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We present a generic framework that facilitates object level reasoning with logics that are encoded
within the Higher Order Logic theorem proving environment of HOL Light. This involves proving
statements in any logic using intuitive forward and backward chaining in a sequent calculus style.
It is made possible by automated machinery that take care of the necessary structural reasoning
and term matching automatically. Our framework can also handle type theoretic correspondences
of proofs, effectively allowing the type checking and construction of computational processes via
proof. We demonstrate our implementation using a simple propositional logic and its Curry-Howard
correspondence to the λ -calculus, and argue its use with linear logic and its various correspondences
to session types.

1 Introduction

Higher order logic (HOL) proof assistants, such as HOL Light [13], provide the means to encode other
languages and prove conjectures specified within them (object-level reasoning). This can help understand
how the objects of an encoded logic behave or develop practical applications using that logic, such as
the development of correct-by-construction programs, type checking, or verification of specific terms or
programs (such as the work on linear logic in Coq by Power et al.[31]).

In practice, performing proofs within an encoding of a custom logic in HOL typically requires the
development of specialised tools and tactics, in what can be seen as a theorem prover within a theorem
prover. These include, for example, mechanisms for fine-grained structural manipulation of the encoded
formulae, customised application of the inference rules, seamless backward and forward chaining, etc.
Users often need to develop such tools in an ad-hoc way in order to reason specifically about the logic
they are interested in, and this drastically increases the effort and time required to obtain a useful encod-
ing. Moreover, such tools may not scale across other logics, leading to a replication of effort.

We present a generic framework and toolset for object-level reasoning with custom logics encoded
in HOL Light. It aims to facilitate the exploration of different logic theories by minimizing the effort
required between encoding the logic and obtaining a proof. Assuming a sequent calculus style encoding
of the logic’s inference rules, it allows their direct and intuitive application both backwards and forwards,
while the system automates most of the structural reasoning required. The implemented tactics can also
be used programmatically to construct automated proof procedures.

An important part of our framework, which sets it apart from similar systems like Isabelle (see Sec-
tion 5.1), is the handling of type theoretical correspondences between encoded logics and programs.
These are inspired by the propositions-as-types paradigm (or Curry-Howard correspondence) between
intuitionistic logic proofs and the λ -calculus [16]. They enable the construction of executable terms in
some calculus via proof, also referred to as computational construction. Terms are attached on each
logical formula, so that the formula represents the type of the term. The application of inference rules on
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such a term annotated with its type, results in the construction of a more complex computational expres-
sion with some guaranteed correctness properties. Typically, cut-elimination in the proof corresponds to
a reduction or execution step in the constructed term.

Our framework allows the user to easily construct computational terms and test and compare different
logics and the behaviour of their correspondences (or even multiple correspondences of the same logic
at the same time), merely by manipulating the encoding of the inference rules rather than having to
rebuild or repurpose the implemented tools each time. More specifically, our framework allows 2 types
of proofs:

• Type checking proofs involve conjectures whose computational translation is given and the proof
can only succeed if the conjecture is provable and the translation is correct. Such proofs effectively
verify the types of programs.

• Construction proofs involve conjectures whose computational translation is unknown and is con-
structed as the proof progresses. Such proofs allow us to construct programs that match a given
type via proof.

One of the main motivations of our work lies in the variety of computational translations between
linear logic and session types, which we discuss briefly in Section 5.

2 Example: Simple Logic

In order to provide simple examples of the functionality of our system, we focus on a subset of propo-
sitional logic involving only conjunction (×) and implication (→). More specifically, the terms of our
example propositional logic can be defined as follows, using True (T) as a constant/bottom object:

Prop ::= T | Prop×Prop | Prop→ Prop (1)

Our system is tailored to sequent calculus formulations, mainly because sequent calculus deduction
is easier to encode as an inductive definition within HOL (and particularly in HOL Light). Note, however,
that we use an intuitionistic sequent calculus which is equivalent to natural deduction [10].

The inference rules of our simple logic are shown in Figure 1. Note that Γ and ∆ represent contexts,
i.e. finite sequences of formulae that are not affected by the application of the rule.

In the next sections we investigate how this example logic can be encoded in HOL Light and then
how our framework enables object-level proofs automatically without any further coding.

2.1 Encoding

A standard way of encoding such a logic in HOL Light starts by defining the syntax of the terms, in our
case as shown in (1), as an inductive type. Note that, for clarity, we typeset definitions and formulas
using the standard logical symbols for the various connectives instead of the harder to read ASCII-based
syntax of HOL Light. The actual HOL Light implementation is available in the code base (see Section 4)
and we also point out mappings between standard logic and HOL Light syntax where necessary.

We then need to provide the means to describe a sequent based on logical consequence (denoted by
`). A sequent may contain multiple formulas, including multiple copies of the same formula (such as in
the contraction rule C in Figure 1), and is thus often represented using a list of terms.

Like most logics, our example includes an Exchange rule (see Figure 1). This means that the order
of the terms in the sequent is not important, so that A, B `C and B, A `C are semantically identical.
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Identity & Cut

A `A Ax
Γ `A ∆, A `C

Γ, ∆ `C Cut

Structural Rules

Γ, A, B, ∆ `C
Γ, B, A, ∆ `C

Exchange Γ `C
Γ, A `C W

Γ, A, A `C
Γ, A `C C

Logical Rules

Γ, A `C
Γ, A×B `C L1×

Γ, B `C
Γ, A×B `C L2× Γ `A ∆ `B

Γ, ∆ `A×B R×

Γ, B `C ∆ `A
Γ, ∆, A→ B `C L→

Γ, A `B
Γ `A→ B R→

Figure 1: The inference rules of the subset of propositional logic used as an example.

For this reason, in paper proofs the Exchange rule is almost always used implicitly, especially in com-
plex proofs which may require a large number of applications of Exchange to manipulate the sequents
in the right form. We avoid their use altogether in our framework by replacing lists of formulas in a
sequent with multisets1. In this case, the mechanism of bringing the sequents in the appropriate form
relies on reasoning about and matching multisets, and these tasks can be automated more efficiently (see
Section 4.2)2.

An existing theory in HOL Light already has many useful formalised properties of multisets, and we
added some more in our own small library extension. A variety of methods and tools, such as multiset
normalisation, needed for our particular tasks were also implemented. Finally, we introduced HOL Light
abbreviations for multiset sums (^) and singleton multisets (’), in order to obtain a cleaner syntax. In
this paper though, for readability, we use the ] symbol to denote a multiset sum, whereas enumerated
multisets are enclosed in curly brackets {·}.

Based on the above, the sequent Γ, A `B can be represented using ` as an (infix) boolean function
in the term (Γ]{A}) `B. Note that a context Γ is represented by a multiset variable, i.e. a variable of
type (Prop)multiset, whereas formulas A and B are term variables of type Prop. Also note that other
logics may have additional or different types of arguments. For example, a regular (non-intuitionistic)
sequent calculus will need 2 multisets of terms (left and right side) and some formulations of linear logic
may need 4 multisets of terms (to distinguish linear from non-linear contexts). Our framework can deal
with any of these situations with no additional specification other than the definition of ` as a function.

Using this representation of sequents, the inference rules of the logic can be encoded as an inductive
definition of logical consequence ` as a function |-- in HOL Light. Note that this is different from HOL
Light’s syntax for entailment in proven HOL theorems |-, which we omit here altogether to prevent

1Sets may also be used to eliminate the need for weakening and contraction rules, but we prefer multisets as a more general
approach that allows us to encode Linear Logic (see Section 5).

2However rare, non-commutative (or non-associative) substructural logics do exist, such as Lambeck’s calculus of syntactic
types [18]. These can still be expressed in our framework using lists and will work with our tactics, but will simply not take
advantage of the specialised multiset matching.
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any ambiguity. In the encoding, HOL implication (=⇒) expresses valid derivations between sequents,
making HOL the effective meta-logic. As an example, the R× rule from Figure 1 can be specified in the
definition of ` as follows:

Γ `A=⇒∆ `B=⇒(Γ]∆) `A×B (2)

2.2 Object-level proofs

So far we covered a straightforward encoding of a logic in HOL Light, with tools that are already avail-
able. Given such an encoding, one would expect to be able to do some object-level proofs. Let us take
the commutativity of conjunction (×), i.e. `X×Y → Y ×X as an example of such a proof:

X `X Ax

X×Y `X L1× Y `Y Ax

X×Y `Y L2×

X×Y, X×Y `Y ×X R×

X×Y `Y ×X C

`X×Y → Y ×X R→ (3)

Using vanilla HOL Light, proof (3) can be accomplished using the interactive steps shown in Fig-
ure 2. The actual proof script is available online and executed interactively (see link in Section 4).

Step Tactic Goal(s)
Initial state ∅ `X×Y → Y ×X

1 MATCH_MP_TAC (R→) ∅]{X×Y} `Y ×X
2 MATCH_MP_TAC (C) ∅]({X×Y}]{X×Y}) `Y ×X
3 REWRITE_TAC[MUNION_EMPTY2] {X×Y}]{X×Y} `Y ×X
4 MATCH_MP_TAC (R×) {X×Y} `Y ∧ {X×Y} `X
5 CONJ_TAC {X×Y} `Y {X×Y} `X
6 SUBGOAL_THEN (∅]{X×Y} `Y)... ∅]{X×Y} `Y {X×Y} `X
7 MATCH_MP_TAC (L2×) ∅]{Y} `Y {X×Y} `X
8 REWRITE_TAC[MUNION_EMPTY2] {Y} `Y {X×Y} `X
9 MATCH_ACCEPT_TAC (ID) {X×Y} `X

10 SUBGOAL_THEN (∅]{X×Y} `X)... ∅]{X×Y} `X
11 MATCH_MP_TAC (L1×) ∅]{X} `X
12 REWRITE_TAC[MUNION_EMPTY2] {X} `X
13 MATCH_ACCEPT_TAC (ID)

Figure 2: Interactive steps in HOL Light performing proof (3).

Although there are 7 rule applications in the original proof, the HOL Light script contains almost
double the steps even for such a simple, straightforward proof.

The main tactic that allows the application of inference rules is MATCH_MP_TAC, which matches the
consequent of a HOL implication in a theorem with the goal and sets the antecedent as the new goal. Our
rules are expressed using implication, so MATCH_MP_TAC fits well for this use. However, the consequent
and goal must match exactly for the tactic to work. This forces us to constantly manipulate the structure
of the goal to ensure the rule is applied correctly.

Step 1 is straightforward. Observing the R→ rule in Figure 1 and the initial state, it is clear that
Γ in the rule is matched to the left-hand side of the turnstile, i.e. ∅. The new goal is produced by the
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antecedent of the rule Γ, A `B, where the left-hand side becomes Γ]{A}, i.e. ∅]{X ×Y}. The empty
multiset is therefore carried forward in the new goal.

This causes a problem after Step 2, where we want to apply the R× rule. If we were to immediately
apply MATCH_MP_TAC, it would yield the instantiation Γ = ∅ and ∆ = {X ×Y}]{X ×Y}. However,
we would rather have a different context split, i.e. one where Γ = {X ×Y} and ∆ = {X ×Y}. In this
particular case, this is easily solved by eliminating the empty multiset via rewriting with the theorem
MUNION_MEMPTY23, i.e. the property ∀M.∅]M = M. In other cases, this is not as simple to solve. For
example, in Steps 6−7 we need to reintroduce an empty multiset to match with Γ in the L2× rule through
a new subgoal (using SUBGOAL_TAC).

Even through this simple example, it is clear that performing such object-level proofs with an en-
coded logic can be tedious. We need to be able to manipulate the goal state to allow the rules to match,
which often requires multiple steps using rewritting or appropriate rule instantiations. This effort put into
the management of multiset-based context is also encountered in related work [31].

Our framework facilitates this process, alleviating the need for such fine-grained manipulation. More
specifically, it provides both forward and backward reasoning with simple procedural tactics. It also
performs intelligent multiset matching automatically, performing all the necessary manipulations (such
as adding empty multiset as required) in the background. Using our framework, the proof script from
Figure 2 is simplified as shown in Figure 3. Notice how each rule application now only requires a single
proof step in HOL Light, using our ruleseq command described in Section 4.

Step Tactic Goal(s)
Initial state ∅ `X×Y → Y ×X

1 ruleseq (R→) {X×Y} `Y ×X
2 ruleseq (C) {X×Y}]{X×Y} `Y ×X
3 ruleseq (R×) {X×Y} `Y {X×Y} `X
4 ruleseq (L2×) {Y} `Y {X×Y} `X
5 ruleseq (ID) {X×Y} `X
6 ruleseq (L1×) {X} `X
7 ruleseq (ID)

let TIMES_COMM = prove_seq ( ‘∅ ` X×Y → Y ×X‘,
ETHENL (ETHEN (ruleseq R→) (ETHEN (ruleseq C) (ruleseq R×)))

[ ETHEN (ruleseq L2×) (ruleseq ID) ;

ETHEN (ruleseq L1×) (ruleseq ID) ] );;

Figure 3: Interactive (top) and packaged (bottom) steps performing proof (3) using our framework.

3 Example: The Curry-Howard isomorphism

Howard’s seminal paper describes the use of first order logic as a system for simply typed λ -calculus
and studies the correspondence of cut elimination to function evaluation in what came to be known as
the Curry-Howard correspondence [16]. Howard uses natural deduction for his formulation, noting how
it is “inappropriate” for Gentzen’s sequent calculus. Girard delves deeper into this distinction between

3https://github.com/PetrosPapapa/hol-light-tools/blob/91f3f1b030728e0edf3ec86732d185207839a8ad/

Library/multisets.ml#L75

https://github.com/PetrosPapapa/hol-light-tools/blob/91f3f1b030728e0edf3ec86732d185207839a8ad/Library/multisets.ml#L75
https://github.com/PetrosPapapa/hol-light-tools/blob/91f3f1b030728e0edf3ec86732d185207839a8ad/Library/multisets.ml#L75
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the two proof systems and provides a translation from natural deduction to intuitionistic sequent calculus
(i.e. sequents with a single conclusion) [10].

To simplify the discussion, we focus on a subset of this type theory involving only function and
product types as primitives, to mirror the simple logic presented in the previous section, but also in the
spirit of Wadler’s discussion of the same topic [34]. The corresponding λ -calculus is defined with the
following syntax:

Lambda ::= Var A | Lambda Lambda | (Lambda,Lambda) | λA. Lambda

This includes variables (Var), function application ( f x), products (x,y), and functions (λx. y). Note
that this type definition is polymorphic with respect to the type of variables A. This allows us to describe
the (simple) types of this calculus using any datatype (though typically one would use strings).

We also define two projection functions for products f st and snd so that f st (x,y) = x and snd (x,y) =
y. Normally, projections are added as a primitive constructor of the inductive type. Cut elimination can
then be used to prove what we give by definition here. Since we will not be performing cut elimination
proofs, we employ these definitions as a more pragmatic approach.

Using the above syntax and mirroring the rules shown in Figure 1, the rules of this type theory are
shown in Figure 4.

Identity & Cut

x :A `x :A Ax
Γ `z :A ∆, z :A `x :C

Γ, ∆ `x :C Cut

Structural Rules

Γ, x :A, y :B, ∆ `z :C
Γ, y :B, x :A, ∆ `z :C

Exchange Γ `z :C
Γ, x :A `z :C W

Γ, x :A, x :A `z :C
Γ, x :A `z :C C

Logical Rules

Γ, f st x :A `z :C
Γ, x :A×B `z :C L1×

Γ, snd x :B `z :C
Γ, x :A×B `z :C L2×

Γ `x :A ∆ `y :B
Γ, ∆ `(x,y) :A×B

R×

Γ, f y :B `z :C ∆ `y :A
Γ, ∆, f :A→ B `z :C L→

Γ, Var x :A `y :B
Γ `λx.y :A→ B

R→

Figure 4: The inference rules of the Curry-Howard correspondence for our given subset of propositional
logic.

It is worth mentioning the explicit distinction between any lambda term and specifically variables.
The R→ rule enforces that only variables can be entered in a λ expression, a property which is usually
implicit in such formulations.

In the next sections, we describe how this encoding can be built on top of the previous one in HOL
Light, and explain what kind of object-level proofs we would like to perform.
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3.1 Encoding

The encoding of such a type theory can be very similar to the one we described in Section 2.1 for the
same logic without computational components. The main difference is that in this case, our logical
terms are augmented with lambda terms whose types they are describing. For this reason, we define the
operator : (represented as :: in HOL Light to avoid a conflict with its own type annotation) as an infix
term constructor.

The inference rules are defined inductively in the same way, simply using annotated terms instead of
propositions. As an example, the R× rule is defined as follows:

Γ `x :A=⇒∆ `y :B=⇒(Γ]∆) `(x,y) :A×B (4)

It is worth noting that in other types of computational correspondence, such as those involving linear
logic (see Section 5), calculus terms can be attached to the entire sequent (as opposed to formulas within
it). We accomplish this by adding an additional argument to the consequence function (i.e. to `).

3.2 Object-level proofs

As mentioned in Section 1, there are 2 types of proofs that can be performed at the object-level with such
a logic: type checking and construction proofs.

The example proof of commutativity of × from Section 2.2 can be used to type check the function
λx.(snd(Var x), f st(Var x)) as follows:

f st(Var x) :X ` f st(Var x) :X Ax

Var x :X×Y ` f st(Var x) :X
L1×

snd(Var x) :Y `snd(Var x) :Y Ax

Var x :X×Y `snd(Var x) :Y
L2×

Var x :X×Y, Var x :X×Y `(snd(Var x), f st(Var x)) :Y ×X
R×

Var x :X×Y `(snd(Var x), f st(Var x)) :Y ×X
C

`λx.(snd(Var x), f st(Var x)) :X×Y → Y ×X
R→

(5)

Notice how, as far as the logical derivation is concerned, proofs (3) and (5), i.e. the proof with and
without computational annotations, are identical (although type checking a different function of the same
type would require a different proof). Our framework reflects this property, since the proof script from
Figure 3 can be used exactly as is to perform proof (5).

The equivalent construction proof aims to construct the term corresponding to the type X×Y→Y×X
from the proof instead of knowing it a priori. We can express such proofs using existential quantification
in the meta-logic (HOL) to set the following goal:

∃ f . ` f :X×Y → Y ×X

Although type checking proofs can be performed in a relatively straightforward way, using appro-
priate rule applications that match not only the logical but also the computational terms, construction
proofs can be challenging to do even on paper. Although the logical derivation relies only on the logi-
cal terms, the construction of the computational term requires careful tracking of metavariables across
the entire proof. For example, the above proof can only be completed by (iteratively) instantiating f to
λx.(snd(Var x), f st(Var x)).

In our framework, the same proof script from Figure 3 can be used for the construction proof. The
construction is performed automatically in the background, as described in Section 4.4, and the con-
structed term can be extracted once the proof is complete with a simple instantiation of f .
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4 Implementation

In this Section, we describe the key implemented features of our framework. These include the following:
1. Adapted procedural tactics for forward and backward reasoning inspired from Isabelle (Section 4.1).

2. Smarter matching of sequents using multiset matching (Section 4.2) and metavariable unification
(Section 4.4).

3. Updated functions for proof state management and tactic application to allow arbitrary extensions
of the proof state (Section 4.3).

4. Better management of metavariables, ensuring they are carried forward in the extended proof state
for each subgoal (Section 4.3).

5. Functions that facilitate the extraction of constructed components (Section 4.4).
The full implementation, including the examples included in this paper in full detail, can be found

online. The code base is separated into a library of general purpose tools4 (for instance including the
extended tactic system described in Section 4.3 and the multiset theorems used in Section 4.2), and the
logic encoding library itself5. An online tutorial providing a more hands-on guide to encoding the logics
described in this paper and the use of our framework is also provided6.

4.1 Procedural tactics

Traditional use of HOL systems, such as HOL4 and HOL Light, dictates the use of tactics for backwards
reasoning and so called rules for forward reasoning [13]. Tactics are applied on a goal and produce a
(possibly empty) set of new subgoals, whereas rules are functions that combine one or more theorems
or assumptions to derive new facts. One of the main problems with this approach, particularly in the
context of an encoded logic, is that every inference rule needs to be expressed both as a new tactic that
applies the inference backwards (as we would typically want a lot more flexibility than what is offered
by MATCH_MP_TAC) and as a new rule/function that applies the inference forwards. In our example, this
would require 9 new tactics and 9 new rules/functions for the primitive inference rules of our simple
logic in Figure 1 (except the Exchange rule), plus a new tactic and a new function for each derived rule.
Our Curry-Howard encoding from Figure 4 would require a different implementation of another 9 tactics
and 9 rules.

An alternative, more flexible approach can be found in the procedural proof tactics for natural deduc-
tion in Isabelle [29], namely rule, erule, drule and frule. These enable the usage of any arbitrary
theorem in a proof, either as a forward reasoning step (manipulating assumptions – drule and frule),
as a backwards reasoning step (breaking down the goal – rule), or simultaneous forward and backwards
reasoning (erule). They essentially separate the mechanism of matching a rule to a particular goal
state and the rule itself. There are also the four alternatives rule_tac, erule_tac, drule_tac, and
frule_tac, which can be used to partially instantiate a rule before applying it (for example in order to
resolve ambiguities when a rule can be matched to a particular proof state in more than one way). Using
these tactics, one can manipulate custom inference rules from any encoded logic.

For this reason, we make use of our Isabelle Light framework [23], which emulates the aforemen-
tioned Isabelle tactics in HOL Light. It also includes a few tactics for managing metavariables, which
are key to this work (see Section 4.3).

4https://github.com/PetrosPapapa/hol-light-tools
5https://github.com/PetrosPapapa/hol-light-embed
6https://petrospapapa.github.io/hol-light-embed/CurryHoward.html

https://github.com/PetrosPapapa/hol-light-tools
https://github.com/PetrosPapapa/hol-light-embed
https://petrospapapa.github.io/hol-light-embed/CurryHoward.html
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The extension of Isabelle Light with the new features described in this work resulted in a new set of
procedural tactics tailored to object level reasoning with encoded sequent calculus logics. The new tactics
with the additional functionality are marked with a “seq” tag in their name. For example, ruleseq is
the extension of rule, whereas rule_seqtac is the extension of rule_tac (and similarly for erule,
drule, and frule).

4.2 Multiset matching

In Section 2.1, we discussed the use of multisets to represent sequents in order to avoid the Exchange
rule, followed by examples of the structural manipulation needed in proofs in Section 2.2. When using
inference rules in our system we aim to match the multisets describing the involved formulas appropri-
ately, with minimum effort from the user.

Let us take the L1× rule as an example:

Γ, A `C
Γ, A×B `C L1×

When matching the context of the conclusion, i.e. Γ]{A×B}, we need to find matches for the Γ multiset
and the {A×B} term.

Let us consider a goal with context {x× y} for some x,y. Our goal here is to obtain the instantiation
{A/x, B/y} in order to split the conjunction. It is obvious, however, that the multisets do not match
directly, as the goal is not a sum ]. Although {A×B} matches with {x× y}, there is no component
to match with Γ. Instead, we need to introduce an empty multiset so that the goal’s context becomes
∅]{x× y}.

If, instead, the context of the goal was {x× y}]{z} for some z, the structure would match the ex-
pected sum. However, if we match the multisets directly we would obtain the instantiation {{x× y}/Γ}
and then our match would fail as z and A×B do not match.

Finally, if the context of the goal was a larger sum, such as {x× y}]{z}]{w} for some w, then we
would want Γ to be matched to the whole of {z}]{w}.

We therefore implement an algorithm that properly matches multiset parts of sequents by incorpo-
rating commutativity and associativity of multiset sum ]. Performing this type of AC-matching is a
well studied problem [17]. Our particular case incolves matching of terms with no shared variables
(eliminating the need for occurs checks) and no nested AC functions (we only have a single flat level
of multisets), making this problem more tractable than the general case and solvable in P. Our algo-
rithm splits the multisets into their elements, which are either singleton multisets (formulas) or multiset
variables (environments). Then it performs the following matches:

1. First it tries to match elements of the multiset taken from the inference rule that do not contain free
variables, i.e. constants and terms pre-instantiated by the user.

2. Then it tries to match elements that are not variable multisets. In our example, {A⊗ B} is a
singleton set that will be matched first.

3. Multiset variables (such as Γ in our example) are left for last because they can match any part
of the target. If the target does not have enough elements for all such multiset variables, they
are matched to the empty multiset, whereas if there are more elements left in the goal than the
available variables, they are combined into a single multiset sum.
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If a match is found for all elements of the rule, the rule is instantiated accordingly. We then apply
multiset normalisation via rewriting with the properties of multiset sum, which leads to the rule and the
target (goal and assumption) to match exactly, thus allowing the appropriate LCF style justification of
the rule application.

As an extra step, we eliminate any remaining empty multisets from the resulting subgoals. These
are viewed as part of the internal mechanics of structural manipulation and outside of the encoded logic.
They should not be of interest to the user, instead making the proof goal more confusing.

It is worth noting that our algorithm does not currently support backtracking when matching multiset
variables. It merely attempts to find one possible match, under the assumption that if the user needs a
different match, they will explicitly instantiate the rule (see Section 4.1) to guide the algorithm accord-
ingly. Supporting backtracking is non-trivial as it requires an explicit interaction with the proof state and
the tactic application mechanisms, but we are considering it as future work as it can prove particularly
useful in automated proof procedures.

4.3 Metavariables

Metavariables in a proof are variables whose instantiations are deferred to later stages in the proof or
until the proof is finished. They are particularly useful in a construction proof, where the computational
translation (i.e. the λ -calculus term in our example) is initially unknown and constructed during the proof
(see Section 3.2). It is worth noting that, although metavariables exist as a feature in HOL Light, they
are rarely used and are seen as “a bit of a historical accident”7. However, in our case they are essential
in order to construct computational translations.

Metavariables are shared by all subgoals of a proof, and thus HOL Light stores them beyond the scope
of any single subgoal. In contrast, HOL Light tactics are functions that apply to a single subgoal. As a
result, tactics have no access to any information on already existing metavariables. This causes problems
during the application of our tactics, since they need to (a) be able to freely instantiate metavariables to
anything that matches and (b) ensure that metavariables that are newly introduced during construction
are fresh.

We address this issue by enhancing HOL Light so that tactics can handle subgoals extended with
additional information about the proof state (as a state monad). We call these extended tactics etactics
and their definition, contrasted to the definition of a regular HOL Light tactic is shown below:

type tactic = goal -> goalstate ;;

type ’a etactic = ’a -> goal -> (goalstate * ’a) ;;

Note that ’a is a type variable that allows the state to be of any type. In our case, this extension
allows for our tactics to be given (a) an integer counter that ensures freshness of new variables (similarly
to the genvar mechanism of HOL Light) and (b) the list of currently used metavariables, in addition to
the target subgoal.

The functions eseq, prove_seq, ETHEN, ETHENL, EORELSE, etc. shown in our examples are part of
this extension, are therefore applicable to etactics, and correspond to the HOL Light functions e (apply
a tactic interactively), prove (prove a lemma with a composite tactic), THEN (sequential application of
tactics), THENL (apply a tactic and then apply a list of tactics, each to one of the produced subgoals),
ORELSE (try to apply a tactic and if it fails apply a different tactic), etc. Note that, the original HOL Light
tactics can be used within this extension with the ETAC keyword:

7Personal communication with John Harrison, 2009.
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let (ETAC: tactic -> ’a etactic) = fun tac s g -> tac g,s ;;

Another challenge in the effective use of metavariables lies in the justification of every rule ap-
plication. The LCF approach adopted in HOL Light requires that every tactic application can formally
reproduce the original goal from its generated subgoals. Metavariables make this more challenging as the
original goal and subgoals may mutate at any point based on the instantiation of their metavariables. The
justification mechanisms for ruleseq and the other tactics successfully deal with this issue. Moreover,
our efforts on this front uncovered a 20 year old bug with metavariable instantiations in HOL Light8.

4.4 Construction

Computational construction in HOL Light proofs is enabled through the use of metavariables. Unknown
computational components (i.e. λ -calculus annotations in our example) are treated as metavariables that
are gradually instantiated through the application of the inference rules. Note that when using an infer-
ence rule, any variables that are not matched to any (sub)terms of the assumptions or the goal are added
as metavariables in the new subgoals. At the end of the proof, applying the resulting instantiations to the
initial goal’s metavariables gives us the computational terms resulting from that proof.

To demonstrate how such construction proofs work in our framework, let us return to the proof of
commutativity of × discussed in Section 3.2:

∃ f . ` f :X×Y → Y ×X (6)

First, we use the HOL Light META_EXISTS_TAC tactic to eliminate the existential quantifier and add
the variable f to the list of metavariables, which allows it to be instantiated gradually in the attempt to
find the correct witness. We then perform a backwards proof, by applying the associated inference rules.
The first step, involves the R→ rule:

Γ, Var x :A `y :B
Γ `λx.y :A→ B

R→

The backwards application of the rule (using ruleseq) tries to match the conclusion of the rule
Γ `λx.y :A→B to the current goal ` f :X×Y→Y×X . Knowing that f is a metavariable, the framework
uses unification instead of matching. This yields the following instantiation:

{λx.y/ f , X×Y/A, Y ×X/B, ∅/Γ} (7)

Note that x and y are variables in the rule that are not matched to any subterms in the goal, so they are
added as metavariables in the new goal Var x :X×Y `y :Y ×X .

The contraction (C) step simply yields the goal Var x :X ×Y, Var x :X ×Y `y :Y ×X . We then want
to apply the R× rule (with all variables primed for freshness):

Γ′ `x′ :A′ ∆′ `y′ :B′

Γ′, ∆′ `(x′,y′) :A′×B′
R×

Following the same unification mechanism as before, we obtain the new instantiation:

{(x′,y′)/y, Y/A′, X/B′, {Var x :X×Y}/Γ
′, {Var x :X×Y}/∆

′} (8)

8https://github.com/jrh13/hol-light/pull/52

https://github.com/jrh13/hol-light/pull/52
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At this point, we can observe the gradual instantation of f , by composing the 2 instantations (7)
and (8), yielding {λx.(x′,y′)/ f}.

The rest of the proof yields further instantations of the metavariables x′ and y′, eventually resulting
in the final instantation for f , namely λx.(snd(Var x), f st(Var x)). It is worth noting that x is still a
metavariable in this final result, having never been instantiated to anything else in the proof.

This process demonstrates a fruitful use of metavariable unification and instantiation to allow con-
struction proofs. This is only achieveable thanks to the multiset matching and metavariable management
functionality described in the previous sections.

One of the key benefits of this approach is that the user never deals with any of the computational
terms explicitly. In fact, one can install a custom term printer in HOL Light to hide the λ terms com-
pletely from the proof, whilst the proof script remains unaffected. This is in-line with the natural expec-
tation that the logical proof should not be affected by the computational annotations.

In addition to this, we have introduced a constr_prove command to further facilitate construction
proofs. As previously mentioned, construction proofs produce existenatially quantified lemmas, such
as (6). These are not very practical, as the constructed term is not visible in the lemma, but can only
extracted through the metavariables in the finished proof state. The constr_prove command proves the
existentially quantified goal, then strips the quantifiers and replaces the variables with the constructed
terms. This results in a proven theorem with all the constructed components instantiated.

For instance, consider the following command, which proves lemma (6) using a packaged version of
the proof script from Figure 3:

constr_prove ( ‘∃ f . ∅ ` f :X×Y → Y ×X‘,
ETHENL (ETHEN (ruleseq R→) (ETHEN (ruleseq C) (ruleseq R×)))

[ ETHEN (ruleseq L2×) (ruleseq ID) ;

ETHEN (ruleseq L1×) (ruleseq ID) ] );;

This command will yield the theorem ∅ `λx.(snd(Var x), f st(Var x)) :X×Y → Y ×X directly.
In addition to making the user workflow for producing constructed lemmas easier, this facilitates

the development of libraries of lemmas for different correspondences of the same logic, because the
computational terms associated with each lemma do not need to be explicit. For example, if one chose
to use a different correspondence of our simple logic, other than the Curry-Howard correspondence
to λ -calculus, they would need to change the original encoding, by adapting the inductive definition
of `. However, the proof involving constr_prove shown above would still be valid and it would
automatically generate the correct theorem based on the new correspondence.

4.5 Usage and Integration with HOL Light

The implemented generic tactics integrate well within the (extended) tactic system of HOL Light. More
specifically, they can be used at different levels, such as the following:

1. Interactively: They allow the application of inference rules of the encoded logic in a step-by-step
interactive proof setting, using the eseq command.

2. In packaged proofs: HOL Light proofs are traditionally packaged in a prove statement by com-
bining the tactics that achieve the proof using the so-called tacticals such as THEN and EVERY.
Our introduced tactics can also be combined in the same way, with the extended tacticals ETHEN,
EEVERY, etc. For example, the packaged verification proof of the commutativity of × is shown at
the bottom half of Figure 3.



30 Object-Level Reasoning with Logics Encoded in HOL Light

3. Programmatically: Our procedural tactics facilitate the construction of advanced procedures for
proofs in the encoded logics. For instance, they can be directly used within proof search algo-
rithms, helping to reduce the overhead of manipulating the structure of the sequents. Our imple-
mentation includes an example of such an automated proof procedure of a type of Linear Logic
proofs (see Section 5).

4. Visually: In related research, our tactics have proven useful in the context of diagrammatic reason-
ing [26]. In this, the user performs gestures in a purely graphical interface. Each gesture triggers a
reasoning task in our encoded Linear Logic, and this is accomplished via the framework described
in the current work.

5 Further Examples: Linear Logic

So far, our discussion revolved around a simple subset of propositional logic and its well studied corre-
spondence to λ -calculus. The usefulness of our framework becomes more apparent when one considers
that it can work in the exact same way with the encoding of any logic or correspondence, without the
need for any further configuration or metadata of any kind.

A particular logic, which has multiple evolving correspondences, is linear logic [9], a substructural
logic with no weakening or contraction rules. In the 90s, Abramsky, Bellin and Scott developed the
proofs-as-processes paradigm [1, 2], introducing a correspondence between Classical Linear Logic and
the π-calculus [21] and forming a type system for deadlock-free concurrent processes. We have used this
paradigm in conjunction with our reasoning framework extensively for the specification and composition
of workflow processes using Classical Linear Logic [25], with real-world applications in the modelling
of clinical pathways in the healthcare domain [27, 24].

As the use of concurrent systems has scaled up dramatically in the past decade, reasoning about their
properties, including attempts to ensure deadlock freedom and session fidelity, has been a major research
track in concurrency theory for the past years and is an ongoing effort. This effort has brought forth the
emergence of new correspondences of linear logic to session types [15], which are used to provide richer
semantics for the types of communicated values and session-based protocols in mobile processes [8].

Caires et al. use Intuionistic Linear Logic terms to describe session types and attach them via a
proofs-as-processes style to π-calculus channels [4]. Subsequent published papers describe further de-
velopments of this theory, including a version for asynchronous communication [7], a comparison to
a Classical Linear Logic based version [5], and the use of dependent session types to describe proper-
ties about the information being communicated [32, 30]. In parallel to this track, Wadler developed a
propositions-as-sessions theory [33]. In it, he chooses to loosen the connection to the original π-calculus
by introducing a new process calculus named CP. Reductions in CP are defined based on cut-elimination
steps in Classical Linear Logic, instead of being defined separately and then having their correspondence
to cut-elimination proven. Further developments in the correspondence between linear logic and session
types are being produced to this day [14].

Our framework has the capacity to work hand-in-hand with the meta-theoretic efforts in these strands
of work, by providing a formal setting to produce object-level proofs. This can help generate actual
process instances using linear logic proofs and examine their properties. For instance, this can shine
light into how new session type languages, such as Wadler’s CP, can behave in practice.

To demonstrate this, our implementation9 includes 2 example encodings of linear logic. The first,
is an encoding of Intuitionistic Linear Logic with no correspondence. The second is an encoding of

9https://github.com/PetrosPapapa/hol-light-embed/blob/master/Examples/
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the propositions-as-sessions paradigm, i.e. a correspondence of Classical Linear Logic to CP. The latter
includes an automated tactic that can prove a type of linear logic sequents within this encoding.

It is worth noting that both these examples and the Curry-Howard encoding described in this paper
can all be loaded in HOL Light at the same time, and managed by the same set of tactics we discussed.

5.1 Related Work

There are strong similarities between our system and the core design of Isabelle [28, 29], which pro-
vides support for a variety of formal theories, such as Higher Order Logic (Isabelle/HOL) and Zermelo-
Fraenkel set theory (Isabelle/ZF). Essentially, it exposes an intuitionistic meta-logic (Isabelle/Pure) that
enables the encoding of different theories, and the development of sophisticated proof tactics and pro-
cedures for both interactive and automated theorem proving within those theories. Our work draws
inspiration from this approach and enables similar functionality (for instance our encoding of Intuition-
istic Linear Logic10 strongly resembles the one in Isabelle11). The key difference lies in the ability to
construct an initially unknown computation of a given type using any given set of primitive logic/type
rules annotated with their computational translation. Simple synthesis using Constructive Type Theory
has been shown to be possible in Isabelle12, but has not been investigated to any depth since its for-
malisation almost 30 years ago by Paulson. Moreover, we use HOL Light’s Higher Order Logic as the
meta-logic which is more expressive than Isabelle, but narrows the kinds of logics whose use we can
automate.

We employ a similar perspective in terms of multiset sequents to embed logics to that of Dawson and
Goré’s implementation in Isabelle/HOL [6]. While their work is further evidence of the need and useful-
ness of frameworks for arbitrary encoded logics, it focuses on reasoning about meta-theoretic properties.
Instead, our framework is designed to tackle object-level reasoning and computational construction at
that level.

Other systems that are known to rely on the propositions-as-types paradigm such as Coq [3] and
Agda [22] have efficient, specialised procedures to deal with computational construction, but these are
exclusive to their particular underlying type systems. They are not generic and so cannot be used to
reason with different logics or correspondences.

Another similar approach is that of λProlog, a logic programming-based system aimed at hosting
encodings of different logics and calculi [20]. For example, Forum is a linear logic based meta-logic built
on top of λProlog [19]. Although λProlog allows more expressive encodings and provides proof search
by default (based on its logic programming backend), it cannot support construction proofs because of its
lack of support for metavariables (as argued by Guidi et al. who suggest potential extensions to achieve
this [12]). Moreover, λProlog does not provide the guarantees of correctness of modern theorem provers,
e.g. via the LCF approach [11], as is the case here with HOL Light.

In principle, other logical frameworks, such as Isabelle and Coq, would allow a similar implementa-
tion, and we believe some of the ideas and techniques presented here could transfer over. We chose HOL
Light because it is a powerful system that allows interaction at a low level, resulting in much flexibility
and programmability. For instance, it allows direct access to the proof structure and involved terms,
which facilitates the development of sophisticated custom tactics or even an entire extension of the proof
system as described in Section 4.3.

10https://github.com/PetrosPapapa/hol-light-embed/blob/master/Examples/ILL.ml
11https://isabelle.in.tum.de/dist/library/Sequents/Sequents/ILL.html
12https://isabelle.in.tum.de/dist/library/CTT/CTT

https://github.com/PetrosPapapa/hol-light-embed/blob/master/Examples/ILL.ml
https://isabelle.in.tum.de/dist/library/Sequents/Sequents/ILL.html
https://isabelle.in.tum.de/dist/library/CTT/CTT
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6 Conclusion

In summary, we presented a generic framework for object-level reasoning with encoded logics within
HOL Light. We assume the inference rules of an encoded logic are encoded in a sequent calculus style,
through the definition of logical inference as a function of logical terms.We focus on sequents that consist
of multisets of terms, allowing their arbitrary ordering, though this is not necessarily a requirement.

The framework then exposes tactics, originally inspired by Isabelle’s procedural natural deduction
tactics, that allow intuitive forward and backward application of these rules. They automatically take
care of structural reasoning and appropriate construction of the computational component. The latter
provides the means for extracting correct-by-construction terms via any correspondence in the style of
Curry-Howard. The tactics rely on a complex implementation involving multiset matching, unification,
and metavariables. Although they work within an extended tactic system, they can integrate with the
HOL Light proof environment, and can be used interactively, in packaged proofs, programmatically (for
example to construct automated proof procedures), or even visually.

We demonstrated the functionality of the tactics through a simple propositional logic and its λ -
calculus correspondence. Encodings of linear logic and its correspondence to the π-calculus or to session
types, two of which are included as examples in the framework, showcase the usefulness of this work
towards the study and development of deadlock-free software with session types.

Future goals include optimisations in terms of efficiency and metavariable management. We will also
study the encoding of quantified object logics, as part of a more in-depth consideration of the full capa-
bilities and limitations of the framework. Moreover, we are exploring ways to support natural deduction
style rules in addition to the currently supported sequent calculus style.

We believe our implementation provides the basis for facilitated encodings of logics within HOL
Light, without the need to reimplement an entire proof engine from scratch. This creates the potential to
easily and effectively test the behaviour of different logics and their computational translations. Based
on this, our framework can prove to be powerful tool for research in type theory and programming
languages, in addition to its already successful application in process specification and composition and
the healthcare domain.
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