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We present two extensions of tihé& Constructive Type Theory featuring monadiicks A lock

is @ monadic type construct that captures the effect oéxaarnal call to an oracle Such calls

are the basic tool fogluing togetherdiverse Type Theories and proof development environments.
The oracle can be invoked either to check that a constraidishar to provide a suitable witness.
The systems are presented in ttamonical styledeveloped by the CMU School. The first system,
CLLF », is the canonical version of the systémF 5, presented earlier by the authors. The second
systemCLLF 4», features the possibility of invoking the oracle to obtaimitness satisfying a given
constraint. We discuss encodings of Fitch-Prawitz Setriheall-by-valueA -calculi, and systems

of Light Linear Logic. Finally, we show how to use Fitch-PiitaSet Theory to define a type system
that types precisely the strongly normalizing terms.

1 Introduction

In recent years, the authors have introduced in a seriespafredl 8/ 16, 21, 20] various extensions of
the Constructive Type TheollyF, with the goal of defining a simplgniversal Meta-languagéhat can
support the effect ofluing togetheri.e. interconnecting, different type systems and proof dgvalent
environments.

The basic idea underpinning these logical frameworks idloaveor the user to express explicitly,
in an LF type-theoretic framework thavocation and uniformrecordingof the effect of external tools
by means of a ne\nmonadictype-constructOLiﬂl\,{Z o|-], called alock More specifically, locks permit to
express the fact that, in order to obtain a term of a given, tigpe necessary twerify, first, a constraint
2 s M : 0), i.e. to producesuitableevidence No restrictions are enforced on producing such ev-
idence. It can be supplied by calling arternal proof search toabr anexternal oracle or exploiting
some other epistemic source, such as diagrams, physidabés or explicit computations according to
the Poincaté Principle[3]. Thus, by using lock constructors, one dantor-outthe goal, produce pieces
of evidence using different proof environments @hae them back together, using tlhmalock operatoy
which releaseghe locked term in the calling framework. Clearly, the taskcloecking the validity of
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4 Gluing together Proof Environment&LLF 5 & CLLF 5,

external evidence rests entirely on the external tool. ifirmmework we limit ourselves to recording in
the proof term by means of & -destructor this recourse to an external tool.

One of the original contributions of this paper is that wevshmw locks can delegate to external
tools not only the task of producing suitable evidence b&a #hat of exhibiting suitableitnessesto be
further used in the calling environment. This feature isileitbd by CLLF - (see Sectiohl3).

Locks subsume differemiroof attitudessuch as proof-irrelevant approaches, where one is ordy-int
ested in knowing that evidence does exist, or approachgagein powerful terminating metalanguages.
Indeed, locks allow for a straightforward accommaodatiomahy differentproof cultureswithin a single
Logical Framework; which otherwise can be embedded only geeply [6/ 15] or axiomatically [22].

Differently from our earlier work, we focus in this paper pmin systems presented in tbanonical
formatintroduced by the CMU schodl [35, 14]. This format is synthrected and produces a unique
derivation for each derivable judgement. Terms are all inmab form and equality rules are replaced
by hereditary substitutionWe present the systems in canonical form, since this fostnaamlines the
proof of adequacy theorems.

First, we present the very expressive systdrhF 5 and discuss the relationship to its non-canonical
counterpart.LF » in [20], where we introducetbck-typedollowing the paradigm of Constructive Type
Theory @ la Martin-Lof), via introduction elimination andequality rules This paradigm needs to
be rephrased for the canonical format used here. Intramluctiles correspond ttype checkingules
of canonical objectswhereas elimination rules correspondtype synthesisules of atomic objects
Equality rules are rendered via the ruleshefreditary substitution In particular, we introduce Bbck
constructorfor building canonical objects4”; [M] of type 4% [p], via thetype checking rul¢O-Lock).
Correspondingly, we introduce amlock destructqr%,fg[M], and amatomic rule(O-Unlock), allowing
elimination, in the hereditary substitution rules, of tbeH-type constructor, under the condition that a
specific predicate? is verified, possiblyexternally on a judgement:

Mes M N M A= 41 rsN«<o PT+tsN<o
2 ZP > 0;:0 (O-Lock) z NolP) Z@ i ) (O-Unlock)
b Z6M] < Z6[p] Mbs UslA = p

Capitalizing on the monadic nature of the lock construasmve did for the systems in [21,120], one can
use locked terms without necessarily establishing theiqaes] provided amutermostock is present.
This increases the expressivity of the system, and allowsefasoning under the assumption that the
verification is successful, as well as for postponing andiced) the number of verifications. The rules
which make all this work are:

Mxths Zlp)type Tz A= L[] pl %G A/XT-
[ s Z&,[0] type

(F-NesteeU nlock)

FXThs fs'??,[ ] < zsﬁ[p] MFs A= 2201
Pl AN MIZGIAXS) =

— — (O-NestedJ nlock)
s fsf}[l\/l’] = Z5l0']

The O-NestedJnlocK)-rule is the counterpart of the elimination rule for monaalsce we realize that

the standard destructor of monads (see, €.gl, [28]),, ., x=Ain N can be replaced, in our context,

by N[%{ﬁ[A}/x}. And this holds since théfgﬁ.[-]—monad satisfies the propettr, x=M in N — N if

x ¢ Fv(N), providedx occursguardedin N, i.e. within subterms of the appropriate lock-type. The rule

(F-NestedJnlock) takes care of elimination at the level of types.
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K e & K = type|Mxo.K Kinds
a € %, a = alaN Atomic Families
o,1,p € % o = o|Nxo.1| f,{f{’o[p] Canonical Families
A € 0O, A = c|x|AM| %A Atomic Objects
M,N € 0 M = A[AxoM| LM Canonical Objects
e 7 Z = 0|%aK]| Zc:d Signatures
rN e ¢ r 0|l xo Contexts

Figure 1: Syntax o LLF »

We proceed then to introdu€d LF 4. Syntactically, it might appear as a minor variatiorCoi F 5,
but the lock constructor is used here to expressahaestfor a withess satisfying a given property, which
is thenreplacedby the unlock operation. IGLLF 4, the lock acts as kinding operatorand the unlock
as anapplication

To illustrate the expressive power GELF 5> andCLLF »- we discuss various challenging encodings
of subtle logical systems, as well as some novel applicatiéirst, we encode iIGLLF 5 Fitch-Prawitz
consistent Set-TheorfFPST), as presented in [30], and to illustrate its expressivegspwe show, by
way of example, how it can type all strongly normalizing termlext, we give signatures {©OLLF » of
a strongly normalizing\ -calculus and a system of Light Linear Logid [2]. Finally, $®ction 4.5, we
show how to encode functions GLLF 4.

The paper is organized as follows: in Sectidn 2 we presensyhéax, the type system and the
metatheory of LLF 5, whereasCLLF 4, is introduced in Sectionl 3. Sectibh 4 is devoted to the presen
tation and discussion of case studies. Finally, connestwith related work in the literature appear in
Sectior{b.

2 The Canonical SystenCLLF &

In this section, we discuss tlvanonicalcounterpart oL LF »[20], i.e. CLLF », in the style of [35_14].
This approach amounts to restricting the language onlyrtogén longfn-normal form. These are the
normal forms of the original system which are normal alsatwypedn-like expansion rules, namely

M — Axo.Mx andM — A (%5 M]] if M is atomic. The added value of canonical systems such
asCLLF 5 is that one can streamline results of adequacy for encodstdreg. Indeed, reductions in
the meta-language of non-canonical terms reflect only tetyi of how the proof was developed using
lemmata.

2.1 Syntax and Type System foCLLF o

The syntax ofCLLF » is presented in Figuid 1. The type system@tF 5 is shown in Figurél2. The
judgements o LLF 5 are the following:

> sig > is a valid signature
Fs T I is a valid context ir>
r s K Kisakindinl andX
I ks Otype o is a canonical family if” andXx
N s a=K K is the kind of the atomic familyr in I andX
Nt M<o M is a canonical term of type in ' andZ
N s A=o o is the type of the atomic terfin I and>
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Valid signatures

Ssig FxK a¢gDom(%) , Zsig Fsxotype c¢Dom(%)
Dsg (SEMPLY s.aKsig (SKind) S.COsig (STypo
Kind rules Context rules
FsT 2 sig
Mxoks K . FsT ks otype x¢Dom(IN)
s MNxo.K (KPI) Fs F,X:G (CType
Atomic Family rules Atomic Object rules
FsT aKeX FsI coeZ
————  (ACons 2 TS
Frsa=K ( h — (O-Cons
Nz a=MNxo.Ky FsI xoerl
MN-sM<«<o MFsx=0 (Ovar)
K _
KiM/X|(g)- =K AA s A=Nxo.1
(A-App) E
MN-saM=K FrEsM<eo pM/X; =T
2 (O-App)
MNsAM=T1
I?al_nonical Family rules Fhs A gl{]?g’ o]
'Fsa=type FTsN<o Z(TFsN<o)
Itk o type (F-Atom 7 (O-Unlock)
Mhs U 6A = p
I,x0Fs Ttype .
M5 MNX0o.T type (F-Pi)
z1ACELP Canonical Object rules
M-sptype THFsN<=o
- (F-Lock) TFsA=a (O-Atom)
M ks A olP] type rFsA<=a
. P .
I',x.rl—zf%}.[p] type MrxokFsM<1 (O-Abs
s A= 25T s AxoM<Tnxo.t
PIUSGIN X = FFsMep FFsNeo
ikl (F-NestedJnlock) zMep 1 (O-Lock)

Ms .Zé%[p’] type M XI\?G[M] = f,{f’o[p]

M XThs L& M)« Z500p] T A= L[]
P[%Q%[A]/X](Fr)f =p' M[“Z/S‘%'.[A]/x]%, =M

M ks L5 M) < 24500
Figure 2: TheCLLF » Type System

(O-NestedUnlock)

The judgement sig, and-s I', andll Fz K are as in Section 2.1 df [19], whereas the remaining ones
are peculiar to the canonical style. Informally, the judginé s M < o useso to check the type
of the canonical ternM, while the judgment s A = ¢ uses the type information contained in the
atomic termA andTl to synthesizes. Predicates” in CLLF 5 are defined on judgements of the shape
MN-sM<«ao.

There are two rules whose conclusion is the lock constru@?éi[-]. But nevertheless, this system
is still syntax directedwhen there are subterms of the fofag” [A] in eitherM’ or p’, the type checking
algorithm always tries to apply tH®- NestedUnlock) rule. If this is not possible, it applies instead the
(O-Lock) rule.

The type system makes use, in the rul&sApp) and(F-App), of the notion ofHereditary Substitu-
tion, which computes the normal form resulting from the substituof one normal form into another.
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Figure 3: Erasure to simple-types

Substitution in Kinds
a[Mo/Xolh, = 0" K[Mo/Xq]ls, =K’

(K- Typg (.7 K-Pi)
type[Mo/Xo]l5, = type (Mx:0.K)[Mo/xolly, = Mx:0./K’
Substitution in Atomic Families
f / o) /

alMg/Xolp, = Q M{Mg/Xol5- =M
—————— (7"F-Const [Mo/alp, f[ // ]‘/’0 (-F-App)
alMo/Xo|p, = a (aM)[Mo/Xo]p, = 0'M
Substitution in Canonical Families
alMo/xolh = a’ 01|Mo/%0lE =gl go[Mg/x0lE = o}
aMo/xolg, =" ]’;0 - (.7-F-Atom) (Mo/Xolpy = 01 F[ / ]”‘j 2 (#-F-Pi)
or[Mo/xo]p0 =a (I'Ix:crl.az)[Mo/xo]p0 =Tx07.05

01[Mo/Xo)h, = 07  M1[Mo/Xo]5 =Mj  G2[Mo/xXolb, = 0%
Lt 0,102 [Mo/%olb = L

M’l,ai[

p (.-F-Lock)
)

Figure 4: Hereditary substitution, kinds and familie<Cal F

The general form of the hereditary substitution judgemeﬁ't[M/x]g =T’, whereM is the term being
substitutedx is the variable being substituted fdr,is the term being substituted int®, is the result of
the substitutionp is thesimple-typeof M, andt denotes the syntactic classd. atomic families/object,
canonical families/objects, etc.) under consideratiore give the rules of the Hereditary Substitution
in the style of [14], where the erasure function to simpleetyjis necessary to simplify the proof of
termination, which we omit.

The simple-typep of M is obtained via the erasure function of [14] (Figlte 3), magmlepen-
dent into simple-types. The rules for Hereditary Substtutare presented in Figures 4 ddd 5, using
Barendregt’s hygiene condition.

Notice that, in the rul¢O-Atom) of the type system (Figufeé 2), the syntactic restrictiorheftlassi-
fier to o atomic ensures that canonical forms kmeg 3n-normal formsfor the suitable notion of long
Bn-normal form, which extends the standard one for lock-typ@s one, the judgemenrilza.ats X«
Mza.ais not derivable, aflza.a is not atomic, hences Ax:(Mza.a).x < MNx:(Mza.a).NMza.ais not
derivable. On the other hands Ax:(Mza.a).Ay:axy < Nx:(MNza.a).Mza.a, wherea is a family con-
stant of kindType is derivable. Analogously, for lock-types, the judgemedt,”; [p] s x < £ (0]
is not derivable, sincez{’;[p] is not atomic. As a consequence, we have that x. 4 [p].x <
Nx: 4 5[0]. 4 |p] is not derivable. Howevek A, (0] s A, %X < 451p] is derivable, if
p is atomic. Hence, the judgmeht Ax. A7 [0]-Als % X] < Nx. A, p]-L%sp] is derivable.
Note that the unlock constructor takesatomicterm as its main argument, thus avoiding the creation
of possible.Z-redexes under substitution. Moreover, since unlocks cdy receive locked terms in
their body, no abstractions can ever arise. In Definltioh ®eformalize the notion ofj-expansion of a
judgement, together with correspondence theorems betidden andCLLF 4.

We presenCLLF » in a fully-typed stylej.e. a la Church, but we could also follow [14] and present
a versiona la Curry, where the canonical forms<.M and.Z;;’[N] do not carry type information. The
type rules would then be,g.:
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Substitution in Atomic Objects

R _ X#X
c[Mo/olp, =€ X0[Mo /0|5, = Mo : po X[Mo/Xolp, = X

A1[Mo/Xol3, = AX:p2.M3 1 p2 — p Mz[Mo/Xo],?o =M} M’l[Mé/X],% =M
(A1M2)[Mo/Xo]3, =M’ 1 p

AiMo/Xolg) = Ay M2[Mo/x0]g) = Mj (#-OApD

(A1M2)[Mo/x0]g, = ATM;

o[Mo/%ol5 = 0" M[Mo/%|% =M’ AMo/olg, = L M) : 47, [P
Ui 5[ [Mo/%0]S =M1 p

o[Mo/xl5, = 0" M[Mo/%o]Q =M’ AMo/x0], = A

Ui o [AMo/0)d, = Uy oK)
Substitution in Canonical Objects

AlMo /X0l = A’ AlMo/Xo]g, = M': p M (Mool = M’

(7-O-Consb

(.-OVarH) (.-OVar)

(7-O-AppH)

(-O-UnlockH)

(.-O-Unlock)

—5—— (Y"OR) o —(/-O-RH) o - (-7-O-Abg
AlMo /o] g, = A AMo/Xo] gy =M Ax:0.M[Mo/Xo]5 = AX:0.M
01[Mo/Xolh, = 01 Mi1[Mo/X0]9 = M7 M2[Mo/Xo]§ = M5
> o > - (.7-O-Lock)
ng,O'l [MZ] [MO/XO]DO = gMi’gi [MZ]

Substitution in Contexts

Xo#£X XZFv(Mg) T[Mo/%lS. =T o[Mp/xolf = o’
—————— (-CtxtEmpty) s # Fv(Mo) TIMo/ (]:Po - /[ o/ %ol (.7 -Ctxt-Term)
[Mo/xo]po:(D (I',x:a)[Mo/xo]po:I' X0

Figure 5: Hereditary substitution, objects and contextSLdfF
: NMNsM<o TksN<T
xokFzsMeT (O-Abs b3 b (O-Lock)

s AxM < MNxo.T M s 47 IN] < 47 5(1]
This latter syntax is more suitable in implementations beedt simplifies the notation. Following [18],
we stick to the typeful syntax because it allows for a moredicomparison with non-canonical sys-
tems. This, however, is technically immaterial. Since prignts in canonical systems have unique
derivations, one can show by induction on derivations thgt@ovable judgement in the system where
object terms are la Curry has auniquetype decoration of its object subterms, which turns it into a
provable judgement in the versi@nla Church. Vice versa, any provable judgement in the vergion

la Church can forget the types in its object subterms, yieldiqgovable judgement in the versiarla
Curry.

2.2 The Metatheory of CLLF »

For lack of space we omit proofs, but these follow the stashgatterns in[[14, 19]. We start by studying
the basic properties of hereditary substitution and the gystem. First of all, we need to assume that
the predicates areell-behavedn the sense of [19]. In the context of canonical systems, ttiotion
needs to be rephrased as follows:

Definition 2.1 (Well-behaved predicates for canonical systen#s¥inite set of predicate§ #;}i¢| is
well-behavedf each 7 in the set satisfies the following conditions:

1. Closure under signature and context weakening and permigat
(a) If X andQ are valid signatures such tiat_ Q andZ (I Fs N < 0), thenZ (I Fq N < 0).
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(b) If I andA are valid contexts such thatC A and Z(I' s N < o), thenZ (A5 N < 0).
2. Closure under hereditary substitutionlf Z(I",x:0’," s N<= o) andl = N’ : @, then
P(T,TIN' /XG0 Fe NIN'/XD, <= o[N'/X]-).

As canonical systems do not feature reduction, the “clabdigird constraint for well-behaved pred-
icates (closure under reduction) is not needed here. Mergtie second conditiorclpsure under
substitution becomes “closure under hereditary substitution”.

Lemma 2.1(Decidability of hereditary substitution)

1. Forany T in{#,«/,%,0,%}, and any M, x, ang, it is decidable whether there exists & T
such that TM/x|3' = T’ or there is no such T
2. Forany M, x,0, and A, it is decidable whether there exists dnstich that /W/x]g = A, or there
exist M and p’, such that AM/x|3 = M’ : p’, or there are no such’Aand M.
Lemma 2.2(Head substitution size)f A[Mo/%o]3, = M:p, thenp is a subexpression k.
Lemma 2.3(Uniqueness of substitution and synthesis)
1. Itis not possible that Mo/xo]3, = A" and AMo/xo]p, = M:p.
2. Forany T, if TMo/Xo]f = T', and T[Mo/Xo]jy = T”, then T =T".
3. ffr'a=K,andl s a = K’, then K=K'.
4, IfT's A= o,andl s A= o¢’, theno = o’.

Lemma 2.4(Composition of hereditary substitution.et x= xo and x¢ Fv(Mp). Then:
1. Forall T/ in {#, Za, F, Oa, O}, if M2[Mo/X0lS, = M5, Ti[M2/XT, = T{, and &[Mo/Xo] 3 = T/,
then there exists a T:{Mo/Xo]fy = T, and T'[My/x7) =T.
2. If M2[Mo/x0]S, = M5, A1 [M2/X]9, =M : p, and A[Mo/xo]% = A, then there exists an'M [Mo/xo] 5 =
M’, and P{Mé/x]g2 =M":p.
3. If Mz[Mo/xo]S0 = M3, A1[Mz/x]3, = A, and A[Mo/%o]3, =M : p, then there exists an MA[Mo/xo]3 =
M’: p, and MM5/x|S =M.
Theorem 2.5(Transitivity). LetX sig, s [, Xo:00," andl” s Mg < po, and assume that all predicates
are well-behaved. Then,
There exists &8”: [Mo/xo]S, =" and5 I,
If [, %o:p0," 5 K then there exists aK[Mo/xo]goK =K' andln, " +s K’.
If [, Xo:00," 5 O type, then there exists a’: [Mo/xo]f,oa =o' andl,I"" s 0’ type.
If I, X0:00," 5 0 type and I, Xp:00," s M < g, then there exist’ and M [Mo/xo]f,oa =0
and[Mo/xo]5M =M’ andl, " ks M’ < o’

PwnNpE

Theorem 2.6(Decidability of typing) If predicates inCLLF & are decidable, then all of the judgements
of the system are decidable.
We can now precisely state the relationship betw@elF ,» and thel LF 5 system of([20]:

Theorem 2.7 (Soundness)For any predicate? of CLLF », we define a corresponding predicate in
LLF % as follows: Z(I' = M : 0) holds if and only ifl =5 M : o is derivable inLLF » and 2(I" 5
M < o) holds inCLLF ». Then, we have:

1. If Zsig is derivable inCLLF s, thenZX sig is derivable inLLF ».

2. If s I is derivable inCLLF 4, thents I is derivable inLLF 4.

3. If I ks K is derivable inCLLF 4, thenl” -5 K is derivable inLLF 4.
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If I s a = K is derivable inCLLF », thenl” s a : K is derivable inLLF 4.

If I ks o type is derivable inCLLF », thenl” -5 0 : type is derivable inLLF 4.
IfI s A= o is derivable iInCLLF o, thenl” -5z A: o is derivable inLLF 4.

If ' s M < g is derivable inCLLF », thenl” s M : ¢ is derivable inLLF .

No aks

Vice versa, allLLF 5 judgements idong Bn-normal form(Bn-Inf) are derivable inCLLF . The
definition of a judgement i n-Inf is based on the following extension of the standartdule to the lock
constructon x:0.Mx —, M and.- 4, (%5 M]] —n M.

Definition 2.2. An occurrencef of a constant or a) variable in a term of BhF » Judgement isfully
applied and unlockedv.r.t. its type or kind1X1:0 1. .,2”1[ .NX:0n. .,2””[ ]. i Wh_gre.,%l,_> .,2”” are
vectors of locks, if§_appears only in contexts that are of the fo@n][( A% 1[EM1))...)My], where
Ml, Mn, %1, % have the same arities of the corresponding vectof$oaind locks.

Definition 2.3 (Judgements in lon§n-normal form)
1. AtermT in a judgement is in3n-Inf if T is in normal form and every constant and variable
occurrence irT is fully applied and unlocked w.r.t. its classifier in the gggnent.
2. Ajudgement is iBn-Inf if all terms appearing in it are i n-Inf.

Theorem 2.8(Correspondence)Assume that all predicates inLF » are well-behaved, according to
Definition 2.1 [19]. For any predicate” in LLF », we define a corresponding predicate GhLF 5
with: Z(I' =z M < o) holds ifl 3 M < o is derivable inCLLF », and (I -5 M : g) holds inLLF 4.
Then, we have:

1. If Zsigisin Bn-Infand isLLF »-derivable, therk sig is CLLF »-derivable.

If -5 I is in Bn-Inf and iSLLF s-derivable, then-s I is CLLF »-derivable.

If I b5 Kis in Bn-Inf, and isLLF s-derivable, therl -5 K is CLLF s-derivable.

IfI Fs a: Kisin Bn-Inf and isLLF »-derivable, therf s a = K is CLLF »-derivable.
If I ks o:type is in Bn-Inf and isLLF »-derivable, theri” 5 o type is CLLF »-derivable.
IfI" =5 A: aisin Bn-Inf and isLLF »-derivable, thed” s A= a is CLLF g-derivable.
IfI"' s M : gisinfn-Infand isLLF »-derivable, therl s M < ¢ is CLLF »-derivable.

No aksMowdh

Notice that, by the Correspondence Theorem above, anybeblved predicaté” in LLF » in the
sense of Definition 2.1 [19] induces a well-behaved predigatCLLF 5. Finally, notice thatnot all
LLF % judgements have a correspondiBg-Inf. Namely, the judgement 47 o] s X : 47 [p] does
not admit am-expanded normal form when the predicatedoesnot hold onN, as the rulg O-U nlock)
can be applied only when the predicate holds.

3 The Type SystenCLLF »-

The main idea behin€LLF »- (see Figure§l§.]7, ar’nﬂ@BDs to “empower” the framework o€LLF 5

by addingto the lock/unlock mechanism the possibility to receivarfrthe external oracle witness
satisfying suitable constraints. Thus, we can pave the wayglfiing together different proof develop-
ment environments beyond proof irrelevance scenarioshisncontext, the lock constructor behaves as
abinder. The new(O-Lock) rule is the following:

1For lack of space, we present in these figures only the ca@sgand rules of LLF ;- that differ from theirCLLF 4
counterparts.
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,p € % o = al|lxo.7] Z)g%[p] Canonical Families
M,N € © M = A[AxoM|ZLLM] Canonical Objects
Figure 6:CLLF 5, Syntax — changes w.r€LLF 5
Canonical Family rules Atomic Object rules
LXoFzpiype oo A= Z%0p] THN<o
[z Z500] type P(TFsN«=0) pINXL, . =p
' B > - (O-Unlock)
ry:tks gx%[p] type Mk %N,G[A] =P
Z
r '_29: "gX 0[ ] Canonical Object rules
pPlUG A NI

(F-NestedJnlock) XoksM<=p
Mhs Z5M] < Z50)

s fxﬁ[P ]type (O-Lock

YT ks LM ] « fx%[p] M A= 5[
CIRZAL MIZG A YIG,- =
r s zxf;[w] = 220

(O-NestedUnlock)

Figure 7: TheCLLF &, Type System — changes w.rGLLF 5

MXoFsM<=p
Mz £5IM] <= £500]

where the variabl& is a placeholder bound i andp, which will be replaced by the concrete term that
will be returned by the external oracle call. The intuitiveaning behind th€O-Lock) rule is, therefore,
that of recording the need to delegate to the external othelenference of a suitable witness of a given
type. IndeedM can be thought of as an “incomplete” term which needs to bepteted by an inhabitant
of a given typeo satisfying the constraing?. The actual term, possibly synthesized by the externa) tool
will be “released” inCLLF 5, by the unlock constructor in th@-U nlock) rule as follows:

rsA= Z50] PIN/Xfy-=p" THzN<=0 PN« o0)

The term%,\fZ.[M] intuitively means thal is precisely the synthesized term satisfying the congtrain
Z(I Fx N < o) that will replace inCLLF 4, all the free occurrences afin p. This replacement is
executed in the.’-O-UnlockH) hereditary substitution rule (Figulré 8).

Similarly to CLLF », also inCLLF 5, it is possible to “postpone” or delay the verification of an
external predicate in a lock, provided aantermostock is present. Whence, the synthesis of the actual
inhabitantN can be delayed, thanks to tf®-NestedUnlock) rule:

My ths LGM < L5 Ths A= L5 plUGANG- =0 M[%‘?Z[A]/y]%f:
M LM < L0

The Metatheory o€ LLF 4, follows closely that ofCLLF » as far as decidability. We have no correspon-
dence theorem since we did not introduce a non-canonicelnt&tLLF 4-. This could have been done
similarly to LLF 5.



12 Gluing together Proof Environment&LLF 5 & CLLF 5,

Substitution in Canonical Families

01[Mo/Xolf, = 01 G2[Mo/Xalf, = %

/
X,07

(.7-F-Lock)
(0]

Substitution in Atomic Objects
0[Mo/Xalp, =0’ M[Mo/xolgy =M Mi[M'/X?,- =Mz AlMo/xo]g, = £, [M1] : £, (0]
Ui 5[ [Mo/X0]S, =Mz : p

Substitution in Canonical Objects

(#-O-UnlockH)

/

01[M0/X0];'§o =0 Ml[Mo/Xo],?O =M; (#-O-Lock)

L M1][Mo/xag, = £, [My]

X,01

Figure 8:CLLF »- Hereditary Substitution — changes w.CLLF »

4 Case studies

In this section, we discuss the encodings of a collectiongithl systems which illustrate the expressive
power and the flexibility oCLLF 5 andCLLF 4,. We discuss Fitch-Prawitz Consistent Set theBB5T
[30], some applications dfPST to normalizingA-calculus, a system of Light Linear Logic CLLF 5,
and an the encoding ofgartial function in CLLF 4.

The crucial step in encoding a logical systemGhLF, or CLLF »- is to define the predicates
involved in locks. Predicates defined on closed terms arallysunproblematic. Difficulties arise in
enforcing the properties of closure under hereditary switisih and closure under signature and context
extension, when predicates are defined on open terms. Told¢oastreamline the definition of well-
behaved predicates we introduce the following:

Definition 4.1. Given a signatur& let As (respectively/A9) be the set oLLF 4 terms (respectively
closedLLF 5 terms) definable using constants fr@am A term M has askeletonin As if there exists a
termN([xy,...,X,] € As, whose free variables (calléwlesof the skeleton) are ifixy,...,X,}, and there
exist termaMy, ..., My such thaM = N[M1 /Xy, ..., Mn/Xn].

4.1 Fitch Set Theorya la Prawitz - FPST

In this section, we present the encoding of a formal systenemfarkable logical as well as historical
significance, namely the system of consist&aive Set TheoryFPST, introduced by Fitch[ [11]. This
system was first presented in Natural Deduction style by Bzd@0]. As Naive Set Theory is inconsis-
tent, to prevent the derivation of inconsistencies fromuhiestrictechbstractionrule, only normalizable
deductionsare allowed inFPST. Of course, this side-condition is extremely difficult tqptare using
traditional tools.

In the present context, instead, we can put to use the magloh€LLF » to provide an appropriate
encoding ofFPST where theglobal normalization constraint is enforcéacally by checking the proof-
object. This encoding beautifully illustrates thag of tricksthat CLLF »» supports. Checking that a
proof term is normalizable would be the obvious predicatgs®in the corresponding lock-type, but this
would not be a well-behaved predicate if free variabigs,assumptions, are not sterilized. To this end,
We introduce a distinction betwegenericjudgements, which cannot be directly utilized in arguments
but which can be assumed, asmgbdicticjudgements, which are directly involved in proof rules. tder
to make use of generic judgements, one has to downgrade themapodictic one. This is achieved by
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a suitable coercion function.

Definition 4.2 (Fitch Prawitz Set TheornysPST). For the lack of space, here we only give the crucial
rules for implication and foset-abstractiorand the corresponding elimination rules of the full system
of Fitch (seel[30]), as presented by Prawitz:

I AlppsT B (51 FepsTA T HEpsTAD B(D E)
I |—|:p5T ADB IrpsT B
I FepsT A[T/X] ()\ ) MNFepsT T € AXA ()\ E)
M Fepst T € AXA M rpsT AT /X

The intended meaning of the terincA is the set{x | A}. In Fitch’'s systemFPST, conjunction and
universal quantification are defined as usual, while negasialefined constructively, but it still allows
for the usual definitions of disjunction and existential ififecation. What make&PST consistents
that not all standard deductions k*ST are legal. Standard deductions are cati@@dsi-deductionsn
FPST. A legal deductiorin FPST is defined instead, as a quasi-deduction whiaioisnalizablein the
standard sense of Natural Deduction, namely it can be temsid in a derivation where all elimination
rules occur before introductions.

Definition 4.3 (LLF » signaturegpsT for Fitch Prawitz Set Theory)The following constants are intro-
duced:

o : Type l : Type

T : o -> Type o : MA:o. (V(A) -> T(L))

V : o -> Type Aintro : MA:1 ->o0.Mx:1.T(A x) -> T(e x (lam A))

lam : (1 -> o0)—> | A_elim : MA:1 ->0.Mx:1.T(e x (lam A))->T(A x)

£ Tl > 1 => o0 D _intro: MA,B:o.(V(A) -> T(B)) -> (T(A DB))

D :o0->0 >0 D _elim : MA,B:o0.Mx:T(A).My:T(ADB) -> "%E:;)il'll‘(A)xT(ADB)[T(B)]

whereo is the type of propositionsy and the “membership” predicateare the syntactic constructors
for propositions,lam is the “abstraction” operator for building “setd’,is the apodictic judgement;, is

the generic judgemend, is the coercion function, an¢k,y) denotes the encoding of pairs, whose type
is denoted byo x1,e9. Au.c - T—p.uxy:(0—T1— p)— p. The predicate in the lock is defined
as follows:

Fitch(l Fspper (x,y) < T(A)XT(ADB))
it holds iff x andy have skeletons ins, ..., all the holes of which have either typeor are guarded by

ad, and hence have typ&4), and, moreover, the proof derived by combining the skeketifix andy
is normalizable in the natural sense. Clearly, this praditaonly semi-decidable.

For lack of space, we do not spell out the rules concerningother logical operators, because
they are all straightforward provided we use only the apadjadgementT(-), but a few remarks are
mandatory. The notion afiormalizable proofis the standard notion used in natural deduction. The
predicateFitch is well-behaved because it considers terms only up-to holdse skeleton, which can
have typeo or are generic judgements. Adequacy for this signature eathieved in the format af [19]:

Theorem 4.1(Adequacy for Fitch-Prawitz Naive Set Thearyij A4, ..., A, are the atomic formulas oc-
curring in By,...,Bm,A, then B... By FepsT A iff there exists a normalizabMsuch thatA,:o,..., A, 0,
x1:V(B1),...,%n:V(Bn) F5psr M <= T(A) (WhereA, andB; represent the encodings of, respectively, A and
B; in CLLF », for1 <i < m).
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4.2 A Type System for strongly normalizingA -terms

Fitch-Prawitz Set TheonyiPST, is a rather intriguing, albeit unexplored, set theoretisteam. The
normalizability criterion for accepting a quasi-deduntiprevents the derivation of contradictions and
hence makes the system consistent. Of course, some iatuites are not derivable. For instamedus
ponensdoes not hold and if € Ax.A then we do not have necessarily tidt/x| holds. Similarly, the
transitivity property does not hold. Howev&PST is a very expressive type system which “encom-
passes” many kinds of quantification, provided normalrats preserved and Fitch has shown, ege
[11], that a large portion of ordinary Mathematics can beiedrout inFPST.

In this subsection, we sketch how to USeST to define a type system which can typecisely all
the strongly normalizing\ -terms. Namely, we show that FPST there exists a set to which belong
only the strongly normalizingd -terms. We speak oftgpe systerbecause the proof iRPST that a term
belongs toA\ is syntax directedFirst we need to be able to define recursive objectP&T. We adapt,
to FPST, Prop. 4, Appendix A.1 of [13], originally given by J-Y. Gichfor Light Linear Logic, as:
Theorem 4.2(Fixpoint). Let AP,x;...,X,] be a formula offPST with an n-ary predicate variable P.
Then, there exists a formula BBPST, such that there exists a normalizable deductioRi*$ T between
AAX] ... X0 B[X1,..., %], X1 .., %] @nd B, and viceversa.

Proof. Let equality be Leibniz equality, then, assumimg 1, define\ = Az 3x.3y.z= (X, y) &A[(Aw.(w,
y) €Y),X. Then(x,A) € Ais equivalent, in the sense BPST, to A[(Aw.(W,A) € A),X]. O

Using the Fixpoint Theorem we define first natural numbersn th concrete representation of the
terms ofA -calculus, say\q. Using again the Fixed Point Theorem, we define a (represamtaf) the
substitution function over terms ifg and finally the sef\, such thatx € A is equivalent inFPST to
x € No&Vy.y € Ao C app(x,y) € A. Here,app(x,y) denotes the concrete representation of “applyixng”
toy. One can derive irPST that (a representation of) &term, sayM, belongs to\, only if there is
a normalizable derivation d¥l € A. But then it is straightforward to check that only normalgiterms
can be typed iffPST with A, i.e. belong toA. There is indeed a natural reflection of the normalizability
of the FPST derivation of the typing judgememt € A, and the fact that the term representedvbys
indeed normalizable!

4.3 A Normalizing call-by-value A -calculus

In this section we sketch how to expressGbLF 5 a call-by-valueA -calculus whergB8-reductions fire
only if the result isnormalizing
Definition 4.4 (Normalizing call-by-value\ -calculus,Z, ).

o : Type Eq : o -> o -> Type app : o => o0 -> o0
v : Type var : v => o lam : (v => o) => o
apN
c_beta : I_IM:°'>°’N:°"=%ﬁq>.(o—>o)xo[Eq (app (lam Ax:v.M(var x)) N) (M N)]

where the predicate”" holds onl 5, (M,N) < (o->0) xo if both M andN have skeletons in\s,
whose holes are guarded byar and, moreoved N “normalizes”, in the intuitive sense, outside terms
guarded by aar.

4.4 Elementary Affine Logic

In this section we give ahallowencoding ofElementary Affine Logias presented in[2]. This example
will exemplify how locks can be used to deal with global sytitaconstraints as in theromotion rule
of Elementary Affine Logic.
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Definition 4.5 (Elementary Affine Logic [2]) Elementary Affine Logic can be specified by the following
rules:

NeaLB M AFeaLB MN-eatA AFgatA—B
AFealA (van) I AFeaLB (Weak FFeEalA—B (AbsY r,AbegalB (Appl)
MNeallA AJIA L IAFEALB Ao, AnFEALA TilFealdAr .0 ThaleadAn
FAFea B (Contr) F1.. . TnFealA (Prom)
Definition 4.6 (LLF & signaturezga, for Elementary Affine Logic)
o : Type T : o -> Type V : o -> Type —o : 0 ->0 >0 ' : 0 ->o0
c_appl : MA,B :o. T(A) -> T(A — B)-> T(B) cval : [lA:o. V(A) -> T('4)
c.abstr : MA,B :o. Mx:(T(A) -> T(B)) -> LW o [T(A — B)]
cpromV_1l : MA,B :o. MNx:(T(A — B)) -> XXCTLE’EES B)[T(!A) -> V(B)]

cpromV 2 : A,B :o. MNx:(V(A — B)) -> gxcéafff B)[T( 1A) —> V(B)]
whereo is the type of propositions;o and ! are the obvious syntactic constructarss the basic judge-

ment, and/(-) is an auxiliary judgement. The predicates involved in thek$oare defined as follows:

e Light (I k5., x < T(A) — T(B)) holds iff if A is not of the shapea!then the bound variable af
occurs at most once in the normal formzof

e Closed(l k5., x < T(A)) holds iff the skeleton of x contains only free variablesygfeo, i.e.no
variables of type'(B), for anyB : o.

A few remarks are mandatory. The promotion rulelin [2] is ifeeff afamily of natural deduction
rules with a growing number of assumptions. Our encodindeaes this via the auxiliary judgement
V(-), the effect of which is self-explanatory. Adequacy for thignature can be achieved only in the
format of [19], namely:

Theorem 4.3(Adequacy for Elementary Affine Logic)f Ay,...,A, are the atomic formulas occurring
in By,...,Bm,A, then B...BnFealL A iff there existt andA;:o,...,Ap0,%x1: T(B1),..., %0 T(Bn) F3ep,
M« T(A) (whereA, andB; represent the encodings of, respectively, A anthELLF 5, for 1 <i <m)
and all variablesx; ... x, occurring more than once in have type of the shap®B; ) = T(!C; ) for some
suitable formulec;.

The check on the context of the Adequacy Theoremxigrnalto the systeniLF 4, but this is in the
nature of results which relaiaternal and externalconcepts. For example, the very concept.bF »
context, which appears in any adequacy result, is exteordlR ,». Of course, this check is internalized
if the term is closed.

4.5 Square roots of natural numbers inCLLF »-

It is well-known that logical frameworks based on ConstgciType Theory do not permit definitions
of non-terminating functions.g., all the functions one can encode in such frameworks aad) tddne
interesting example ofLLF - system is the possibility of reasoning about partial fuorgdi by dele-
gating their computation to external oracles, and gettexgktiheir possible outputs, via the lock-unlock
mechanism ofCLLF 4.

For instance, we can encode natural numbers and computsdoire roots by means of the follow-
ing signature (x,y) denotes the encoding of pairs, whose type is denoted by, andfst andsnd are
the first and second projections, respectively):
nat: type 0: nat S: nat->nat plus : nat->nat->nat minus : nat->nat->nat
mult : nat->nat->nat sqroot: nat->nat eval : nat->nat->type
sqrt I'Ix:nat..,iﬂys:gﬁfxa[(eval (sqroot x) (fst y))]
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whereeval represents the usual evaluation predicate, the varigisl@ pair and
0 = (eval (plus (minus x (mult z z)) (minus (mult z z) x) 0))
andSQRTT Fs y < nat x 0) holds if and only if the first projection aof is the minimum numbel such
that(x = N N) 4 (N« N=x) = 0, where+ and * are represented Ipyus andmult, while = (represented
by minus in our signature) is defined as follows:
x—y ifx>y
0 otherwise
Thus, the specification @fqroot is not explicit InCLLF 4», since it is implicit in the definition c6QRT

A
X=y=

5 Related work

Building a universal framework with the aim of “gluing” défent tools and formalisms together is a long
standing goal that has been extensively explored in théringpvork on Logical Frameworks by [4, 27,
35,31 7.5, 26, 28, 29, 17]. Moreover, the appealing monstdicture and properties of the lock/unlock
mechanism go back to Moggi's notion of computational mor[28%. Indeed, our system can be seen
as a generalization to a family of dependdmt operators of Moggi'spartial A-calculus [24] and of
the work carried out in 8, 23] (which is also the original smiof the term “lax”). A correspondence
between lax modalities and monads in functional progrargmias pointed out iri |1, 12]. On the other
hand, although the connection between constraints anddsdndogic programming was considered
in the paste.g., in [26,[10/9], to our knowledge, our systems are the fitgnapt to establish a clear
correspondence between side conditions and monadshighar-order dependent-type theaayd in
logical frameworks. Of course, there are a lot of intergspoints of contact with other systems in the
literature which should be explored. For instance, in [#6,authors introduce a contextual modal logic,
where the notion of context is rendered by means of monadistaacts. We only point out that, as we
did in our system, they could have also simplified their sysby doing away with thaet construct in
favor of a deeper substitution. Schroder-Heister hasudsed in a number of papers, sg [33,[32],
various restrictions and side conditions on rules and om#tare of assumptions that one can add to
logical systems to prevent the arising of paradoxes. Theres@me potential connections between his
work and ours. It would be interesting to compare his requéets on side conditions being “closed
under substitution” to our notion avell-behavedredicate. Similarly, there are commonalities between
his distinction betweespecificand unspecificvariables, and our treatment of free variables in well-
behaved predicates. LFSC, presented_in [34], is more repgnt of our approach as “it extents

to allow side conditions to be expressed using a simpledndér functional programming language”.
Indeed, the author factors the verifications of side-cammlit out of the main proof. The task is delegated
to the type checker, which runs the code associated withideecendition, verifying that it yields the
expected output. The proposed machinery is focused ondgingvimprovements for SMT solvers.
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