a), making possible the splita: nat,charge(c,a)◦a: nat,charge(c,a).
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4 Main results

The central result of this paper follows from the lemmas for weakening, strengthening and substitu-
tion [18] extended to this system, as well as from basic properties of context splitting (details omitted).

Lemma 1 (Weakening). If Γ ⊢ P andun(T), thenΓ,x : T ⊢ P.

Lemma 2 (Strengthening). If Γ,x : T ⊢ P, un(T) and x 6∈ fv(P), thenΓ ⊢ P.

Lemma 3 (Substitution). If Γ1 ⊢ v : T andΓ2,x : T,Γ3 ⊢ P, thenΓ1◦ (Γ2,Γ3[v/x]) ⊢ P[v/x].

Lemma 4 (Preservation for⇛). If Γ ⊢ P and P⇛ Q, thenΓ ⊢ Q.

Theorem 5(Preservation for→ ). If Γ ⊢ P and P→ Q, thenΓ ⊢ Q.

Theorem 6(Safety). If Γ ⊢ P andun(Γ), then P is safe.

It should be easy to see that processes typable under arbitrary contexts may not be safe; take for
exampleA⊢ assert A.0.

Finally, combining the two results above with a simple induction on the length of reduction we obtain
the main result of the paper.

Corollary 7 (Main Result). If Γ ⊢ P withun(Γ) and P reduces to Q in a finite number of steps, then Q is
safe.

The result states that processes typable under unrestricted contexts do not get stuck at assertion
points (they may still block at input or output points, due todeadlock). Furthermore we also know that
all assumptions are eventually matched; e.g., process(assume A)0 is not typable. In the case of typable
processes it is therefore safe to erase all the assumptions and assertions from a process, so that there are
no formulae at runtime.

For the cases in proofs involving formulae we make use of the notion of canonical contexts, that
is, contexts containing no refinement types (x: T ∈ Γ implies T is not a refinement type) and whose
formulae contain no connectives (ϕ ∈ Γ impliesϕ = A). Contexts can be converted in a canonical form
by using the cf function, defined on contexts, type assumptions, and formulae.

cf(·) = · cf(Γ,ϕ) = cf(Γ),cf(ϕ) cf(Γ,x : T) = cf(Γ),cf(x : T)

cf(x : {y : T|ϕ}) = cf(x : T),cf(ϕ [x/y]) cf(x : T) = x : T if T is not a refinement

cf(1) = · cf(ϕ1⊗ϕ2) = cf(ϕ1),cf(ϕ2) cf(A) = A

We then establish a result,Γ ⊢ P iff cf (Γ) ⊢ P, allowing to consider contexts in their canonical form.

5 Related Work, Conclusions and Future Plans

Refinements have been useful in verifying polymorphic contracts [1], security protocols [2], and with
the improvements in satisfiability-modulo-theories (SMT)solvers for classical first-order logics with
uninterpreted functions (such as [14]), can be integrated into type systems using off-the-shelf components
as has been done for the language F# using the F7 typechecker [15].

In the context of sessions, Bonelli et al. system of correspondence assertions for process synchroniza-
tion [4] is close to a basic form of refinement, as it allows labels to be used in the participant processes
of a session to signify the starting and ending points of marked protocol sections. This type of protocol
segmentation can be thought of as a basic assume/assert mechanism with conjunction, since multisets
of labels can be used for the part equivalent to ‘assert,’ butstill without the rich constructors and proof
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system of a logic. Bocchi et al. introduce assertions in multiparty session types (session types allowing
to describe interaction among multiple partners) [3]. Similarly to the system of Bonelli et al. [4], asser-
tions are explicitly associated with session operations (in, out, branch, select). In contrast, our system
introduces assertions as refinement types to be used at arbitrary places in a protocol; furthermore their
system uses classical logic as opposed to linear logic.

The recent work by Toninho et al. [17] interprets session types within intuitionistic linear logic,
obtaining (with some extensions) a dependent sessions typesystem forπ-calculus. This system interprets
session types as linear logic formulae, with input as⊸ and output as⊗, and stratifies the language
into a π-calculus for communication and a functional language for proof objects, where the latter are
opaque terms that (in our system) would correspond to proofsof refinements. However, their system
does not considerlinear refinements, i.e., linearity is restricted to the communication layer (the sessions).
Although the aims of both systems are similar to an extent, wehave taken a different approach, adopting
session types without their linear-formulae interpretation, and focussing on the incorporation of fine-
grained linear refinements which provide for a more delicatedistinction between types. Moreover, we
do not utilise proof-witnesses but rather implement proof search within the type system itself; then,
using the heating relation, assumptions are manipulated atruntime in order to check assertions, which is
essentially a procedure of cut-elimination.

The concept of names appearing in types was pioneered in the work by Yoshida on channel-dependent
types for processes with code mobility [20], and was adaptedto sessions in subsequent work [12]. In
these systems there are no refinements, yet channel dependent types are shown to provide security guar-
antees by controlling which names may be used in communications between received code and host
environment, which indicates that an integration with our system could provide even greater control over
mobile code.

In summary, a theory of (linear) refinement types for sessions has not been hitherto proposed, mark-
ing the contribution of our system. As future work, it is interesting to consider sessionsas linear refine-
ments, and to extend our refinement language to a larger fragment of Linear Logic. We plan to investi-
gate decidable type-checking, drawing inspiration from the techniques in [5, 16, 18], and by considering
appropriate restrictions. Moreover, it would be interesting to examine the adaptations necessary for lan-
guages with (asynchronous) buffered semantics, where communications can be reordered, especially in
the context of mobile session-typed processes [13], channel dependent types [12, 20], and multi-party
sessions [10].
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