
E. Pimentel and E. Tassi (Eds.): Logical Frameworks

and Meta-Languages: Theory and Practice (LFMTP 2021)

EPTCS 337, 2021, pp. 88–103, doi:10.4204/EPTCS.337.7

© F. Rabe and N. Roux

This work is licensed under the Creative Commons

Attribution-Share Alike License.

Systematic Translation of Formalizations of Type Theory

from Intrinsic to Extrinsic Style

Florian Rabe Navid Roux

University Erlangen-Nuremberg

Department of Computer Science
University Erlangen-Nuremberg

Erlangen, Germany

florian.rabe@fau.de navid.roux@fau.de

Type theories can be formalized using the intrinsically (hard) or the extrinsically (soft) typed style.

In large libraries of type theoretical features, often both styles are present, which can lead to code

duplication and integration issues.

We define an operator that systematically translates a hard-typed into the corresponding soft-

typed formulation. Even though this translation is known in principle, a number of subtleties make it

more difficult than naively expected. Importantly, our translation preserves modularity, i.e., it maps

structured sets of hard-typed features to correspondingly structured soft-typed ones.

We implement our operator in the MMT system and apply it to a library of type-theoretical

features.

1 Introduction

Motivation and Related Work Soft type theory goes back to Curry’s work [4], where typing is a meta-

language (ML) predicate of : term→ tp→ prop between object-language (OL) terms and types. This

is also called extrinsic typing. This leads to a deep embedding of typing where the OL judgment t : A

corresponds to the existence of a typing proof, i.e., an ML term witnessing of t A.

Hard type theory goes back to Church’s work [2], where typing is a function from terms to types. If

that function is sufficiently simple, formalizations in a dependently-typed ML like LF [6] may be able

to capture it directly in the framework’s type system. Concretely, such a representation uses a shallow

embedding of typing where an object-language typing judgment t : A corresponds to the meta-language

(ML) typing judgment t : tmA. Only well-formed terms can be encoded at, and the OL type of a term

can be read off of its ML type. This is also called intrinsic typing. If ML type-checking is decidable, that

means OL must be as well.

Soft typing is more expressive and flexible than hard typing. But

• introducing an OL variable x of type a requires two ML variables of x : term,x∗ : ofxa,

• correspondingly, substituting a term for a variable requires the term and a proof of its typing

judgment,

• type-checking is reduced to ML non-emptiness-checking, which is usually undecidable.

In the LATIN project [3] going back to ideas developed in the Logosphere project [11], we built a

highly modular library of formalizations of logics and type theories. The goal was to create a library

of Little Logics (in the style of Little Theories [5]), each formalizing one language feature such as

product types, which can be combined to form concrete systems. This allows the reuse, translation, and

combination of formalizations in the style of [7, 8]. It helps the meta-theoretical analysis as each modular

http://dx.doi.org/10.4204/EPTCS.337.7
https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/

F. Rabe and N. Roux 89

construction is itself a meta-theorem, e.g., reusing the formalization of a language feature implies that

two languages share that feature, and translations between languages can allow moving theorems across

formal systems [9, 10].

Due to the incomparable advantages of soft and hard encodings, we had to formalize each feature

in both styles. This led not only to a duplication of code but also caused significant maintenance prob-

lems. In particular, it is difficult to ensure coherent encoding styles (e.g., naming conventions, order of

arguments, notations, etc.) in such a way that the two sets of encodings are related systematically.

For every pair of a hard- and a soft-typed encoding of the same language feature, there is a type

erasure translation from the former to the latter with an associated type preservation property. Such

translations have been investigated in various forms, see e.g., [1] for a systematic study in the form of

realizability theories. We will cast the type preservation as a logical relation proof as formalized in an

LF-based logical framework in [16]. Notably, given the hard-typed encoding, it is possible to derive the

soft-typed one, the erasure translation, and the preservation proof automatically. We call this derivation

softening. Systematic softening not only greatly reduces the encoding effort but simplifies maintenance

and produces more elegant code.

Contribution and Overview We define an operator Soften in the logical framework LF [6]. Despite

being conceptually straightforward, softening is a rather complex process, and an ad-hoc implementation,

while possible, would be error-prone and hard to maintain. Therefore, we employ a systematic approach

for deriving the softening operator that constructs the logical relation proof along with the softened

theory. A particular subtlety was to ensure the generated code to still be human-readable. That required

softening to consider pragmatic aspects like notations and choice of implicit arguments.

Our work is carried out under the LATIN2 header, which aims at a complete reimplementation of the

LATIN library. While LATIN worked with modular Twelf [15], LATIN2 uses the MMT/LF incarnation

of LF [13]. In addition to an implementation of LF and a module system, MMT provides a framework

for diagram operators [14], which supports the meta-theory and implementation of operators that sys-

tematically derive formalizations from one another. It also makes it easy to annotate declarations, which

we will use to guide the softening operator in a few places.

Importantly, these diagram operators are functorial in the category of LF theories and theory mor-

phisms. That enables scaling them up to entire libraries in a way that preserves modularity. That is

important to derive human-readable formalizations.

Sect. 2 introduces MMT/LF. Sect. 3 shows the key definition of the softening operator, and Sect. 4

establishes meta-theoretical properties that allow lifting it to libraries. Sect. 5 shortly sketches our im-

plementation in the MMT system.

2 The MMT Framework and Basic Formalizations

MMT [13] is a framework for designing and implementing logical frameworks. To simplify, we only use

the implementation of LF that comes with MMT’s standard library, and restrict the grammar to the main

features of MMT/LF: We assume the reader is familiar with LF (see e.g., [6]) and only recap the notions

of theories and morphisms that MMT adds on top.

90 Translating Intrinsic to Extrinsic Type Theories

∆ ::= · diagrams

| ∆, theory T = {Θ} theory definition

| ∆, morph m : S → T = {ϑ} morphism definition

Θ ::= · declarations in a theory

| Θ, c : A[= t] typed, optionally defined constants

| Θ, include S include of a theory

ϑ ::= · | ϑ , c = t | ϑ ,include m declarations in a morphism

Γ ::= · | Γ,x : A contexts

t,A, f ::= c | x | type | kind | λx:A t | Πx:A B | f t LF expressions

Theories An MMT/LF theory is ultimately a list of constant declarations c : A[= t] where the definiens

t is optional. A constant declaration may refer to any previously declared constant. LF provides the

primitives of a dependently typed λ -calculus, namely universes type and kind, function types Πx:A B,

abstraction λx:A t and application f t. In a constant declaration c : A, we must have A : type or A : kind,

and in a variable binding x : A, we must have A : type. As usual, MMT/LF allows writing A → B for

Πx:A B and omitting inferable brackets, arguments, and types. If we need to be precise about typing, we

write Γ ⊢T t : A for the typing judgment between two expressions that may use all constants from theory

T and all variables from context Γ.

A theory T may include a previously defined theory S, which makes all constants of S available in T

as if they were declared in T .

Example 1. We give theories formalizing hard- and soft-typed type theories. The left shows the common

theory Proofs that formalizes proofs in standard LF fashion using the judgments-as-types principle:

dedP is the type of proofs of the proposition P : prop, i.e., ded P is non-empty iff p is provable. HTyped

formalizes hard typing, also called intrinsic or Church typing, where typing is a function from terms to

types, i.e., every term has a unique type that can be inferred from it. That enables the representation of

object language terms t : a as LF terms t : tma. And STyped formalizes soft typing, also called extrinsic

or Curry typing, where typing is a relation between terms and types, i.e., a term may have multiple or

no types. That corresponds to a representation of an object language term t : a in LF as an untyped term

t : term for which a proof of dedoft a exists.

theory Proofs =
prop : type

ded : prop→ type

theory HTyped =
include Proofs

tp : type

tm : tp→ type

theory STyped =
include Proofs

tp : type

term : type

of : term→ tp→ prop

Morphisms A morphism m : S → T represents a compositional translation of all S-syntax to T -syntax.

We spell out the definition and key property:

Definition 1. A morphism m : S → T is a mapping of S-constants to T -expressions such that for all

S-constants c : A we have ⊢T m(c) : m(A) where m maps S-syntax to T -syntax as defined in Fig. 1. In the

sequel, we write m for m.

F. Rabe and N. Roux 91

constants of S

m(c) = m(c)

other expressions

m(x) = x

m(type) = type

m(Πx:A B) = Πx:m(A) m(B)

m(λx:A t) = λx:m(A)m(t)

m(f t) = m(f)m(t)

contexts

m(·) = ·
m(Γ,x : A) = m(Γ),x : m(A)

theories that include S

m(E = {. . . ,Di, . . .}) = Em = {. . . ,m(Di), . . .}
m(include S) = include T

m(c : A[= t]) = c : m(A)[= m(t)]
m(include E) = include Em

constants of a theory including S

m(c) = c

where Em generates a fresh name for the translated

theory

Figure 1: Map induced by a Morphism

Theorem 1. For a morphism m : S → T and a theory E that includes S, if Γ ⊢E t : A, then m(Γ) ⊢Em

m(t) : m(A). In particular for E = S, we have m(Γ) ⊢T m(t) : m(A).

In terms of category theory, a morphism m induces a pushout functor P(m) from the category

of theories including S to the category of theories including T . As a functor, m extends to diagrams,

i.e., any diagram of theories E including S and morphisms between them is mapped to a corresponding

diagram of theories Em including T . Moreover, for each E , m extends to a morphism E → Em that maps

every S-constant according to m and every other constant to itself. Each of these morphisms maps E-

contexts/expressions to Em and that mapping preserves all judgments. These morphisms form a natural

transformation, and we speak of a natural functor.

morph TE : HTyped → STyped =
include Proofs

tp = tp

tm = λa:tp term

theory HProd =
include HTyped

prod : tp→ tp→ tp

pair : Πa,b tma → tmb → tmprodab

projL : Πa,b tmprodab → tma

projR : Πa,b tmprodab → tmb

theory HProdTE =
include STyped

prod : tp→ tp→ tp

pair : Πa,b term→ term→ term

projL : Πa,b term→ term

projR : Πa,b term→ term

morph TEHProd : HProd → HProdTE =
include TE

prod = prod

pair = pair

projL= projL

projR= projR

Figure 2: Pushout along the Type Erasure Morphism

Example 2 (related to Fig. 2). The type erasure translation TE : HTyped→ STyped maps types a : tp

to types TE(a) : tp, which we formalize by tp = tp. And it maps typed terms t : tma to untyped

92 Translating Intrinsic to Extrinsic Type Theories

terms TE(t) : term, which we formalize by tm = λa:tp term and thus TE(tm a) = term. We also use

include Proofs to include the identity morphism on Proofs, i.e., all constants of Proofs are mapped

to themselves.

Applying this morphism, i.e., the pushout functor P(TE), to the theory HProd of hard-typed simple

products yields the theory HProdTE, which arises by replacing every occurrence of tmA with term.

TE also extends to the morphism TEHProd, which translates all expressions of HProd to expressions of

HProdTE. This translations preserves LF-typing, e.g., if ⊢HTyped t : tmprodab, then ⊢HTypedTE TEHProd(t) :

term.

However, HProdTE is not the desired formalization of soft-typed products (e.g., because it lacks

constants relating types and terms), and we develop a more suitable functor in the next section.

3 The Softening Operator

3.1 Basic Overview

Soften translates theories based on HTyped to theories based on STyped. The key idea is that whenever

we have an expression t : tma in HTyped, then in STypedwe need to synthesize two things: an expression

TE(t) : term and an expression t∗ : ofTE(t)TE(a) acting as a witness of type preservation. And whenever

we have an expression a : tp, we need to synthesize one thing only, namely TE(a) : tp. (Note that for

simple types such as product and function types, we have TE(a) = a. We discuss dependent function types

in the next section.) Both intuitions extend homomorphically to all concepts of LF such as function types

and contexts.

As an example, consider the constants pair,projL,projR in HProd in Fig. 3. For each of them

we synthesize a type-erased constant of the same name and a starred typing witness in STyped. Note

that the type parameters a and b are removed in their corresponding type-erased constant in SProd. We

have been unable to find a systematic way to determine when arguments need to be removed and discuss

this problem in Sec. 3.3. For the arguments in the starred constants such as pair∗, we synthesize two

parameters x : term and x∗ : dedofxa (whose name can often be omitted).

theory HProd =
include HTyped

prod : tp→ tp→ tp

pair : Πa,b tma → tmb → tmprodab

projL : Πa,b tmprodab → tma

projR : Πa,b tmprodab → tmb

theory SProd =
include STyped

prod : tp→ tp→ tp

pair : term→ term→ term

pair∗ : Πa,b Πx dedofxa → Πy dedofyb

→ dedof(pairxy)(prodab)
projL : term→ term

projL∗ : Πa,b Πx dedofx(prodab)
→ dedof(projLx)a

projR : term→ term

projR∗ : Πa,b Πx dedofx(prodab)
→ dedof(projRx)b

Figure 3: Hard and Soft Product Types

F. Rabe and N. Roux 93

3.2 Logical Relations

We capture the type preservation proof using logical relations. The meta-theory for using logical relations

to represent type preservation was already sketched in [16], but we have to make a substantial generaliza-

tion to partial logical relations and extend those to natural functors. Besides allowing the representation

of partial translations, this has an important practical advantage: the translations in [16] must introduce

unit argument types in places where no particular property about a term is proved. While semantically

irrelevant, softening must remove these in order to produce the softened theories actually expected by

humans, thus potentially violating the correctness of the translation. Partiality allows constructing the

softened theories in a way that these artefacts are not introduced in the first place.

Because logical relations can be very difficult to wrap one’s head around, we focus on the special

case needed for softening although we have designed and implemented it for the much more general

setting of [16]. Moreover, we advise readers to maintain the following intuitions while perusing the

formal treatment below:

• The morphism m : S → T is the type erasure translation TE : HTyped→ STyped.

• The logical relation r is a mapping TP from HTyped-syntax to STyped-syntax that maps

– types A : type to unary predicates TP(A) : TE(A)→ type about TE-translated terms of type

A

– terms t : A : type to proofs TP(t) : TP(A)TE(t) of the predicate associated with A

• Even more concretely,

– TP(prop),TP(ded),TP(tp) are all undefined because we need not prove anything about

terms at those types

– TP(tm) = λa:tp λx:term ofxa and thus TP(tma) = λx:term ofxa, i.e., TP maps every t : tma to

its typing proof TP(t) : of TE(t)a.

Moreover, it may help readers to compare Def. 1 and 2 as well as Thm. 1 and 2.

Definition 2. A partial logical relation on a morphism m : S → T is a partial mapping r of S-constants

to T -expressions such that for every S-constant c : A, if r(c) is defined, then so is r(A) and ⊢T r(c) :

r(A)m(c). r is called term-total if it is defined for a typed constant if it is for the type. The partial

mapping r of S-syntax to T -syntax is defined in Fig. 4. In the sequel, we write r for r.

The key idea of the map r is to attempt to construct r in the same way as in [16] for total r. Whenever

r is applied to an argument for which it is not defined, the expression is simply removed: if the type

of a bound variable would be undefined, the whole binding is removed; if an argument of a function

application would be undefined, the function is applied to one fewer argument. The next theorem states

that these removals fit together in the sense that r still satisfies the main property of logical relations

whenever it is defined:

Theorem 2. For a partial logical relation r on a morphism m : S → T , we have

• if Γ ⊢S t : A and r is defined for t, then r is defined for A and r(Γ) ⊢T r(t) : r(A)m(t)
• if r is term-total, it is defined for a typed term if it is for its type

Proof. The inductive definition is the same as in [16] except for the possibility of undefinedness. Thus,

whenever the results are defined, the typing properties follow from the theorems there.

First, it is straightforward to see that r is total on contexts and substitutions because the case distinc-

tions explicitly avoid recursing into arguments for which r is undefined.

Second, we show by induction on derivations of Γ ⊢S t : A that if A : type then r is defined for t iff it

is defined for A.

• constant c : A: True by assumption.

94 Translating Intrinsic to Extrinsic Type Theories

r(c) = r(c)

r(x) =

{

x∗ if x∗ was declared when traversing into the binder of x

undefined otherwise

r(type) = λa:type a → type

r(Πx:A B) = λ f :m(Πx:A B)Πr(x:A) r(B)(f x)

r(λx:A t) = λr(x:A) r(t)

r(f t) =

{

r(f)m(t)r(t) if r(t) defined

r(f)m(t) otherwise

r(·) = ·

r(Γ,x : A) = r(Γ),

{

x : m(A), x∗ : r(A)x if r(A) defined

x : m(A) otherwise

r(−) is undefined whenever an expression on the right-hand side is.

Figure 4: Map induced by a Logical Relation

• variable x : A: The case for Γ,x : A introduces the variable x∗ into the target context if r(A) is

defined. The case for x picks up on that and (un)defines r at x accordingly.

• λ -abstraction λx:A t : Πx:A B: r is always defined for x : A. By induction hypothesis, it is defined for

t if it is for B.

• t cannot be a Π-abstraction

• application f t : B(t) for some f : Πx:A B(x): By definition, r is defined for f t if it is defined for

f . By induction hypothesis the latter holds iff r is defined for Πx:A B(x), which by definition holds

iff it is defined for B(x). It remains to show that r is defined for B(t) iff it is defined for B(x) in

the context extended with x : A. By induction hypothesis, r is defined for t iff it is defined for

x. Therefore, and because the definition of r is compositional, substituting t for x cannot affect

whether r is defined for an expression.

Finally, if Γ ⊢E t : A for A : kind, we need to show that r is defined for A if it is for t. That is trivial:

inspecting the definition shows that r is always defined for kinds anyway.

We now capture how to synthesize SProd from HProd via logical relations. First we define the type

erasure morphism TE : HTyped→ STyped and the type preservation property as a logical relation TP on

TE. Then we define and apply the following functor on HProd, which can be thought of as an analog of

pushout along a logical relation:

Definition 3. Consider a morphism m : S → T and a term-total logical relation r on m. Then the functor

LR(m,r) from S-extensions to T -extensions maps theories E as follows:

1. We compute the pushout Em := P(m)(E).
2. Em has the same shape as E and there is a morphism mE : E → Em. For each, we create an initially

empty logical relation rE on mE .

3. For each declaration c : A[= t] in E for which rE(A) is defined, we add

(a) the constant declaration c∗ : rE(A)mE(c)[= rE(t)] to Em

(b) the case r(c) = c∗ to rE .

Concretely we get:

F. Rabe and N. Roux 95

theory LR(TE,TP)(HProd) =
include STyped

prod : tp→ tp→ tp

pair : Πa,b term→ term→ term

pair∗ : Πa,b Πx dedofxa → Πy dedofyb

→ dedof(pairabxy)(prodab)
projL : Πa,b term→ term

projL∗ : Πa,b Πx dedofx(prodab)→ dedof(projLabx)a

projR : Πa,b term→ term

projR∗ : Πa,b Πx dedofx(prodab)→ dedof(projRabx)b

Here we see that pair, projL, projR all take undesired (and unused) type arguments. In the sequel,

we will suitably extend the naive definition given above.

Fig. 5 gives some additional examples of hard-typed features. Here we also include hard-typed

equality HEqual to formulate the reduction rules for function types. Fig. 6 shows the corresponding

soft-typed variants that we intend to obtain. Note that these examples already foreshadow that Soften

can be extended to theories containing includes in a straightforward way. We will define that formally in

Sect. 4.

3.3 Removal of Unnecessary Parameters

In Sect. 3.2 we developed a translation from HTyped to STyped that maps every constant c : A to a trans-

lated constant c : m(A) and a witness c∗ : r(A)c, where we chose m = TE to be our type erasure morphism

and r = TP our logical relation capturing type preservation. This translation almost produced the desired

formalization SProd except that some translated constants featured undesired type parameters. Pre- or

post-composing our translation with one that removes selected type parameters is straightforward and

presented in the following. The major problem is identifying these parameters in the first place. For

example, in the library in Fig. 5 above we can distinguish the following cases:

• removal required, e.g., pair : Πa,b tma→ tmb→ tmprodab should go to pair : term→ term→
term

• removal optional depending on the intended result, e.g., eq : Πatma → tma → prop can go to

eq : term→ term→ prop or to eq : Πa term→ term→ prop; analogously lam : Πa,b (tma →
tmb)→ tmfunab can go to lam : (term→ term)→ term or to lam : Πa (term→ term)→ term

• removal forbidden, e.g., dfun : Πa:tp (tma → tp)→ tp should go to dfun : Πa (term→ tp)→ tp

Definition 4 (Unused Positions). Consider a constant c : A in a theory S in a diagram D. After suitably

normalizing, A must start with a (possibly empty) sequence of n Π-bindings, and any definition of c

(direct or morphism) must start with the same variable sequence λ -bound. We write c1
, . . . ,cn for these

variable bindings. Each occurrence of c in an expression in D is (after suitably η-expanding if needed)

applied to exactly n terms, and we also write ci for those argument positions.

We call a set P of argument positions of D-constants unused if for every ci ∈ P, the i-th bound

variable of the type or any definition of c occurs at most as a subexpression of argument positions that

are themselves in P.

We write D\P for the diagram that arises from P by removing for every ci ∈ P

• the i-th variable binding in the type and all definitions of c, e.g., c : Πx1:A1
Πx2:A2

B becomes c :

Πx1:A1
B if i = 2,

96 Translating Intrinsic to Extrinsic Type Theories

theory HEqual =
include HTyped

@keep(eq1)
eq : Πatma → tma → prop

refl : Πa,x dedeqaxx

eqsub : Πa,x,y dedeqaxy →
ΠF:tma→prop dedF x → dedF y

theory HFun =
include HEqual

fun : tp→ tp→ tp

@keep(lam1)
lam : Πa,b (tma → tmb)→ tmfunab

app : Πa,b tmfunab → tma → tmb

theory HDepFun =
include HEqual

@keep(dfun1)
dfun : Πa (tma → tp)→ tp

@keep(dlam1)
dlam : Πa Πb:tma→tp (Πx:tmatmbx)

→ tmdfunab

dapp : Πa,b tmdfunab → Πx:tmatmbx

theory HBeta =
include HFun

beta : Πa,b ΠF:tma→tmb Πx

dedeqb(appab(lamabF)x)(F x)

theory HEta =
include HFun

eta : Πa,b Π f :tmfunab

dedeq(funab) f (lamabλx app f x)

theory HExten =
include HFun

exten : Πa,b Π f ,g:tmfunab

(Πx dedeqb(appab f x)
(appabgx)) → dedeq(funab) f g

theory HDepBeta =
include HDepFun

dbeta : Πa,b ΠF:Πx:tma tmbx Πx

dedeq(bx)(dappab(dlamabF)x)(F x)

Figure 5: Theories for Function Types with Annotations for Needed Arguments

• the i-argument of any application of c, e.g., ct1 t2 becomes ct1 if i = 2.

Lemma 3 (Removing Unused Positions). Consider a well-typed diagram D and a set P of argument

positions unused in D. Then D\P is also well-typed.

Proof. Technically, this is proved by induction on the typing derivation of D. But it is easy to see: by

construction, (i) the variables bindings in P do not occur in D \P so that all types and definitions stay

well-typed, and (ii) the type, definitions, and uses of all constants are changed consistently so that they

stay well-typed. The only subtlety is that we need to apply LF’s η-equality to expand not fully applied

uses of a constant.

Note that, in the presence of include declarations or morphisms, the decision whether an argument

position may be removed is not local: we must consider the entire diagram to check for all occurrences.

If a theory T includes the theory S and uses a constant c declared in S, then an argument position ci

may be unused in S but used in T . Thus, the functor that removes argument positions may have to be

undefined on T .

Implementing the operation D\P is straightforward. However, much to our surprise and frustration,

automatically choosing an appropriate set P turned out to be difficult:

F. Rabe and N. Roux 97

theory SEqual =
include STyped

eq : Πaterm→ term→ prop

refl∗ : Πa,x dedofxa → dedeqaxx

eqsub∗ : Πa Πx,x∗ :dedofxa Πy,y∗ :dedofya

dedeqaxy →
ΠF:term→prop dedF x → dedF y

theory SFun =
include SEqual

fun : tp→ tp→ tp

lam : Πa (term→ term)→ term

lam∗ : Πa,b ΠF:term→term

(Πx dedofxa → dedof(F x)b)
→ dedof(lamaF)(funab)

app : term→ term→ term

app∗ : Πa,b Π f dedof f (funab)→
Πx dedofxa → dedof(app f x)b

theory SDepFun =
include SEqual

dfun : Πa (term→ tp)→ tp

dlam : Πa (term→ term)→ term

dlam∗ : Πa Πb:term→tp ΠF:term→term

(Πx dedofxa → dedof(F x)(bx))
→ dedof(dlamabF)(dfunab)

dapp : term→ term→ term

dapp∗ : Πa,b Π f dedof f (dfunab)→
Πx dedofxa → dedof(dapp f x)(bx)

theory SBeta =
include SFun

beta∗ : Πa,b ΠF:term→term

(Πx dedofxa → dedof(F x)b)
→ Πx dedofxa →
dedeqb(app(lamaF)x)(F x)

theory SEta =
include SFun

eta∗ : Πa,b Π f :term dedof f (funab)
dedeq(funab) f (lamaλx app f x)

theory SExten =
include SFun

exten∗ : Πa,b Π f :term dedof f (funab)→
Πg:term dedofg(funab)→
(Πx dedofxa → dedeqb(app f x)(appgx))
→ dedeq(funab) f g

theory SDepBeta =
include SDepFun

dbeta∗ : Πa,b ΠF:term→term

(Πx dedofxa → dedof(F x)(bx)) →
Πx dedofxa →
dedeq(bx)(dapp (dlamaF)x)(F x)

Figure 6: Result of Softening the Theories from Fig. 5

Example 3. The undesired argument positions in TEHProd are exactly the named variables in HProd that

do not occur in their scopes in TEHProd anymore. This includes the positions pair1 and pair2, and

removing them yields the desired declaration of pair in SProd.

However, that does not hold for HDepFun. Here the argument dfun1 is named in HDepFun and

unused in the declaration dfun : Πa:tp (term→ tp)→ tp that occurs in TEHDepFun. However, that is in

fact the desired formalization of the soft-typed dependent function type. Removing dfun1 would yield

the undesired dfun : (term→ tp) → tp. While we do not mention MMT’s implicit arguments in this

paper, note also that dfun1 is an implicit argument in HDepFun that must become explicit in SDepFun.

This is trickier than it sounds because some argument positions may only be removable if they are

98 Translating Intrinsic to Extrinsic Type Theories

removed at the same time; so a fixpoint iteration might be necessary. Moreover, picking the largest

possible P is entirely wrong as it would remove all argument positions. At the very least, we should

only remove named argument positions, i.e., those that are bound by a named variable (as opposed to the

anonymous variables introduced by parsing e.g., prod : tp→ tp→ tp). A smarter choice is to remove

all named argument positions that become redundant through pushout, e.g., that are named and used in

HProd but unused in TE(HProd). (Note that the pushout P(m)(D) has at least the argument positions

that D has. It may have more if m maps an atomic type to a function type.) That is the right choice almost

all the time but not always.

After several failed attempts, we have been unable to find a good heuristic for choosing P. For

now, we remove all named variables that never occur in their scope anymore, and we allow users to

annotate constants like @keep(dfun1) where the system should deviate from that heuristic (see Fig. 5).

We anticipate finding better solutions after collecting more data in the future. In the sequel, we write

P−(m)(D) := P(m)(D) \ PD where PD is any fixed heuristic. HProdP
−(TE) yields the theory SProd

except that it still lacks the ∗-ed constants. The following lemma shows that we can now obtain the

morphism e : HProd→ SProd from above as P−(TE)HProd:

Lemma 4 (Removing Arguments Preserves Naturality). Consider a natural functor O and a functor

O′(D) := O(D)\PD for some heuristic P. Then O′ is natural as well.

Proof. O being natural yields morphisms OE : E → EO from D-theories to O(D) theories. O(D′) has the

same shape as O(D), and to show that O′(D) is natural, we reuse essentially the same morphisms from

D-theories to O′(D)-theories. We only have to η-expand the right-hand sides of all assignments in the

morphisms OE and remove the same argument positions in PD as well.

It is straightforward to extend Def. 2 to all theories extending S in the same way as pushout extends

a morphism. That would yield an include- and definition-preserving natural functor. However, we omit

that here because that functor would work with P(m) whereas we want to use P−(m). Instead, we make

a small adjustment similar how we obtained P−(m) from P(m):

Definition 5. Consider a morphism m : S → T and a term-total logical relation r on m. Then the functor

LR(m,r) maps a theory E as follows:

1. We compute Em = P−(m)(E).
2. Due to Lem. 4, Em has the same shape as E , and there is a morphism mE : E → Em. We create an

initially empty logical relation rE on mE .

3. For each E-declaration c : A[= t] for which rE(A) is defined, we add

(a) the constant declaration c∗ : rE(A)c[= rE(t)] to Em

(b) the case r(c) = c∗ to rE .

Theorem 5. In the situation of Def. 5, the operator LR(m,r) is a natural functor. And every rE is a

term-total logical relation on mE .

Proof. We already know that P−(−) has the desired properties. Moreover, adding well-typed declara-

tions to P−(m) does not affect the naturality (because adding declaration to the codomain never affects

the well-typedness of a morphism). So for the first claim, we only have to prove that our additions are

well-typed.

We prove that and the fact that rE is a logical relation jointly by induction on the derivation of the

well-typedness of D: We appeal to Thm. 2 to show that the added constant declarations are well-typed.

And the cases r(c) = c∗ satisfy the typing requirements of logical relations by construction.

F. Rabe and N. Roux 99

Now the functor LR(TE,TP) generates for every hard-typed feature F

• the corresponding soft-typed feature F ′

• the type-erasure translation TEF : F → F ′ as a compositional/homomorphic mapping,

• the type preservation proof TPF for the type erasure as a logical relation on TEF .

In particular, we have SProd= LR(TE,TP)(HProd).

3.4 Translating Proof Rules Correctly

We omitted the reduction rules in our introductory example HProd. This was because LR(TE,TP) is still

not the right operator. To see what goes wrong, assume we leave TP(ded) undefined, and consider the

type of the beta rule from HBeta:

HBeta Πa,b ΠF:tma→tmb Πxdedeqb(appab(lamabF)x)(F x)

HBetaLR(TE,TP) (generated) Πa,b ΠF:term→term Πx

dedeqb(app(lamaF)x)(F x)
SBeta (needed) Πa,b ΠF:term→term ΠF∗:Πa dedofxa→dedof (F x)b Πx Πx∗:dedofxa

dedeqb(app(lamaF)x)(F x)

The rule generated by LR(TE,TP)(HProd) is well-typed but not sound. In general, the softening

operator must insert ∗-ed assumptions for all variables akin to how Def. 5 inserts them for constants. But

it must only do so for proof rules and not for, e.g., fun, lam, and app.

We can achieve that by generalizing to partial logical relations on partial morphisms. Intuitively,

we define PLR(m,r) for partial m and r in the same way as LR(m,r), again dropping all variable and

constant declarations for whose type the translation is partial.

First we refine TE and TP (from Fig. 2 and Page 93, respectively) as follows:

• We leave TE(ded) undefined, i.e., our morphisms do not translate proofs. That is to be expected

because we know that TE cannot be extended to a morphism that also translates proofs [12].

• We put TP(ded) = λp:prop ded p and thus TP(dedP) = dedTE(P) for all P. This trick has the

effect that beta∗ is generated as well and has the needed type (whereas the generation of beta is

suppressed).

Then we finally define Soften= PLR(TE,TP). For every proof rule c over HTyped, it

• drops the declaration of c,

• generates the declaration of c∗, which now has the needed type.

Soften is still include- and definition-preserving but is no longer natural. We conjecture that it is

lax-natural and captures proof translations as lax morphisms in the sense of [12].

4 Translating Libraries

In the examples so far we have applied Soften on theories extending HTyped one at a time. We now ex-

tend it to a translation on whole structured diagrams of theories and morphisms, mapping whole libraries

of hard-typed features at once.

Before spelling out the definition, we show an exemplary library of hard-typed features in Fig. 7.

Here, we extend the collection of theories shown so far, the most notable extensions being several mor-

phisms and the theory HQuot formalizing hard-typed quotient types. Here, the morphism HProd →
HDepProd realizes simple product types as a special case of dependent product types. Analogously, all

of the morphisms H{Fun,Beta,Eta,Exten} → HDep{Fun,Beta,Eta,Exten} realize the simply-typed

100 Translating Intrinsic to Extrinsic Type Theories

HTyped

HProd HDepProd HFun HDepFun HQuot . . .

HBeta

HEta HExten

HDepBeta

HDepEta HDepExten

Figure 7: Diagram of hard-typed features

feature as a special case of the corresponding dependently-typed feature. And the anti-parallel morphism

pairs HEta−�=�− HExten and HDepEta−�=�− HDepExten capture that η and extensionality are equivalent

in the presence of β reduction. Our goal is to soften this library in a way that preserves the modular

structure.

Definition 6 (Soften on Diagrams). On the category of theories and partial morphisms, we define

Soften as the partial functor translating diagrams D over HTyped to diagrams D′ over STyped as fol-

lows:

• every theory/morphism with name X in D yields a theory/morphism XSoften in D′

• every includeHTyped is replaced by includeSTyped; and every includeX by includeXSoften

• every declaration c : A [= t] in a theory S yields those on the left below, and every assignment c := t

in a morphism yields those on the right below (whenever the involved translations are defined)

c : mS(A) [= mS(t)] c := mS(t)

c∗ : TPS(A)c [= TPS(t)] c∗ := TPS(t)

where mS : S →P−(TES)(S) is the morphism from Lem. 4 and TES and TPS are given below.

We define TE as the partial morphism and TP as the partial logical relation on TE by

TE(prop) = prop

TE(tp) = tp

TE(tm) = λa:tp term

TP(ded) = λp:prop ded p

TP(tm) = λa:tp λx:term of xa

Then we additionally build the following components of D′:

• every theory X yields a partial morphism TET : T → T Soften and a partial logical relation TPT over

TET

F. Rabe and N. Roux 101

• every include HTyped in a theory S is replaced by include TE in TES, and TPS is made to extend

TP; and every other include T in theories S yields include TES, and the definition of TPS extends

TPT

• every declaration c : A [= t] in a theory S yields c := c in TES and TPS(c) := c∗ (whichever are

defined)

Theorem 6 (Structure Preservation). Consider the category of LF theories and partial type- and sub-

stitution-preserving expression translations as morphisms. Then Soften is functorial and preserves the

structure of includes and definitions. It is natural via the morphisms TES and the relation TPS.

Proof. This holds by construction.

This finally yields the intended soft-typed formulation of SFun := HFunSoften and SDepFun :=
HDepFunSoften. As an example, we give the morphism HSFtoDF : HFun → HDepFun and its transla-

tion below.

morph HSFtoDF : HFun→HDepFun=
include HEqual

fun= λa,b dfunaλx b

lam= λa,b,F dlama(λx b)F

app= λa,b, f ,x dappa(λx b) f x

morph HSFtoDFSoften : HFunSoften→HDepFunSoften =
include HEqualSoften

fun = λa,b dfunaλx b

lam = λa,F dlamaF

lam∗ = λa,b,F,F∗ dlam∗ a(λx b)F F∗

app = λ f ,x dapp f x

app∗ = λa,b, f , f ∗ ,x,x∗ dappa(λx b) f f ∗ xx∗

If we generalize the meta-theory of [12] to partial morphisms/relations and work in a variant of LF

that adds product types, we could pair up TES and TPS into a single expression translation that maps every

term to the pair of its type erasure and its type preservation proof.

5 Implementation

The formalizations developed in this paper including the act of softening are available online as part of

the LATIN2 library.1 Our implementation adds a component to MMT that applies logical relation-based

translations to entire diagrams of theories and morphisms. Then softening arises as one special case of

that construction. While all translations are implemented in the underlying programming language of

MMT and thus part of the trusted code base, our general and systematic approach minimizes the amount

of new code needed for any given instance such as softening. That makes it much easier to review their

correctness. In any case, the generated diagrams can easily be double-checked by the original logical

framework.

We are still experimenting with how to trigger these translations. It is non-obvious if softening

should be triggered by a new kind of declaration in the logical framework, a library-level script that lives

outsides the logical framework, or a feature of the implementation that transparently builds the softened

theory whenever the user refers to it. As a prototype, we have chosen the first of these approaches.

In our implementation it proved advantageous to not have separate syntax for morphisms and logical

relations. Indeed, both are maps of names to expressions that extend to compositional translations of

expressions to expressions, differing only in the inductive extension. Instead, we found a way to represent

1https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/casestudies/2021-softening

https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/casestudies/2021-softening

102 Translating Intrinsic to Extrinsic Type Theories

every logical relation as a morphism, thus obviating the need to introduce additional syntax for relations.

The trick is to implement a special include-preserving functor that generates a theory I that specifies

exactly the typing requirements for the cases in a logical relation r, and then to represent r as a morphism

out of I. We can even use this trick to represent multiple translations at once in a single morphism.

For example, in our implementation we jointly represent TE and TP from Def. 6 as a single morphism

TypePres, which in implementation-near syntax reads as follows.

view TypePres : HTyped_comptrans -> STyped =

prop/TE = prop

tp/TE = tp

tm/TE = [x] term

tm/TP = [A,t] ⊢ t ◦
◦ A

ded/TP = ded

Here, HTyped_comptrans refers to a suitable kind interface theory for combined translations on HTyped.

Softening now emerges as the composition of multiple operators in our implementation, which for

the sake of conciseness were combined in one big operator in this paper. Assume we wanted to soften

a library of hard-typed features given as a diagram HLibrary (e.g., the one from Fig. 7). First, we

compute the diagram HLibrary_comptrans of corresponding interface theories. This diagram has the

same shape as HLibrary and is a tree rooted in HTyped_comptrans. Then, we compute the pushout

of the resulting diagram along TypePres. The steps so far are effectively equivalent to applying the

operator from Def. 3 accounted for with correct translation of proof rules. Finally, it remains to apply

the operator that drops unnecessary parameters (according to the heuristic outlined in Sec. 3.3). Below,

we show how the last two steps look like in our.

diagram SLibrary :=

DROP_PARAMS STyped (PUSHOUT TypePres HLibrary_comptrans)

6 Conclusion

We have given a translation of hard-typed (intrinsic) to soft-typed (extrinsic) formalizations of type

theory. Even though the existence of such translation is known, it had previously proved difficult to

derive it from meta-theoretic principles in such a way that it can be studied and implemented easily.

Our key insight was that the associated type preservation proof can be cast as a logical relation, which

allowed us to derive the translation from the requirement that the logical relation proof succeeds.

Our translation preserves modularity, which makes it suitable for translating modular libraries of

formalizations of various type theories. That enhances the quality and coverage of the library while

reducing the maintenance effort. Our implementation will serve as a key component in scaling up our

modular formalizations of type theories in our LATIN2 library.

We expect our methodology of functors on diagrams of LF theories to extend to other important

translations such as adding polymorphism or universes.

F. Rabe and N. Roux 103

References

[1] J. Bernardy and M. Lasson. Realizability and parametricity in pure type systems. In M. Hof-

mann, editor, Foundations of Software Science and Computational Structures, pages 108–122, 2011.

doi:10.1007/978-3-642-19805-2_8.

[2] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5(1):56–68, 1940.

doi:10.2307/2266170.

[3] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. Project Abstract: Logic Atlas and

Integrator (LATIN). In J. Davenport, W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Math-

ematics, pages 289–291. Springer, 2011. doi:10.1007/978-3-642-22673-1_24.

[4] H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.

doi:10.1016/S0049-237X(08)72041-X.

[5] W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur, editor, Conference on Automated

Deduction, pages 467–581, 1992. doi:10.1007/3-540-55602-8_192.

[6] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the Association for

Computing Machinery, 40(1):143–184, 1993. doi:10.1145/138027.138060.

[7] R. Harper, D. Sannella, and A. Tarlecki. Structured theory presentations and logic representations. Annals of

Pure and Applied Logic, 67:113–160, 1994. doi:10.1016/0168-0072(94)90009-4.

[8] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - Proof management for structured speci-

fications. J. Log. Algebr. Program, 67(1–2):114–145, 2006. doi:10.1016/j.jlap.2005.09.005.

[9] P. Naumov, M. Stehr, and J. Meseguer. The HOL/NuPRL proof translator - a practical approach to formal

interoperability. In R. Boulton and P. Jackson, editors, 14th International Conference on Theorem Proving in

Higher Order Logics. Springer, 2001. doi:10.1007/3-540-44755-5_23.

[10] F. Pfenning. Structural cut elimination: I. intuitionistic and classical logic. Information and Computation,

157(1-2):84–141, 2000. doi:10.1006/inco.1999.2832.

[11] F. Pfenning, C. Schürmann, M. Kohlhase, N. Shankar, and S. Owre. The Logosphere Project, 2003.

https://kwarc.info/projects/logosphere/.

[12] F. Rabe. Lax Theory Morphisms. ACM Transactions on Computational Logic, 17(1), 2015.

doi:10.1145/2818644.

[13] F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic and Computation, 27(6):1753–

1798, 2017. doi:10.1093/logcom/exu079.

[14] F. Rabe and N. Roux. Structure-Preserving Diagram Operators. In M. Roggenbach, ed-

itor, Recent Trends in Algebraic Development Techniques, pages 142–163. Springer, 2020.

doi:10.1007/978-3-030-73785-6_8.

[15] F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Cheney and A. Felty, editors, Pro-

ceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pages 40–48. ACM

Press, 2009. doi:10.1145/1577824.1577831.

[16] F. Rabe and K. Sojakova. Logical Relations for a Logical Framework. ACM Transactions on Computational

Logic, 14(4):1–34, 2013. doi:10.1145/2536740.2536741.

https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-642-22673-1_24
https://doi.org/10.1016/S0049-237X(08)72041-X
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1145/138027.138060
https://doi.org/10.1016/0168-0072(94)90009-4
https://doi.org/10.1016/j.jlap.2005.09.005
https://doi.org/10.1007/3-540-44755-5_23
https://doi.org/10.1006/inco.1999.2832
https://kwarc.info/projects/logosphere/
https://doi.org/10.1145/2818644
https://doi.org/10.1093/logcom/exu079
https://doi.org/10.1007/978-3-030-73785-6_8
https://doi.org/10.1145/1577824.1577831
https://doi.org/10.1145/2536740.2536741

	1 Introduction
	2 The MMT Framework and Basic Formalizations
	3 The Softening Operator
	3.1 Basic Overview
	3.2 Logical Relations
	3.3 Removal of Unnecessary Parameters
	3.4 Translating Proof Rules Correctly

	4 Translating Libraries
	5 Implementation
	6 Conclusion

