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Graph-based interactive theorem provers offer a visual representation of proofs, explicitly represent-
ing the dependencies and inferences between each of the proof steps in a graph or hypergraph format.
The number and complexity of these dependency links can determine how long it takes to verify the
validity of the entire proof. Towards this end, we present a set of parallel algorithms for the formal
verification of graph-based natural deduction (ND ) style proofs. We introduce a definition of lay-
ering that captures dependencies between the proof steps (nodes). Nodes in each layer can then be
verified in parallel as long as prior layers have been verified. To evaluate the performance of our al-
gorithms on proof graphs, we propose a framework for finding the performance bounds and patterns
using directed acyclic network topologies (DANTs). This framework allows us to create concrete
instances of DANTs for empirical evaluation of our algorithms. With this, we compare our set of
parallel algorithms against a serial implementation with two experiments: one scaling the problem
size and the other scaling the number of threads. Our findings show that parallelization results in
improved verification performance for certain DANT instances. We also show that our algorithms
scale for certain DANT instances with respect to the number of threads.

1 Introduction

A major role of an interactive theorem prover is to take an existing proof and verify that it is valid with
respect to the logical calculi used. This involves iterating over each step of a proof and verifying both that
it syntactically matches the transformation of the formula under the rule, and that it is valid with respect
to the semantics of the underlying proof system. Interactive theorem provers such as Coq [19], Lean [14],
and HyperSlate [4] verify not only that the proof written by the user is correct, but also every underlying
proof that the given proof depends on. This generally amounts to verifying large portions of the standard
library and other popular libraries such as mathlib [6]. Our work makes a step toward speeding up the
proof verification process. We focus on the verification of natural deduction proof graphs, such as those
represented in HyperSlate, though the ideas from this approach could be adapted to other interactive
theorem provers as well.

In order to speed up verification, we look toward parallel computing. One naive implementation
would be to verify all the proof steps in parallel. This assumes, however, that the step has all the semantic
information needed to show validity. This is often not the case for many logic calculi. Assumptions are
introduced and discharged in the case of natural deduction. Variables may be assigned to constants.
These issues present a constraint that in order to parallelize verification, we need to ensure that some
steps are verified before others. We achieve this by introducing a layering approach. Given a definition
of layering that induces a topological partial order, every step within a layer n only depends on steps
within the layers prior. Given these layers, we can then verify all the steps that are from the same layer
in parallel without worrying about invalidating the underlying semantics. To illustrate this approach, we
present the parallel verification of natural deduction proof graphs.
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The underlying dependency nature of each of the steps induces a directed acyclic hypergraphical rep-
resentation where nodes hold ND statements and hyperedges between nodes represent inference rules.
This graphical representation not only gives us an easy way to visualize such proofs, but also provides
insight on empirically validating our parallel algorithms. Inspired by computer network topologies, we
introduce directed acyclic network topologies (DANTs) as a way to identify classes of graphical proofs.
These topologies provide a method of comparing the performance of different verification strategies on
various proof structures.

The contributions of this work are as follows: (1) A layering approach that decouples the dependen-
cies of proof steps within ND proofs. (2) Parallel verification algorithms that outperform serial verifica-
tion on non-straight topologies and scales with the number of hardware-based threads. (3) Introduction of
several classes of graphical proofs, with an eye on empirical evaluation. The relevant background which
includes ND and hypergraphical representations is discussed in §2. Within §3, we discuss the proof ver-
ification algorithm and several optimizations. Then in §4, we discuss directed acyclic network topologies
to empirically evaluate common proof structures. In that section, we also discuss our performance and
scaling results. We then conclude by talking about related work in §5.

2 Background

2.1 Natural Deduction

Natural deduction (ND ) is a logic calculus independently proposed in [10, 12] in an effort to emulate
human-level reasoning through assumptions and chains of inference. There are many different styles
of proof that fall under natural deduction, the three most common come from Gentzen [10], Jaśkowski
[12], and Fitch [9]. However, we are mainly interested in a style that interoperates with a hypergraphical
representation of natural deduction proofs.

{φ} ⊢ φ
A

Γ ⊢ ψ Σ ⊢ φ

Γ∪Σ ⊢ φ ∧ψ
∧I

Γ ⊢ φ ∧ψ

Γ ⊢ φ
∧El

Γ ⊢ φ ∧ψ

Γ ⊢ ψ
∧Er

Γ ⊢ φ

Γ ⊢ ψ ∨φ
∨Il

Γ ⊢ φ

Γ ⊢ φ ∨ψ
∨Ir

∆ ⊢ ψ ∨φ Γ∪{ψ} ⊢ χ Σ∪{φ} ⊢ χ

∆∪Γ∪Σ ⊢ χ
∨E

Γ∪{φ} ⊢ ψ

Γ ⊢ φ → ψ
→ I

Γ ⊢ φ Σ ⊢ φ → ψ

Γ∪Σ ⊢ ψ
→ E

Γ∪{φ} ⊢ ψ Σ ⊢ ¬ψ

Γ∪Σ ⊢ ¬φ
¬I

Γ∪{¬φ} ⊢ ψ Σ ⊢ ¬ψ

Γ∪Σ ⊢ φ
¬E

Γ∪{φ} ⊢ ψ Σ∪{ψ} ⊢ φ

Γ∪Σ ⊢ φ ↔ ψ
↔ I

Γ ⊢ φ Σ ⊢ φ ↔ ψ

Γ∪Σ ⊢ ψ
↔ El

Γ ⊢ ψ Σ ⊢ φ ↔ ψ

Γ∪Σ ⊢ φ
↔ Er

Figure 1: Our inference schemata for natural deduction. Within each schema, Γ,Σ,∆ are sets of for-
mulae, and φ ,ψ,χ are meta-logical variables which range over formulae. Note that our formulation of
¬I,¬E,↔ I,↔ E differs from those typically seen in other works such as [17] but are equivalent.
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In this paper, we focus on propositional natural deduction. Let p denote an atomic proposition.
The language of propositional logic may be defined inductively using Backus Naur Form (BNF) as the
following:

φ ::= p|¬φ |(φ ∧φ)|(φ ∨φ)|(φ → φ)|(φ ↔ φ)

Our inference rules for ND are summarized in Figure 1 1. This formalization is modeled after Bringsjord
[3] and fully captures the notion of discharging of assumptions. It is also particularly well suited to
hypergraphical representation, which will be discussed in §2.2. These inference rules can be broadly
split into two categories: (1) introduction rules (∧I,∨Il,∨Ir,¬I,→ I,↔ I), in which a logical connective
is introduced into the conclusion, and (2) elimination rules (∧El,∧Er,∨E,¬E,→ E,↔ El,↔ Er), in
which a connective in a rule’s premise is removed in its conclusion. The outlier here is the Assumption
rule (A) which allows us to assert {φ} ⊢ φ , or in English, "assuming φ , φ follows".

For a natural deduction proof, a step is considered valid if the formula is well-formed and it is justified
by a rule of inference. Valid formulae with no assumptions are called tautologies. A proof is considered
valid iff all of its steps are valid. An example of a valid proof can be seen in Figure 2.

{A∨B} ⊢ A∨B A

{¬A} ⊢ ¬A A {¬B} ⊢ ¬B A

{¬B,¬A} ⊢ ¬A∧¬B
∧I

{¬B,¬A} ⊢ ¬A
∧El {A} ⊢ A A

{¬A,A} ⊢ B
¬E {B} ⊢ B A

{A∨B,¬A} ⊢ B
∨E

Figure 2: An example of a valid proof of B from {A∨B,¬A}. All steps are valid since at each step (1)
all formulae are well formed and (2) the provided rule of inference can be legally applied at each stage
given the current assumptions and premises.

2.2 Hypergraphical Representation

Figure 3: Visualizations of 4 different types of graphs, note that in the hypergraph, edges that share the
same color are the same edge.

A natural deduction proof can be represented diagrammatically as a directed acyclic hypergraph
[20, 1]. A directed acyclic hypergraph is a generalization of a directed acyclic graph (DAG) which is a

1While on the surface this formalization may appear similar to sequent natural deduction[16], we use “⊢” in this formalism
to mean syntactic entailment, with Γ ⊢ φ being read as "Assuming Γ, then φ" or "φ can be derived from Γ".
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mathematical structure (V,E) where V is a set of vertices and E : (V ×V ) is a set of pairs of vertices.
Acyclic in this context means that for any vertex v, it is not possible to find a path following the directed
edges that leads to v. Directed acyclic hypergraphs extend this by allowing a set of vertices to be con-
nected to a set of vertices by a single edge, thus a directed acyclic hypergraph is a structure (V,E) where
V is a set of vertices and E : P(V )×P(V ), where P(V ) is the power-set of the set of vertices. Figure
3 shows visualizations of the three graph formalisms described.

To represent natural deduction proofs as hypergraphs, vertices represent premises and conclusions,
and edges represent inference rules. A proof graph will be defined as a hypergraph of the form (V,E)
where V is a set of statements in the form Γ ⊢ φ and E : P(V )×V is the set of directed hypergraphical
edges representing inference rules applied between statements in the proof.2 This formalism underlies
the representation of proofs in graphical interactive theorem provers such as [4, 15]. Figure 4 provides
examples of two natural deduction proofs that have been converted to hypergraphical form.

Interactive theorem provers often do not force the user to keep track of proof state. Therefore, it is
important to note that we are interested in verifying proof graphs where the assumptions on each node
are yet to be known. We are only given the φ on each node and must compute the Γ based on how the
assumptions update within the inference rules. If we had both Γ and φ , parallelization would be trivial,
since we can then verify all the nodes in parallel.

Proof graphs implicitly provide additional useful features for representing collections of natural de-
duction proofs, particularly those that are commonly added onto natural deduction via additional for-
malisms. First, proof graphs provide the ability to compactly represent proofs that contain reoccurring
subproofs. This is because each hyper-node may have multiple outgoing hyper-edges, representing mul-
tiple inferences it is used in. While this feature is implicitly captured by proof graphs, natural deduction
proofs require an additional formalism allowing named theorems that can be used in other proofs to pro-
vide this functionally. Another feature is that a single proof graph can have multiple conclusions or even
contain multiple proofs where each proof is a disjoint hyper-subgraph. Without proof graphs, the ability
to represent this feature would require a formalism in which a set of proofs can be be treated as a single
proof.

2.3 Multiprocessing

In this work we use a shared memory model for multiprocessing. This involves multiple threads inde-
pendently operating over the same shared memory space. More specifically, we make heavy use of single
program multiple data (SPMD) style programs. With a fixed number of threads instantiated, we attempt
to distribute work evenly across all the threads. Our work makes use of two important concepts from
multi-processing: thread-safety and reductions (see [13] for more extensive coverage). Thread-safety
within a shared memory model is the notion that parallel algorithms are safe from errors due to concur-
rent writes and reads from the same piece of memory, known as a race condition. The second concept
is the notion of a parallel reduction. A parallel reduction is an operator that takes a list of elements
and computes a single element in parallel. A small example of this would be parallel sum over the list
(1,2,3,4): if we add 1 and 2 on one thread and 3 and 4 on another thread in parallel, and then sum their
results, we can sum the entire list in 2 steps rather than the 3 steps it would take to sum the list in serial.

2Note we use P(V )×V rather than P(V )×P(V ) since for all inference rules enumerated in Figure 1 there is only one
conclusion, thus each hyper-edge representing an inference rule will only ever have one outgoing connection.
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{p} ⊢ p A

{p} ⊢ p∨q
∨Ir {¬(p∨q)} ⊢ ¬(p∨q) A

{¬(p∨q)} ⊢ ¬p
¬I

Figure 4: (Top Left) A valid natural deduction proof that {¬(p∨q)} ⊢ ¬p (Bottom Left) The same proof
represented as a hypergraphical proof graph structure in the Lazyslate interactive theorem prover[15].
(Right) Proof graph of the proof from Figure 2 of {A∨B,¬A} ⊢ B in the HyperSlate [4] interactive
theorem prover.

3 Approach

We mentioned in §2 that natural deduction makes use of assumptions and chains of inference in its
proofs. In the hypergraphical representation, to show that a given node is valid, we need to show both
that the syntactic transformation is valid and that the assumption constraints are met with respect to the
justification used inside that proof. Let us consider the rule disjunction elimination (more commonly
known as proof by cases) from Figure 1 and its usage in the right proof of Figure 4. For example, we
wish to show that bottom node B is valid. For the syntactic check, we need to ensure that there are
three parent nodes, one of them is a disjunct, and two of the other parent nodes match the current node.
Then for the assumption constraints, we need to make sure that for one parent node B it has A in its
assumption set, and for the other parent node B it has B in its assumption set. Note from our discussion
of the hypergraphical representation in §2.2 that the underlying nodes do not contain the assumption
information themselves, but they are computed by the application of each inference rule. This creates
the need of an additional data structure that we call assumptions during the verification process. We
obtain the justification of a given step by calling just on the node. This will return the justification that
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is stored on the incoming edge of the node.
For a baseline comparison with the parallel verification algorithms, we designed a single-threaded

implementation that shares the same algorithmic structure as the parallel ones minus the usage of shared
memory and threading. The benchmark results are further discussed in §4. Our algorithm works by
maintaining a global map of nodes to their set of assumptions. To ensure that a node does not get verified
before its parent, we make use of a layering approach which induces a topological partial ordering on
the nodes. A topological partial ordering, also referred to as topological generations, of a proof graph
G = (V,E) is a partial ordering ≼ on the nodes V where for each hyperedge ({vi0, · · · ,vin},vo), all
incoming nodes {vi0, · · · ,vin} appear before the outgoing node vo, that is ∀(Vi,vo) ∈ E : ∀vi j ∈Vi : vi j ≼
vo. This layering approach for generating a topological partial ordering is similar to the well known
serial topological sort algorithm [7] which generates a topological linear ordering of the nodes but lacks
parallelizability. Figure 5 provides a colored example of the nodes on each layer. More formally, we
define node n to be on a layer L(n) inductively as follows:

L(n) =

{
0 if n is an assumption
1+maxm∈P(n)(L(m)), otherwise

(1)

where P(n) maps a node to its parents.

3.1 Single-Threaded Implementation

Algorithm 1 Single-Threaded Algorithm
1: procedure VERIFY(ProofGraph p)
2: Initialize assumptions to be empty.
3: Create set of nodes on each layer using Equation 1 and store in layerMap.
4: for layerNodes in layerMap do
5: for n in layerNodes do
6: justification = just(n)
7: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
8: if not is_valid(n, justification, ruleInfo) then
9: return false

10: Update assumptions(n) using the justification and ruleInfo.
11: return true

The full single-threaded procedure is described in Algorithm 1. For every layer, the procedure per-
forms the following actions: (1) Verify that the node is valid with respect to the justification claimed
using the node’s and its parents’ syntactic information and the parents’ assumption information. (2) If
valid, update the assumptions data structure for the current node based on the parents’ assumptions and
justification.

In order to better highlight the progression of the algorithm, we will walk through an example by
looking at the verification of Figure 4 (Right). Subscripts for the propositions help to distinguish between
formulae by referencing the ID denoted inside the purple box in the figure. In the beginning of the
algorithm, the first layer only contains assumptions:

currentLayer= {(¬A)1,(¬B)2,A5,B7,(A∨B)8}
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We then go through each node and verify them. Since they are justified as assumptions, they are trivially
valid. The nodes then have their assumptions updated. The next layer only contains (¬A∧¬B)3. This
validates and the node’s assumptions are updated to {(¬A)1,(¬B)2}. The third layer only contains (¬A)4.
This validates and the assumptions are propagated forward. On the fourth layer, the node B6 is justified
by negation elimination. This validates and the node’s assumptions are set to {(¬A)1,A5}. The fifth and
final layer only contains the node B9. As the node is justified by disjunctive elimination and is valid, we
update the assumptions to {(¬A)1,(A∨B)8}. As we have gone through all the layers successfully, the
whole hypergraph is valid.

Theorem 1. For all Proof Graphs p the single-threaded VERIFY(p) is correct with respect to the validity
of the ND proof corresponding to p.

Proof. An algorithm is correct if it is sound and complete (termination is trivial). We prove completeness
and soundness follows from symmetry. A natural deduction proof is valid if all steps are valid. For a step
to be valid it needs to pass the syntactic transformation and the assumption constraints. From these, only
the assumption constraint check requires information from outside the node and its parents. The rules of
natural deduction in Figure 1 show how assumptions are computed based on the parent node’s assumption
sets. As such, parents of a node must be verified beforehand and have their assumptions computed.
Nodes that are justified via assumptions mark the base case of this procedure as their assumption set only
contains itself. Due to the definition of the layering in Equation 1 and its usage in Line 3, assumptions
are in the first layer and the parents of a node must be in the previous layer. This means that the parents
are verified and their assumptions are computed beforehand on lines 6-9. Inductively this means that all
nodes are verified and have their assumptions computed successfully. Hence, the hypergraph proof itself
is verified.

3.2 Parallel Implementation (Non-optimized Parallel)

Within a layer, each node only depends on nodes in layers prior. This means that a node on some layer n
does not depend on any other node on layer n. For our initial parallel implementation, fully described in
Algorithm 2, we take advantage of this and verify the validity of each node on the same layer in parallel.
In our implementation, we used a shared memory approach. To combat thread-safety issues we introduce
a vector for each given layer called aIds. This vector lives in shared memory. Each entry holds a set
of node ids and its length is the number of nodes in the current layer. After computing the layers, each
node gets evenly distributed to the available threads. Each individual thread would then verify the nodes
it was assigned and update the assumptions of the appropriate index within aIds. This is thread-safe
because each entry only gets written to by the thread that its corresponding node id has been assigned to.
The parallel portion of the algorithm additionally performs an AND reduction on the verification result of
each node. This means that if any result of the individual verifications is false, then the entire verification
result is false. After the parallel portion is finished, the global assumption map gets updated using
aIds.

Let us illustrate the distribution of nodes with the example from Figure 5. In the graphic, the number
at the top of each node represents its identifier. For brevity, we will use those numbers when referring
to the nodes. As the zeroth layer only contains assumptions that are trivially verifiable, we will start our
discussion from layer one. In this layer, we have the following nodes:

L(1) = {5,6,8,9,15,14,21,25,17}



J. Oswald and B. Rozek 43

Layer Nodes

0 2,4,7,16,
23,20,24,18

1 5,6,8,9,15,
14,21,25,17

2 3,11,10, 22
3 12,19
4 1, 13
5 0

Figure 5: (Left) A proof of logical or (∨) distributivity over logical and (∧). (Right) The nodes of the left
proof grouped by layer.

For the sake of example, let us say we have three threads. Then thread 0 would be assigned {5,6,8},
thread 1 would be assigned {9,15,14}, and thread 2 would be assigned {21,25,17}. Let us focus on
thread 0. Each of the three nodes verifies and the following assignments are made to aIds based on the
justification used:

aIds(5) = {assumptions(parent(5))}
aIds(6) = {assumptions(parent(6))}
aIds(8) = {assumptions(parent(8))}

After the parallel portion, the data within aIds are copied into assumptions as a way to ensure thread-
safety. On the next layer, we have the following nodes: L(2) = {3,11,10,22}. This then gets distributed
with thread 0 getting {3,11}, thread 1 obtaining {10}, and thread 2 obtaining {22}. Focusing on the first
thread again, the nodes verify and the following assignments are made to aIds:

aIds(3) = {assumptions(5),assumptions(6)}
aIds(11) = {assumptions(8)}

Notice that each of the items in those sets contains assumptions that were computed in the previous
layer. They were originally assigned within aIds but then copied to assumptions. The results of each
individual node verification were stored in NodeValid which is then AND-reduced into the variable
LayerValid. Hence after the end of the parallel portion, the variable LayerValid would be true unless
one of the nodes in the parallel portion failed to verify.
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Algorithm 2 Multi-Threaded Algorithm
1: procedure VERIFY(ProofGraph p)
2: Initialize assumptions to be empty.
3: Create set of nodes on each layer using Equation 1 and store in layerMap.
4: for layerNodes in layerMap do
5: nl = length(layerNodes)
6: aIds = sharedVector(length=nl)
7: LayerValid = true
8: for n in layerNodes in parallel do
9: justification = just(n)

10: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
11: NodeValid = is_valid(n, justification, ruleInfo)
12: if NodeValid then
13: Update aIds(n) using justification and ruleInfo
14: AND_reduce(LayerValid, NodeValid)
15: if not LayerValid then
16: return false
17: Update assumptions(n) using aIds
18: return true

3.3 Multi-Threaded Static Load Balancing Optimization (Load Balancing)

Notice when going over Figure 5 in the last example that the distribution of nodes in the second layer
was uneven. The assignment had one thread verifying two while the others verifying only a single one.
In fact, we can speak to this more generally. Let T represent the number of threads available and li be
the number of nodes in layer i. Let us assume that the verification of one node takes two units of work
total: one to verify the syntax and one to verify the assumptions. Let m = li mod T . Then, if m ̸= 0 there
are (T −m) threads that are doing one less unit of work.

It is with this consideration that we look at static load balancing, presented in Algorithm 3. For the
threads with one less unit of work, they take a node from a future layer and syntax verify them. This
approach is valid because syntax verification only requires the current node and its parents’ formulae
which are stored in the proof graph and does not require additional information from the prior layers
such as assumption sets. In order to ensure that the nodes that are syntax verified by the remaining
(T −m) threads are distinct, we make use of another reduction variable numSyntaxVerified. Each
thread would be assigned the node that’s the sum of that variable and its thread id. Do note that this is
different from dynamic load balancing as the amount of work is evenly distributed and does not take into
account during runtime some threads finishing before others.

Let us turn to our example from Figure 5 again. Recall that the distribution of work at layer two was
the following: thread 0 maps to {3,11}, thread 1 has {10}, and thread 2 has {22}. We can then squeeze
in syntax verification checks in thread 1 and thread 2. Then, the new allocation becomes: thread 0 maps
to {3,11}, thread 1 maps to {10,xs}, and thread 2 maps to {22,ys}. The subscript denotes how we are
only performing a syntax verification at that step. Recall that we can not perform full verification of
nodes in future layers because we do not know if there’s a node on the current layer that its assumptions
depends on. The question then is: how are xs and ys calculated? As noted before, this is where we
keep track of the total number of nodes that we have syntax verified already. If we have a flat vector of
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Algorithm 3 Multi-Threaded Load Balance Algorithm
1: procedure VERIFY(ProofGraph p)
2: Initialize assumptions to be empty.
3: Create set of nodes on each layer using Equation 1 and store in layerMap.
4: AllNodes = Flatten(layers)
5: numSyntaxVerified = 0
6: for layerNodes in layerMap do
7: nl = length(layerNodes)
8: aIds = sharedVector(length=nl)
9: LayerValid = true

10: layerSyntaxVerified = 0
11: for n in layerNodes in parallel do
12: justification = just(n)
13: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
14: NodeValid = is_valid(n, ruleInfo)
15: if NodeValid then
16: Update aIds(n) using justification and ruleInfo
17: threadIterSyntaxVerified = 1
18: if thread verifying less nodes then
19: extraN = AllNodes[numSyntaxVerified + threadId]
20: NodeValid = NodeValid and syntaxVerify(extraN, parents(extraN))
21: threadIterSyntaxVerified = 2
22: SUM_reduce(layerSyntaxVerified, threadIterSyntaxVerified)
23: AND_reduce(LayerValid, NodeValid)
24: if not LayerValid then
25: return false
26: Update assumptions(n) using aIds
27: numSyntaxVerified = numSyntaxVerified + layerSyntaxVerified
28: return true

all nodes that are partially ordered by their layer number, then for thread i we can have it syntax verify
numSyntaxVerified+ i element of that flat vector. A sum reduction then keeps track of the total number
of syntax verifications performed on a given layer which is later used to update numSyntaxVerified.

3.4 Parallel Distribution of Syntax Checks (Syntax-First)

In the last section we discussed that syntax verification can occur beyond the current layer being con-
sidered. In fact, syntax verification can occur outside of the layering structure in general which this op-
timization considers. In this approach we first perform the syntax verification in parallel over all nodes
before iterating over the layers. This approach is outlined in Algorithm 4. This not only has the benefit
of lowering the time to find a syntactic error, but also more evenly distributes the syntax verification over
all threads.

For our example in Figure 5, the proof graph contains node ids 0 through 25. If we have three threads,
then thread 0 would be assigned nodes 0 through 8, thread 1 would be assigned nodes 9 through 16, and
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thread 2 would be assigned nodes 17 through 25. Each thread would then loop over their assigned nodes
and syntax verify them. When the three threads finish, if any of their nodes failed to syntax verify, then
the algorithm would end and the proof graph verification would fail. In this example, however, the nodes
pass the syntax verification. The rest of the algorithm closely follows Algorithm 2 where instead of
performing a full verification, we only verify that the assumption constraints hold.

Algorithm 4 Multi-Threaded Syntax Check First Algorithm
1: procedure VERIFY(ProofGraph p)
2: syntaxValid = True
3: for n in p.nodes in parallel do
4: valid = verifySyntax(n, parents(n))
5: AND_reduce(syntaxValid, valid)
6: if not syntaxValid then
7: return false
8: Initialize assumptions to be empty.
9: Create set of nodes on each layer using Equation 1 and store in layerMap.

10: for layerNodes in layerMap do
11: nl = length(layerNodes)
12: aIds = sharedVector(length=nl)
13: LayerValid = true
14: for n in layerNodes in parallel do
15: justification = just(n)
16: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
17: NodeValid = verifyAssumptions(n, justification, ruleInfo)
18: if NodeValid then
19: Update aIds(n) using justification and ruleInfo
20: AND_reduce(LayerValid, NodeValid)
21: if not LayerValid then
22: return false
23: Update assumptions(n) using aids
24: return true

4 Methodology and Results

To discuss the performance of our algorithms, we provide an empirical investigation. To this end, we
look toward a comparison of the number of seconds needed to verify various proof structures using
the algorithms described before. Inspired by the topologies used in computer network design [2], we
introduce a directed variant that we call directed acyclic network topologies or DANTs. These DANTs
represent different classes of possible proofs with which we perform benchmarks over.

4.1 Directed Acyclic Network Topologies (DANTs)

We have identified three distinct classes of DANTs which we include in our benchmark of proof graphs
for analysis. The pictorial depiction is shown in Figure 6 and is generated as so: Straight Line (n):
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Figure 6: Straight, Parallel-Branch, then Tree Topologies

Parameterized by the total number of nodes n, this topology only contains one assumption at the top and
then each future inference is a disjunction introduction. This enforces a straight linear proof with no
branching. We do not expect any speedup in the parallel algorithm in this case as each layer only has one
node. Parallel Branches (b,n): This topology emulates multiple lines of independent reasoning before
combining towards the end. It starts off with b separate assumptions and then performs a disjunctive
introduction on each assumption n times before iteratively applying conjunctive introduction to each
branch until there is one remaining. We expect the number of branches will correlate with the scalability
of verification. It should be noted that this topology is isomorphic to a straight topology of length n when
b = 1 and emulates a tree like topology of height b when b > 1. Tree (h): In this topology we generate
2h assumptions and iteratively apply conjunction introduction h times until we reach a single node. This
creates a balanced binary tree. We hypothesize the greatest amount of speedup from this topology.

4.2 Empirical Analysis

We perform two classes of experiments: (1) a parallel strong scaling study in which the proof to be
verified is held constant while the number of processors increases; (2) a problem size scaling study in
which we hold the number of threads constant and look at how each method performs as the problem
gets harder.

4.2.1 Implementation Details

Our benchmarks were performed on one node of the IBM DCS supercomputer, AiMOS, at Rensselaer
Polytechnic Institute. Our code is available at https://github.com/RAIRLab/Parallel-Verifier
3. The code is implemented in C++11 and makes use of the standard C++ library data structures. For the
multiprocessing component, we use the OpenMP library [5]. OpenMP operates over software threads
which are assigned to CPUs. We ensure during our scaling study that the system is not oversubscribed,
meaning that there is just a single thread used per CPU. AiMOS provides us a single node on which ten
physical cores are available; however one is reserved for the operating system and IO, therefore nine
are used for our experiments. For our benchmarks we do not include the time it took for initialization,
file parsing, or proof parsing; we only measure the time taken to verify the proof. For this, we record
the clock-cycles before and after the execution of the verification algorithm and use their difference to
compute the total cycles. We then compute the number of seconds taken by each method through dividing
the number of total cycles by the base clock rate of 512MHz.

3For reproducibility of our results, please see the following link for the specific commit the results of this paper is based on:
https://github.com/RAIRLab/Parallel-Verifier/tree/a661abbe5bf038a3fa8645b8af532b0a60daebe5

https://github.com/RAIRLab/Parallel-Verifier
https://github.com/RAIRLab/Parallel-Verifier/tree/a661abbe5bf038a3fa8645b8af532b0a60daebe5
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4.2.2 Strong Scaling

For our strong scaling study we vary the number of threads used while holding the DANT instance
constant. For the straight topology, we consider a length n of 150. For the branch topology, we consider
b = 150 branches each with a length of n = 100. Lastly, for the tree topology, we consider h = 16
conjunction introductions for a total number of 216 vertices. Results can be seen on the left of Figure 7.
The strong scaling results show a clear benefit to our parallelized verification approach. In the case of
the straight topology the serial algorithm vastly outperforms the parallel algorithms, which is expected
as in this topology there is only one node per layer. There are clear overheads to parallelization, such as
waiting for all threads to finish, that make timing differences visible as the number of threads increases
for the straight topology. For the branch topology with 150 branches we see that our parallel methods
scale well, particularly load balancing which beats out syntax-first and non-optimized parallel methods.
We hypothesize this is due to the number of remaining nodes on each layer remaining constant which
allows for a good balance of syntax checking vs assumption updating. The parallel methods perform
quite well on the tree topology significantly beating out the serial method, with non-optimized parallel
and syntax-first methods beating out load balancing likely due to the overhead costs.

4.2.3 Problem Scaling

For our problem scaling study we hold the number of threads constant (at AiMOS’ maximum value of
nine) and vary the problem size. For the straight topology, we consider a chain of disjunctive introduc-
tions of lengths (n) 100, 150, 200, 250, 300, 350, and 400. For the branch topology, we consider a fixed
branch length of n = 100 and vary the number of branches (b) at 30, 50, 70, 90, 110, 130, and 150. Lastly
for the tree topology, we create binary trees of heights (h) 8, 10, 12, 14, 16, 18, and 20. Results can be
seen on the right side of Figure 7. We hypothesize the straight topology scaling is not linear due to over-
heads such as the formulae length increasing as the problem size increases. We see that for all problem
sizes on the straight topology, the serial implementation outperforms the parallel implementation. This
aligns with the observation in the strong scaling study that the parallel methods have overheads and the
fact that for all parallel methods, only one node is on each layer, preventing the majority of the threads
from doing any work. In the branch topology, the results show that as the number of branches increases,
the effectiveness of parallel methods increases. This is particularly shown in load balancing, due to the
reasons discussed in §4.2.2. For the tree topology, there is an exponential increase in the time taken as
the problem grows, largely due to the fact that the number of nodes to verify increases exponentially (2n)
as the problem size increases. We see that as the problem size grows, the performance of our parallel
methods over the serial method increases substantially.

5 Related Work

Past work has investigated parallel or concurrent verification of other logical calculi. For example the
developers of Isabelle [24], a proof assistant with support for first-order logic, higher-order logic, and
Zermelo-Fraenkel set theory, used concurrent programming for the efficient verification of LCF-style
proofs [18]. In their work, during the verification of a proof, if a reference to another proof is made,
and that proof has yet to be verified, then a promise is deferred. At the end of verification, all promises
are resolved and localized errors are then shown to the user [21, 22]. This work operates over entire
proofs while we focus on parallelizing steps within a proof. In [23], Wenzel introduces what he calls
granularities of concurrency within verifying a single proof. The levels include concurrent verification



J. Oswald and B. Rozek 49

Figure 7: (Left) Strong scaling study results (Right) Problem scaling study results.
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of theories, concurrent verification of commands, and concurrent verification of subproofs. In terms of
our work, we do not consider extra background theories, commands correspond to our proof steps, and
we do not consider subproofs in our work. As discussed in §2, there is a definition of a subproof in our
natural deduction hypergraphs. However, it’s not something specified by the creator of the proof and
there can be n different subproofs for a proof with n nodes.

Färber looked at concurrent verification of commands in his work parallelizing proof checking inside
the lambda-Pi calculus modulo rewriting [8]. In this work, he breaks up a command into four tasks:
parsing, sharing, type inference, and type checking. Similarly, our work breaks up our inference rules
into two steps: syntactic checks and assumption checks. We additionally look at the parallel verification
of sets of steps or commands, as opposed to only looking at the concurrency within each command.

6 Conclusion

In this work, we presented a layering based algorithm that decouples the underlying semantic dependen-
cies of proof steps in natural deduction. Through this, we introduced a suite of new algorithms which use
layers to parallelize verification of hypergraphical natural deduction proofs. Directed acyclic network
topologies (DANTs) were introduced as a benchmark for hypergraphical proofs and we have shown
in our analysis that the parallel algorithms perform better than their serial counterpart on non-straight
DANT instances. These parallel algorithms were additionally shown to scale through both the strong
scaling and problem scaling studies. This work has applications in formal verification, specifically in
proof assistants.

Our future work falls into four categories: theoretical results, empirical results, logic extensions,
algorithmic optimizations: (1) For theoretical results, we would benefit from analysis with respect to
Amdahl’s Law [11] to calculate the overall speedup with respect to different parallelizable tasks in each
of the algorithms. (2) For further empirical results, we can test randomized proof topologies or craft
a dataset of common natural deduction proofs. (3) We wish to extend our verifier to handle different
types of logics, specifically first-order and modal logics. First-order logics are used heavily within proof
assistants, and require the ability to represent and reason over formulae at the term level, including the
need for checking if variables are free or bound in inference rules. We conjecture that despite these
extra requirements, our layer based parallel approaches would still work on first-order proof graphs. In
order to handle modal logics such as K5, we would have to adapt the algorithm to include additional
bookkeeping required for several of the inference rules. (4) We would like to explore approaches to scale
beyond a single computer. This involves exploring message-passing parallelism which is often used in
distributed computing.
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