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We present two extensions of theLF Constructive Type Theory featuring monadiclocks. A lock
is a monadic type construct that captures the effect of anexternal call to an oracle. Such calls
are the basic tool forgluing togetherdiverse Type Theories and proof development environments.
The oracle can be invoked either to check that a constraint holds or to provide a suitable witness.
The systems are presented in thecanonical styledeveloped by the CMU School. The first system,
CLLFP , is the canonical version of the systemLLFP , presented earlier by the authors. The second
system,CLLFP?, features the possibility of invoking the oracle to obtain awitness satisfying a given
constraint. We discuss encodings of Fitch-Prawitz Set theory, call-by-valueλ -calculi, and systems
of Light Linear Logic. Finally, we show how to use Fitch-Prawitz Set Theory to define a type system
that types precisely the strongly normalizing terms.

1 Introduction

In recent years, the authors have introduced in a series of papers [18, 16, 21, 20] various extensions of
the Constructive Type TheoryLF, with the goal of defining a simpleUniversal Meta-languagethat can
support the effect ofgluing together, i.e. interconnecting, different type systems and proof development
environments.

The basic idea underpinning these logical frameworks is to allow for the user to express explicitly,
in anLF type-theoretic framework theinvocation, and uniformrecordingof theeffect, of external tools
by means of a newmonadictype-constructorL P

M,σ [·], called alock. More specifically, locks permit to
express the fact that, in order to obtain a term of a given type, it is necessary toverify, first, a constraint
P(Γ ⊢Σ M : σ), i.e. to producesuitableevidence. No restrictions are enforced on producing such ev-
idence. It can be supplied by calling anexternal proof search toolor anexternal oracle, or exploiting
some other epistemic source, such as diagrams, physical analogies, or explicit computations according to
thePoincaŕe Principle[3]. Thus, by using lock constructors, one canfactor-outthe goal, produce pieces
of evidence using different proof environments andglue them back together, using theunlock operator,
which releasesthe locked term in the calling framework. Clearly, the task of checking the validity of
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4 Gluing together Proof Environments:CLLFP & CLLFP?

external evidence rests entirely on the external tool. In our framework we limit ourselves to recording in
the proof term by means of anU -destructor this recourse to an external tool.

One of the original contributions of this paper is that we show how locks can delegate to external
tools not only the task of producing suitable evidence but also that of exhibiting suitablewitnesses, to be
further used in the calling environment. This feature is exhibited byCLLFP? (see Section 3).

Locks subsume differentproof attitudes, such as proof-irrelevant approaches, where one is only inter-
ested in knowing that evidence does exist, or approaches relying on powerful terminating metalanguages.
Indeed, locks allow for a straightforward accommodation ofmany differentproof cultureswithin a single
Logical Framework; which otherwise can be embedded only very deeply [6, 15] or axiomatically [22].

Differently from our earlier work, we focus in this paper only on systems presented in thecanonical
format introduced by the CMU school [35, 14]. This format is syntax-directed and produces a unique
derivation for each derivable judgement. Terms are all in normal form and equality rules are replaced
by hereditary substitution. We present the systems in canonical form, since this formatstreamlines the
proof of adequacy theorems.

First, we present the very expressive systemCLLFP and discuss the relationship to its non-canonical
counterpartLLFP in [20], where we introducedlock-typesfollowing the paradigm of Constructive Type
Theory (̀a la Martin-Löf), via introduction, elimination, andequality rules. This paradigm needs to
be rephrased for the canonical format used here. Introduction rules correspond totype checkingrules
of canonical objects, whereas elimination rules correspond totype synthesisrules of atomic objects.
Equality rules are rendered via the rules ofhereditary substitution. In particular, we introduce alock
constructorfor building canonical objectsL P

N,σ [M] of typeL P
N,σ [ρ ], via thetype checking rule(O·Lock).

Correspondingly, we introduce anunlock destructor, U P
N,σ [M], and anatomic rule(O·Unlock), allowing

elimination, in the hereditary substitution rules, of the lock-type constructor, under the condition that a
specific predicateP is verified, possiblyexternally, on a judgement:

Γ ⊢Σ M ⇐ ρ Γ ⊢Σ N ⇐ σ
Γ ⊢Σ L P

N,σ [M]⇐ L P
N,σ [ρ ]

(O·Lock)
Γ ⊢Σ A⇒ L P

N,σ [ρ ] Γ ⊢Σ N ⇐ σ P(Γ ⊢Σ N ⇐ σ)

Γ ⊢Σ U P
N,σ [A]⇒ ρ

(O·Unlock)

Capitalizing on the monadic nature of the lock constructor,as we did for the systems in [21, 20], one can
use locked terms without necessarily establishing the predicate, provided anoutermostlock is present.
This increases the expressivity of the system, and allows for reasoning under the assumption that the
verification is successful, as well as for postponing and reducing the number of verifications. The rules
which make all this work are:

Γ,x:τ ⊢Σ L P
S,σ [ρ ] type Γ ⊢Σ A⇒ L P

S,σ [τ ] ρ [U P
S,σ [A]/x]F(τ)− = ρ ′

Γ ⊢Σ L P
S,σ [ρ ′] type

(F·Nested·Unlock)

Γ,x:τ ⊢Σ L P
S,σ [M]⇐ L P

S,σ [ρ ] Γ ⊢Σ A⇒ L P
S,σ [τ ]

ρ [U P
S,σ [A]/x]F(τ)− = ρ ′ M[U P

S,σ [A]/x]O(τ)− = M′

Γ ⊢Σ L P
S,σ [M

′]⇐ L P
S,σ [ρ ′]

(O·Nested·Unlock)

The (O·Nested·Unlock)-rule is the counterpart of the elimination rule for monads, once we realize that
the standard destructor of monads (see, e.g., [25])letTP(Γ⊢S:σ)

x= A in N can be replaced, in our context,

by N[U P
S,σ [A]/x]. And this holds since theL P

S,σ [·]-monad satisfies the propertyletTP
x= M in N → N if

x /∈ Fv(N), providedx occursguardedin N, i.e. within subterms of the appropriate lock-type. The rule
(F·Nested·Unlock) takes care of elimination at the level of types.
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K ∈ K K ::= type | Πx:σ .K Kinds

α ∈ Fa α ::= a | α N Atomic Families

σ ,τ,ρ ∈ F σ ::= α | Πx:σ .τ | L P
N,σ [ρ ] Canonical Families

A ∈ Oa A ::= c | x | AM | U P
N,σ [A] Atomic Objects

M,N ∈ O M ::= A | λx:σ .M | L P
N,σ [M] Canonical Objects

Σ ∈ S Σ ::= /0 | Σ,a:K | Σ,c:σ Signatures

Γ ∈ C Γ ::= /0 | Γ,x:σ Contexts

Figure 1: Syntax ofCLLFP

We proceed then to introduceCLLFP?. Syntactically, it might appear as a minor variation ofCLLFP ,
but the lock constructor is used here to express therequestfor a witness satisfying a given property, which
is thenreplacedby the unlock operation. InCLLFP?, the lock acts as abinding operatorand the unlock
as anapplication.

To illustrate the expressive power ofCLLFP andCLLFP? we discuss various challenging encodings
of subtle logical systems, as well as some novel applications. First, we encode inCLLFP Fitch-Prawitz
consistent Set-Theory (FPST), as presented in [30], and to illustrate its expressive power, we show, by
way of example, how it can type all strongly normalizing terms. Next, we give signatures inCLLFP of
a strongly normalizingλ -calculus and a system of Light Linear Logic [2]. Finally, inSection 4.5, we
show how to encode functions inCLLFP?.

The paper is organized as follows: in Section 2 we present thesyntax, the type system and the
metatheory ofCLLFP , whereasCLLFP? is introduced in Section 3. Section 4 is devoted to the presen-
tation and discussion of case studies. Finally, connections with related work in the literature appear in
Section 5.

2 The Canonical SystemCLLFP

In this section, we discuss thecanonicalcounterpart ofLLFP [20], i.e. CLLFP , in the style of [35, 14].
This approach amounts to restricting the language only to terms in longβη-normal form. These are the
normal forms of the original system which are normal also w.r.t. typedη-like expansion rules, namely
M → λx:σ .Mx andM → L P

N,σ [U
P

N,σ [M]] if M is atomic. The added value of canonical systems such
asCLLFP is that one can streamline results of adequacy for encoded systems. Indeed, reductions in
the meta-language of non-canonical terms reflect only the history of how the proof was developed using
lemmata.

2.1 Syntax and Type System forCLLFP

The syntax ofCLLFP is presented in Figure 1. The type system forCLLFP is shown in Figure 2. The
judgements ofCLLFP are the following:

Σ sig Σ is a valid signature
⊢Σ Γ Γ is a valid context inΣ

Γ ⊢Σ K K is a kind inΓ andΣ
Γ ⊢Σ σ type σ is a canonical family inΓ andΣ
Γ ⊢Σ α ⇒ K K is the kind of the atomic familyα in Γ andΣ
Γ ⊢Σ M ⇐ σ M is a canonical term of typeσ in Γ andΣ
Γ ⊢Σ A⇒ σ σ is the type of the atomic termA in Γ andΣ
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Valid signatures

/0 sig
(S·Empty)

Σ sig ⊢Σ K a 6∈Dom(Σ)
Σ,a:K sig

(S·Kind)
Σ sig ⊢Σ σ type c 6∈ Dom(Σ)

Σ,c:σ sig
(S·Type)

Kind rules

⊢Σ Γ
Γ ⊢Σ type

(K·Type)

Γ,x:σ ⊢Σ K
Γ ⊢Σ Πx:σ .K

(K·Pi)

Atomic Family rules

⊢Σ Γ a:K ∈ Σ
Γ ⊢Σ a⇒ K

(A·Const)

Γ ⊢Σ α ⇒ Πx:σ .K1

Γ ⊢Σ M ⇐ σ
K1[M/x]K(σ)− = K

Γ ⊢Σ α M ⇒ K
(A·App)

Canonical Family rules

Γ ⊢Σ α ⇒ type

Γ ⊢Σ α type
(F ·Atom)

Γ,x:σ ⊢Σ τ type

Γ ⊢Σ Πx:σ .τ type
(F·Pi)

Γ ⊢Σ ρ type Γ ⊢Σ N ⇐ σ
Γ ⊢Σ L P

N,σ [ρ ] type
(F ·Lock)

Γ,x : τ ⊢Σ L P
S,σ [ρ ] type

Γ ⊢Σ A⇒ L P
S,σ [τ]

ρ [U P
S,σ [A]/x]F(τ)− = ρ ′

Γ ⊢Σ L P
S,σ [ρ ′] type

(F ·Nested·Unlock)

Context rules

Σ sig

⊢Σ /0
(C·Empty)

⊢Σ Γ Γ ⊢Σ σ type x 6∈ Dom(Γ)
⊢Σ Γ,x:σ (C·Type)

Atomic Object rules

⊢Σ Γ c:σ ∈ Σ
Γ ⊢Σ c⇒ σ (O·Const)

⊢Σ Γ x:σ ∈ Γ
Γ ⊢Σ x⇒ σ (O·Var)

Γ ⊢Σ A⇒ Πx:σ .τ1

Γ ⊢Σ M ⇐ σ τ1[M/x]F(σ)− = τ

Γ ⊢Σ AM ⇒ τ (O·App)

Γ ⊢Σ A⇒ L P
N,σ [ρ ]

Γ ⊢Σ N ⇐ σ P(Γ ⊢Σ N ⇐ σ)

Γ ⊢Σ U P
N,σ [A]⇒ ρ

(O·Unlock)

Canonical Object rules

Γ ⊢Σ A⇒ α
Γ ⊢Σ A⇐ α (O·Atom)

Γ,x:σ ⊢Σ M ⇐ τ
Γ ⊢Σ λx:σ .M ⇐ Πx:σ .τ

(O·Abs)

Γ ⊢Σ M ⇐ ρ Γ ⊢Σ N ⇐ σ
Γ ⊢Σ L P

N,σ [M]⇐ L P
N,σ [ρ ]

(O·Lock)

Γ,x:τ ⊢Σ L P
S,σ [M]⇐ L P

S,σ [ρ ] Γ ⊢Σ A⇒ L P
S,σ [τ]

ρ [U P
S,σ [A]/x]F(τ)− = ρ ′ M[U P

S,σ [A]/x]O
(τ)− = M′

Γ ⊢Σ L P
S,σ [M

′]⇐ L P
S,σ [ρ

′]
(O·Nested·Unlock)

Figure 2: TheCLLFP Type System

The judgementsΣ sig, and⊢Σ Γ, andΓ ⊢Σ K are as in Section 2.1 of [19], whereas the remaining ones
are peculiar to the canonical style. Informally, the judgment Γ ⊢Σ M ⇐ σ usesσ to check the type
of the canonical termM, while the judgmentΓ ⊢Σ A ⇒ σ uses the type information contained in the
atomic termA andΓ to synthesizeσ . PredicatesP in CLLFP are defined on judgements of the shape
Γ ⊢Σ M ⇐ σ .

There are two rules whose conclusion is the lock constructorL P
S,σ [·]. But nevertheless, this system

is still syntax directed: when there are subterms of the formU P
S,σ [A] in eitherM′ or ρ ′, the type checking

algorithm always tries to apply the(O·Nested·Unlock) rule. If this is not possible, it applies instead the
(O ·Lock) rule.

The type system makes use, in the rules(A·App) and(F·App), of the notion ofHereditary Substitu-
tion, which computes the normal form resulting from the substitution of one normal form into another.
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(a)− = a

(α)− = ρ
(α M)− = ρ

(σ)− = ρ1 (τ)− = ρ2

(Πx:σ .τ)− = ρ1 → ρ2

(τ)− = ρ
(L P

N,σ [τ])− = L P
N,σ [ρ ]

Figure 3: Erasure to simple-types

Substitution in Kinds

type[M0/x0]
K
ρ0

= type
(S ·K·Type)

σ [M0/x0]
F
ρ0

= σ ′ K[M0/x0]
K
ρ0

= K′

(Πx:σ .K)[M0/x0]
K
ρ0

= Πx:σ .′K′
(S ·K·Pi)

Substitution in Atomic Families

a[M0/x0]
f
ρ0 = a

(S ·F ·Const)
α[M0/x0]

f
ρ0 = α ′ M[M0/x0]

O
ρ0

= M′

(αM)[M0/x0]
f
ρ0 = α ′M′

(S ·F ·App)

Substitution in Canonical Families

α[M0/x0]
f
ρ0 = α ′

α[M0/x0]
F
ρ0

= α ′
(S ·F·Atom)

σ1[M0/x0]
F
ρ0

= σ ′
1 σ2[M0/x0]

F
ρ0

= σ ′
2

(Πx:σ1.σ2)[M0/x0]
F
ρ0

= Πx:σ ′
1.σ ′

2

(S ·F ·Pi)

σ1[M0/x0]
F
ρ0

= σ ′
1 M1[M0/x0]

O
ρ0

= M′
1 σ2[M0/x0]

F
ρ0

= σ ′
2

L P
M1,σ1

[σ2][M0/x0]
F
ρ0

= L P

M′
1,σ

′
1
[σ ′

2]
(S ·F ·Lock)

Figure 4: Hereditary substitution, kinds and families ofCLLFP

The general form of the hereditary substitution judgement is T[M/x]tρ = T ′, whereM is the term being
substituted,x is the variable being substituted for,T is the term being substituted into,T ′ is the result of
the substitution,ρ is thesimple-typeof M, andt denotes the syntactic class (e.g. atomic families/object,
canonical families/objects, etc.) under consideration. We give the rules of the Hereditary Substitution
in the style of [14], where the erasure function to simple types is necessary to simplify the proof of
termination, which we omit.

The simple-typeρ of M is obtained via the erasure function of [14] (Figure 3), mapping depen-
dent into simple-types. The rules for Hereditary Substitution are presented in Figures 4 and 5, using
Barendregt’s hygiene condition.

Notice that, in the rule(O·Atom) of the type system (Figure 2), the syntactic restriction of the classi-
fier to α atomic ensures that canonical forms arelong βη-normal formsfor the suitable notion of long
βη-normal form, which extends the standard one for lock-types. For one, the judgementx:Πz:a.a⊢Σ x⇐
Πz:a.a is not derivable, asΠz:a.a is not atomic, hence⊢Σ λx:(Πz:a.a).x ⇐ Πx:(Πz:a.a).Πz:a.a is not
derivable. On the other hand,⊢Σ λx:(Πz:a.a).λy:a.xy⇐ Πx:(Πz:a.a).Πz:a.a, wherea is a family con-
stant of kindType, is derivable. Analogously, for lock-types, the judgementx:L P

N,σ [ρ ] ⊢Σ x⇐ L P
N,σ [ρ ]

is not derivable, sinceL P
N,σ [ρ ] is not atomic. As a consequence, we have that⊢Σ λx:L P

N,σ [ρ ].x ⇐

Πx:L P
N,σ [ρ ].L P

N,σ [ρ ] is not derivable. However,x:L P
N,σ [ρ ] ⊢Σ L P

N,σ [U
P

N,σ [x]]⇐ L P
N,σ [ρ ] is derivable, if

ρ is atomic. Hence, the judgment⊢Σ λx:L P
N,σ [ρ ].L P

N,σ [U
P

N,σ [x]] ⇐ Πx:L P
N,σ [ρ ].L P

N,σ [ρ ] is derivable.
Note that the unlock constructor takes anatomicterm as its main argument, thus avoiding the creation
of possibleL -redexes under substitution. Moreover, since unlocks can only receive locked terms in
their body, no abstractions can ever arise. In Definition 2.3, we formalize the notion ofη-expansion of a
judgement, together with correspondence theorems betweenLLFP andCLLFP .

We presentCLLFP in a fully-typed style,i.e. à la Church, but we could also follow [14] and present
a versionà la Curry, where the canonical formsλx.M andL P

M [N] do not carry type information. The
type rules would then be,e.g.:
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Substitution in Atomic Objects

c[M0/x0]
o
ρ0

= c
(S ·O·Const)

x0[M0/x0]
o
ρ0

= M0 : ρ0
(S ·O·Var·H)

x 6= x0

x[M0/x0]
o
ρ0

= x
(S ·O·Var)

A1[M0/x0]
o
ρ0

= λx:ρ2.M′
1 : ρ2 → ρ M2[M0/x0]

O
ρ0

= M′
2 M′

1[M
′
2/x]Oρ2

= M′

(A1M2)[M0/x0]
o
ρ0

= M′ : ρ
(S ·O·App·H)

A1[M0/x0]
o
ρ0

= A′
1 M2[M0/x0]

O
ρ0

= M′
2

(A1M2)[M0/x0]
o
ρ0

= A′
1M′

2
(S ·O·App)

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
O
ρ0

= M′ A[M0/x0]
o
ρ0

= L P

M′,σ ′ [M1] : L P

M′,σ ′ [ρ ]

U P
M,σ [A][M0/x0]

o
ρ0

= M1 : ρ
(S ·O·Unlock·H)

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
O
ρ0

= M′ A[M0/x0]
o
ρ0

= A′

U P
M,σ [A][M0/x0]

o
ρ0

= U P

M′ ,σ ′ [A′]
(S ·O·Unlock)

Substitution in Canonical Objects

A[M0/x0]
o
ρ0

= A′

A[M0/x0]
O
ρ0

= A′
(S ·O·R)

A[M0/x0]
o
ρ0

= M′ : ρ

A[M0/x0]
O
ρ0

= M′
(S ·O·R·H)

M[M0/x0]
O
ρ0

= M′

λx:σ .M[M0/x0]
O
ρ0

= λx:σ .M′
(S ·O·Abs)

σ1[M0/x0]
F
ρ0

= σ ′
1 M1[M0/x0]

O
ρ0

= M′
1 M2[M0/x0]

O
ρ0

= M′
2

L P
M1,σ1

[M2][M0/x0]
O
ρ0

= L P

M′
1,σ

′
1
[M′

2]
(S ·O·Lock)

Substitution in Contexts

[M0/x0]
C
ρ0

= /0
(S ·Ctxt·Empty)

x0 6= x x 6∈ Fv(M0) Γ[M0/x0]
C
ρ0

= Γ′ σ [M0/x0]
F
ρ0

= σ ′

(Γ,x:σ)[M0/x0]
C
ρ0

= Γ′,x:σ ′
(S ·Ctxt·Term)

Figure 5: Hereditary substitution, objects and contexts ofCLLFP

Γ,x:σ ⊢Σ M ⇐ τ
Γ ⊢Σ λx.M ⇐ Πx:σ .τ

(O·Abs)
Γ ⊢Σ M ⇐ σ Γ ⊢Σ N ⇐ τ
Γ ⊢Σ L P

M [N]⇐ L P
M,σ [τ]

(O·Lock)

This latter syntax is more suitable in implementations because it simplifies the notation. Following [18],
we stick to the typeful syntax because it allows for a more direct comparison with non-canonical sys-
tems. This, however, is technically immaterial. Since judgements in canonical systems have unique
derivations, one can show by induction on derivations that any provable judgement in the system where
object terms arèa la Curry has aunique type decoration of its object subterms, which turns it into a
provable judgement in the versioǹa la Church. Vice versa, any provable judgement in the versionà
la Church can forget the types in its object subterms, yieldinga provable judgement in the versionà la
Curry.

2.2 The Metatheory ofCLLFP

For lack of space we omit proofs, but these follow the standard patterns in [14, 19]. We start by studying
the basic properties of hereditary substitution and the type system. First of all, we need to assume that
the predicates arewell-behavedin the sense of [19]. In the context of canonical systems, this notion
needs to be rephrased as follows:

Definition 2.1 (Well-behaved predicates for canonical systems). A finite set of predicates{Pi}i∈I is
well-behavedif eachP in the set satisfies the following conditions:

1. Closure under signature and context weakening and permutation:
(a) If Σ andΩ are valid signatures such thatΣ ⊆ Ω andP(Γ ⊢Σ N ⇐ σ), thenP(Γ ⊢Ω N ⇐ σ).
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(b) If Γ and∆ are valid contexts such thatΓ ⊆ ∆ andP(Γ ⊢Σ N ⇐ σ), thenP(∆ ⊢Σ N ⇐ σ).

2. Closure under hereditary substitution:If P(Γ,x:σ ′,Γ′ ⊢Σ N⇐ σ) andΓ ⊢Σ N′ : σ ′, then
P(Γ,Γ′[N′/x]C(σ ′)− ⊢Σ N[N′/x]O(σ ′)−⇐ σ [N′/x]F(σ ′)−).

As canonical systems do not feature reduction, the “classical” third constraint for well-behaved pred-
icates (closure under reduction) is not needed here. Moreover, the second condition (closure under
substitution) becomes “closure under hereditary substitution”.

Lemma 2.1(Decidability of hereditary substitution).

1. For any T in{K ,A ,F ,O,C }, and any M, x, andρ , it is decidable whether there exists a T′

such that T[M/x]mρ = T ′ or there is no such T′.
2. For any M, x,ρ , and A, it is decidable whether there exists an A′, such that A[M/x]oρ = A′, or there

exist M′ andρ ′, such that A[M/x]oρ = M′ : ρ ′, or there are no such A′ and M′.

Lemma 2.2(Head substitution size). If A[M0/x0]
o
ρ0
= M:ρ , thenρ is a subexpression ofρ0.

Lemma 2.3(Uniqueness of substitution and synthesis).

1. It is not possible that A[M0/x0]
o
ρ0
= A′ and A[M0/x0]

o
ρ0
= M:ρ .

2. For any T , if T[M0/x0]
m
ρ0
= T ′, and T[M0/x0]

m
ρ0
= T ′′, then T′ = T ′′.

3. If Γ ⊢Σ α ⇒ K, andΓ ⊢Σ α ⇒ K′, then K= K′.
4. If Γ ⊢Σ A⇒ σ , andΓ ⊢Σ A⇒ σ ′, thenσ = σ ′.

Lemma 2.4(Composition of hereditary substitution). Let x 6= x0 and x 6∈ Fv(M0). Then:

1. For all T′
1 in {K ,Fa,F ,Oa,O}, if M2[M0/x0]

O
ρ0

= M′
2, T1[M2/x]mρ2

= T ′
1, and T1[M0/x0]

m
ρ0

= T ′′
1 ,

then there exists a T : T′1[M0/x0]
m
ρ0
= T, and T′′1 [M

′
2/x]mρ2

= T.

2. If M2[M0/x0]
O
ρ0
=M′

2, A1[M2/x]oρ2
=M : ρ , and A1[M0/x0]

o
ρ0
=A, then there exists an M′: M [M0/x0]

O
ρ0
=

M′, and A[M′
2/x]oρ2

= M′ : ρ .

3. If M2[M0/x0]
O
ρ0
=M′

2, A1[M2/x]oρ2
=A, and A1[M0/x0]

o
ρ0
=M : ρ , then there exists an M′: A[M0/x0]

o
ρ0
=

M′ : ρ , and M[M′
2/x]Oρ2

= M′.

Theorem 2.5(Transitivity). LetΣ sig, ⊢Σ Γ,x0:ρ0,Γ′ andΓ ⊢Σ M0 ⇐ ρ0, and assume that all predicates
are well-behaved. Then,

1. There exists aΓ′′: [M0/x0]
C
ρ0
= Γ′′ and⊢Σ Γ,Γ′′.

2. If Γ,x0:ρ0,Γ′ ⊢Σ K then there exists a K′: [M0/x0]
K
ρ0

K = K′ andΓ,Γ′′ ⊢Σ K′.

3. If Γ,x0:ρ0,Γ′ ⊢Σ σ type, then there exists aσ ′: [M0/x0]
F
ρ0

σ = σ ′ andΓ,Γ′′ ⊢Σ σ ′ type.

4. If Γ,x0:ρ0,Γ′ ⊢Σ σ type andΓ,x0:ρ0,Γ′ ⊢Σ M ⇐ σ , then there existσ ′ and M′: [M0/x0]
F
ρ0

σ = σ ′

and [M0/x0]
O
ρ0

M = M′ andΓ,Γ′′ ⊢Σ M′ ⇐ σ ′.

Theorem 2.6(Decidability of typing). If predicates inCLLFP are decidable, then all of the judgements
of the system are decidable.

We can now precisely state the relationship betweenCLLFP and theLLFP system of [20]:

Theorem 2.7 (Soundness). For any predicateP of CLLFP , we define a corresponding predicate in
LLFP as follows: P(Γ ⊢Σ M : σ) holds if and only ifΓ ⊢Σ M : σ is derivable inLLFP and P(Γ ⊢Σ
M ⇐ σ) holds inCLLFP . Then, we have:

1. If Σ sig is derivable inCLLFP , thenΣ sig is derivable inLLFP .
2. If ⊢Σ Γ is derivable inCLLFP , then⊢Σ Γ is derivable inLLFP .
3. If Γ ⊢Σ K is derivable inCLLFP , thenΓ ⊢Σ K is derivable inLLFP .
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4. If Γ ⊢Σ α ⇒ K is derivable inCLLFP , thenΓ ⊢Σ α : K is derivable inLLFP .
5. If Γ ⊢Σ σ type is derivable inCLLFP , thenΓ ⊢Σ σ : type is derivable inLLFP .

6. If Γ ⊢Σ A⇒ σ is derivable inCLLFP , thenΓ ⊢Σ A : σ is derivable inLLFP .
7. If Γ ⊢Σ M ⇐ σ is derivable inCLLFP , thenΓ ⊢Σ M : σ is derivable inLLFP .

Vice versa, allLLFP judgements inlong βη-normal form(βη-lnf) are derivable inCLLFP . The
definition of a judgement inβη-lnf is based on the following extension of the standardη-rule to the lock
constructorλx:σ .Mx→η M andL P

N,σ [U
P

N,σ [M]]→η M.

Definition 2.2. An occurrenceξ of a constant or a variable in a term of anLLFP judgement isfully
applied and unlockedw.r.t. its type or kindΠ #»x 1: #»σ 1.

# »

L 1[. . .Π #»x n: #»σ n.
# »

L n[α ] . . .], where
# »

L 1, . . . ,
# »

L n are
vectors of locks, ifξ appears only in contexts that are of the form

# »

U n[(. . . (
# »

U 1[ξ
#»

M1]) . . .)
#»

Mn], where
#»

M1, . . . ,
#»

Mn,
# »

U 1, . . . ,
# »

U n have the same arities of the corresponding vectors ofΠ’s and locks.

Definition 2.3 (Judgements in longβη-normal form).

1. A term T in a judgement is inβη-lnf if T is in normal form and every constant and variable
occurrence inT is fully applied and unlocked w.r.t. its classifier in the judgement.

2. A judgement is inβη-lnf if all terms appearing in it are inβη-lnf.

Theorem 2.8(Correspondence). Assume that all predicates inLLFP are well-behaved, according to
Definition 2.1 [19]. For any predicateP in LLFP , we define a corresponding predicate inCLLFP

with: P(Γ ⊢Σ M ⇐ σ) holds ifΓ ⊢Σ M ⇐ σ is derivable inCLLFP andP(Γ ⊢Σ M : σ) holds inLLFP .
Then, we have:

1. If Σ sig is in βη-lnf and isLLFP -derivable, thenΣ sig is CLLFP -derivable.
2. If ⊢Σ Γ is in βη-lnf and isLLFP-derivable, then⊢Σ Γ is CLLFP -derivable.

3. If Γ ⊢Σ K is in βη-lnf, and isLLFP -derivable, thenΓ ⊢Σ K is CLLFP-derivable.
4. If Γ ⊢Σ α : K is in βη-lnf and isLLFP -derivable, thenΓ ⊢Σ α ⇒ K is CLLFP-derivable.

5. If Γ ⊢Σ σ :type is in βη-lnf and isLLFP -derivable, thenΓ ⊢Σ σ type is CLLFP -derivable.
6. If Γ ⊢Σ A : α is in βη-lnf and isLLFP -derivable, thenΓ ⊢Σ A⇒ α is CLLFP-derivable.

7. If Γ ⊢Σ M : σ is in βη-lnf and isLLFP-derivable, thenΓ ⊢Σ M ⇐ σ is CLLFP-derivable.

Notice that, by the Correspondence Theorem above, any well-behaved predicateP in LLFP in the
sense of Definition 2.1 [19] induces a well-behaved predicate in CLLFP . Finally, notice thatnot all
LLFP judgements have a correspondingβη-lnf. Namely, the judgementx:L P

N,σ [ρ ] ⊢Σ x : L P
N,σ [ρ ] does

not admit anη-expanded normal form when the predicateP doesnot hold onN, as the rule(O·Unlock)
can be applied only when the predicate holds.

3 The Type SystemCLLFP?

The main idea behindCLLFP? (see Figures 6, 7, and 8)1 is to “empower” the framework ofCLLFP

by adding to the lock/unlock mechanism the possibility to receive from the external oracle awitness
satisfying suitable constraints. Thus, we can pave the way for gluing together different proof develop-
ment environments beyond proof irrelevance scenarios. In this context, the lock constructor behaves as
abinder. The new(O·Lock) rule is the following:

1For lack of space, we present in these figures only the categories and rules ofCLLFP? that differ from theirCLLFP

counterparts.
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σ ,τ,ρ ∈ F σ ::= α | Πx:σ .τ | L P
x,σ [ρ ] Canonical Families

M,N ∈ O M ::= A | λx:σ .M | L P
x,σ [M] Canonical Objects

Figure 6:CLLFP? Syntax — changes w.r.t.CLLFP

Canonical Family rules

Γ,x:σ ⊢Σ ρ type

Γ ⊢Σ L P
x,σ [ρ ] type

(F·Lock)

Γ,y : τ ⊢Σ L P
x,σ [ρ ] type

Γ ⊢Σ A⇒ L P
x,σ [τ]

ρ [U P
x,σ [A]/y]F(τ)− = ρ ′

Γ ⊢Σ L P
x,σ [ρ ′]type

(F ·Nested·Unlock)

Atomic Object rules

Γ ⊢Σ A⇒ L P
x,σ [ρ ] Γ ⊢Σ N ⇐ σ

P(Γ ⊢Σ N ⇐ σ) ρ [N/x]F(σ)− = ρ ′

Γ ⊢Σ U P
N,σ [A]⇒ ρ ′

(O·Unlock)

Canonical Object rules

Γx:σ ⊢Σ M ⇐ ρ
Γ ⊢Σ L P

x,σ [M]⇐ L P
x,σ [ρ ]

(O·Lock)

Γ,y:τ ⊢Σ L P
x,σ [M]⇐ L P

x,σ [ρ ] Γ ⊢Σ A⇒ L P
x,σ [τ]

ρ [U P
x,σ [A]/y]F(τ)− = ρ ′ M[U P

x,σ [A]/y]O
(τ)− = M′

Γ ⊢Σ L P
x,σ [M

′]⇐ L P
x,σ [ρ ′]

(O·Nested·Unlock)

Figure 7: TheCLLFP? Type System — changes w.r.t.CLLFP

Γ,x:σ ⊢Σ M ⇐ ρ
Γ ⊢Σ L P

x,σ [M]⇐ L P
x,σ [ρ ]

where the variablex is a placeholder bound inM andρ , which will be replaced by the concrete term that
will be returned by the external oracle call. The intuitive meaning behind the(O·Lock) rule is, therefore,
that of recording the need to delegate to the external oraclethe inference of a suitable witness of a given
type. Indeed,M can be thought of as an “incomplete” term which needs to be completed by an inhabitant
of a given typeσ satisfying the constraintP. The actual term, possibly synthesized by the external tool,
will be “released” inCLLFP?, by the unlock constructor in the(O·Unlock) rule as follows:

Γ ⊢Σ A⇒ L P
x,σ [ρ ] ρ [N/x]F(σ)− = ρ ′ Γ ⊢Σ N ⇐ σ P(Γ ⊢Σ N ⇐ σ)

Γ ⊢Σ U P
N,σ [A]⇒ ρ ′

The termU P
N,σ [M] intuitively means thatN is precisely the synthesized term satisfying the constraint

P(Γ ⊢Σ N ⇐ σ) that will replace inCLLFP? all the free occurrences ofx in ρ . This replacement is
executed in the (S ·O·Unlock·H) hereditary substitution rule (Figure 8).

Similarly to CLLFP , also inCLLFP? it is possible to “postpone” or delay the verification of an
external predicate in a lock, provided anoutermostlock is present. Whence, the synthesis of the actual
inhabitantN can be delayed, thanks to the(O·Nested·Unlock) rule:

Γ,y:τ ⊢Σ L P
x,σ [M]⇐ L P

x,σ [ρ ] Γ ⊢Σ A⇒ L P
x,σ [τ ] ρ [U P

x,σ [A]/y]F(τ)− = ρ ′ M[U P
x,σ [A]/y]O(τ)− = M′

Γ ⊢Σ L P
x,σ [M

′]⇐ L P
x,σ [ρ ′]

The Metatheory ofCLLFP? follows closely that ofCLLFP as far as decidability. We have no correspon-
dence theorem since we did not introduce a non-canonical variantCLLFP?. This could have been done
similarly toLLFP .
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Substitution in Canonical Families

σ1[M0/x0]
F
ρ0

= σ ′
1 σ2[M0/x0]

F
ρ0

= σ ′
2

L P
x,σ1

[σ2][M0/x0]
F
ρ0

= L P

x,σ ′
1
[σ ′

2]
(S ·F ·Lock)

Substitution in Atomic Objects

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
o
ρ0

= M′ M1[M′/x]o
(σ ′)−

= M2 A[M0/x0]
o
ρ0

= L P

x,σ ′ [M1] : L P

x,σ ′ [ρ ]

U P
M,σ [A][M0/x0]

o
ρ0

= M2 : ρ
(S ·O·Unlock·H)

Substitution in Canonical Objects

σ1[M0/x0]
F
ρ0

= σ ′
1 M1[M0/x0]

O
ρ0

= M′
1

L P
x,σ1

[M1][M0/x0]
O
ρ0

= L P

x,σ ′
1
[M′

1]
(S ·O·Lock)

Figure 8:CLLFP? Hereditary Substitution — changes w.r.t.CLLFP

4 Case studies

In this section, we discuss the encodings of a collection of logical systems which illustrate the expressive
power and the flexibility ofCLLFP andCLLFP?. We discuss Fitch-Prawitz Consistent Set theory,FPST

[30], some applications ofFPST to normalizingλ -calculus, a system of Light Linear Logic inCLLFP ,
and an the encoding of apartial function inCLLFP?.

The crucial step in encoding a logical system inCLLFP or CLLFP? is to define the predicates
involved in locks. Predicates defined on closed terms are usually unproblematic. Difficulties arise in
enforcing the properties of closure under hereditary substitution and closure under signature and context
extension, when predicates are defined on open terms. To be able to streamline the definition of well-
behaved predicates we introduce the following:

Definition 4.1. Given a signatureΣ let ΛΣ (respectivelyΛo
Σ) be the set ofLLFP terms (respectively

closedLLFP terms) definable using constants fromΣ. A term M has askeletonin ΛΣ if there exists a
termN[x1, . . . ,xn] ∈ ΛΣ, whose free variables (calledholesof the skeleton) are in{x1, . . . ,xn}, and there
exist termsM1, . . . ,Mn such thatM ≡ N[M1/x1, . . . ,Mn/xn].

4.1 Fitch Set Theoryà la Prawitz - FPST

In this section, we present the encoding of a formal system ofremarkable logical as well as historical
significance, namely the system of consistentNäıveSet Theory,FPST, introduced by Fitch [11]. This
system was first presented in Natural Deduction style by Prawitz [30]. As Naı̈ve Set Theory is inconsis-
tent, to prevent the derivation of inconsistencies from theunrestrictedabstractionrule, only normalizable
deductionsare allowed inFPST. Of course, this side-condition is extremely difficult to capture using
traditional tools.

In the present context, instead, we can put to use the machinery of CLLFP to provide an appropriate
encoding ofFPST where theglobal normalization constraint is enforcedlocally by checking the proof-
object. This encoding beautifully illustrates thebag of tricksthat CLLFP supports. Checking that a
proof term is normalizable would be the obvious predicate touse in the corresponding lock-type, but this
would not be a well-behaved predicate if free variables,i.e. assumptions, are not sterilized. To this end,
We introduce a distinction betweengenericjudgements, which cannot be directly utilized in arguments,
but which can be assumed, andapodicticjudgements, which are directly involved in proof rules. In order
to make use of generic judgements, one has to downgrade them to an apodictic one. This is achieved by
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a suitable coercion function.

Definition 4.2 (Fitch Prawitz Set Theory,FPST). For the lack of space, here we only give the crucial
rules for implication and forset-abstractionand the corresponding elimination rules of the full system
of Fitch (see [30]), as presented by Prawitz:

Γ,A⊢FPST B
Γ ⊢FPST A⊃ B

(⊃ I)
Γ ⊢FPST A Γ ⊢FPST A⊃ B

Γ ⊢FPST B
(⊃ E)

Γ ⊢FPST A[T/x]

Γ ⊢FPST T ∈ λx.A
(λ I)

Γ ⊢FPST T ∈ λx.A
Γ ⊢FPST A[T/x]

(λE)

The intended meaning of the termλx.A is the set{x | A}. In Fitch’s system,FPST, conjunction and
universal quantification are defined as usual, while negation is defined constructively, but it still allows
for the usual definitions of disjunction and existential quantification. What makesFPST consistentis
that not all standard deductions inFPST are legal. Standard deductions are calledquasi-deductionsin
FPST. A legal deductionin FPST is defined instead, as a quasi-deduction which isnormalizablein the
standard sense of Natural Deduction, namely it can be transformed in a derivation where all elimination
rules occur before introductions.

Definition 4.3 (LLFP signatureΣFPST for Fitch Prawitz Set Theory). The following constants are intro-
duced:

o : Type ι : Type

T : o -> Type δ : ΠA:o. (V(A) -> T(A))

V : o -> Type λ intro : ΠA:ι ->o.Πx:ι.T(A x) -> T(ε x (lam A))

lam : (ι -> o)-> ι λ elim : ΠA:ι ->o.Πx:ι.T(ε x (lam A))->T(A x)

ε : ι -> ι -> o ⊃ intro: ΠA,B:o.(V(A) -> T(B)) -> (T(A ⊃B))
⊃ : o -> o -> o ⊃ elim : ΠA,B:o.Πx:T(A).Πy:T(A⊃B) -> L Fitch

〈x,y〉,T(A)×T(A⊃B)[T(B)]

whereo is the type of propositions,⊃ and the “membership” predicateε are the syntactic constructors
for propositions,lam is the “abstraction” operator for building “sets”,T is the apodictic judgement,V is
the generic judgement,δ is the coercion function, and〈x,y〉 denotes the encoding of pairs, whose type
is denoted byσ×τ, e.g. λu:σ → τ → ρ . u x y : (σ → τ → ρ)→ ρ . The predicate in the lock is defined
as follows:

Fitch(Γ ⊢ΣFPST
〈x,y〉 ⇐ T(A)×T(A⊃ B))

it holds iff x andy have skeletons inΛΣFPST
, all the holes of which have either typeo or are guarded by

a δ , and hence have typeV(A), and, moreover, the proof derived by combining the skeletons of x andy
is normalizable in the natural sense. Clearly, this predicate is only semi-decidable.

For lack of space, we do not spell out the rules concerning theother logical operators, because
they are all straightforward provided we use only the apodictic judgementT(·), but a few remarks are
mandatory. The notion ofnormalizable proofis the standard notion used in natural deduction. The
predicateFitch is well-behaved because it considers terms only up-to holesin the skeleton, which can
have typeo or are generic judgements. Adequacy for this signature can be achieved in the format of [19]:

Theorem 4.1(Adequacy for Fitch-Prawitz Naive Set Theory). If A1, . . . ,An are the atomic formulas oc-
curring in B1, . . . ,Bm,A, then B1 . . .Bm⊢FPST A iff there exists a normalizableM such thatA1:o, . . . ,An:o,
x1:V(B1), . . . ,xm:V(Bm) ⊢ΣFPST

M⇐ T(A) (whereA, andBi represent the encodings of, respectively, A and
Bi in CLLFP , for 1≤ i ≤ m).
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4.2 A Type System for strongly normalizingλ -terms

Fitch-Prawitz Set Theory,FPST, is a rather intriguing, albeit unexplored, set theoretic system. The
normalizability criterion for accepting a quasi-deduction prevents the derivation of contradictions and
hence makes the system consistent. Of course, some intuitive rules are not derivable. For instancemodus
ponensdoes not hold and ift ∈ λx.A then we do not have necessarily thatA[t/x] holds. Similarly, the
transitivity property does not hold. HoweverFPST is a very expressive type system which “encom-
passes” many kinds of quantification, provided normalization is preserved and Fitch has shown, seee.g.
[11], that a large portion of ordinary Mathematics can be carried out inFPST.

In this subsection, we sketch how to useFPST to define a type system which can typeprecisely all
the strongly normalizingλ -terms. Namely, we show that inFPST there exists a setΛ to which belong
only the strongly normalizingλ -terms. We speak of atype systembecause the proof inFPST that a term
belongs toΛ is syntax directed. First we need to be able to define recursive objects inFPST. We adapt,
to FPST, Prop. 4, Appendix A.1 of [13], originally given by J-Y. Girard for Light Linear Logic, as:
Theorem 4.2(Fixpoint). Let A[P,x1 . . . ,xn] be a formula ofFPST with an n-ary predicate variable P.
Then, there exists a formula B ofFPST, such that there exists a normalizable deduction inFPST between
A[λx1 . . . ,xn.B[x1, . . . ,xn],x1 . . . ,xn] and B, and viceversa.

Proof. Let equality be Leibniz equality, then, assumingn= 1, defineΛ≡ λz.∃x.∃y.z= 〈x,y〉&A[(λw.〈w,
y〉 ∈ y),x]. Then〈x,Λ〉 ∈ Λ is equivalent, in the sense ofFPST, to A[(λw.〈w,Λ〉 ∈ Λ),x].

Using the Fixpoint Theorem we define first natural numbers, then a concrete representation of the
terms ofλ -calculus, sayΛ0. Using again the Fixed Point Theorem, we define a (representation of) the
substitution function over terms inΛ0 and finally the setΛ, such thatx ∈ Λ is equivalent inFPST to
x∈ Λ0&∀y.y∈ Λ0 ⊂ app(x,y) ∈ Λ. Here,app(x,y) denotes the concrete representation of “applying”x
to y. One can derive inFPST that (a representation of) aλ -term, sayM, belongs toΛ, only if there is
a normalizable derivation ofM ∈ Λ. But then it is straightforward to check that only normalizing terms
can be typed inFPST with Λ, i.e. belong toΛ. There is indeed a natural reflection of the normalizability
of theFPST derivation of the typing judgementM ∈ Λ, and the fact that the term represented byM is
indeed normalizable!

4.3 A Normalizing call-by-valueλ -calculus

In this section we sketch how to express inCLLFP a call-by-valueλ -calculus whereβ -reductions fire
only if the result isnormalizing.
Definition 4.4 (Normalizing call-by-valueλ -calculus,ΣλN).
o : Type Eq : o -> o -> Type app : o -> o -> o

v : Type var : v -> o lam : (v -> o) -> o

c beta : ΠM:o->o,N:o.L P
N

〈M,N〉,(o->o)×o[Eq (app (lam λx:v.M(var x)) N) (M N)]

where the predicatePN holds onΓ ⊢ΣλN
〈M,N〉 ⇐ (o->o)×o if both M andN have skeletons inΛΣλN

whose holes are guarded by avar and, moreover,M N “normalizes”, in the intuitive sense, outside terms
guarded by avar.

4.4 Elementary Affine Logic

In this section we give ashallowencoding ofElementary Affine Logicas presented in [2]. This example
will exemplify how locks can be used to deal with global syntactic constraints as in thepromotion rule
of Elementary Affine Logic.
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Definition 4.5 (Elementary Affine Logic [2]). Elementary Affine Logic can be specified by the following
rules:

A⊢EAL A
(Var)

Γ ⊢EAL B
Γ,A⊢EAL B

(Weak)
Γ,A⊢EAL B

Γ ⊢EAL A⊸ B
(Abst)

Γ ⊢EAL A ∆ ⊢EAL A⊸ B
Γ,∆ ⊢EAL B

(Appl)

Γ ⊢EAL!A ∆, !A, . . . , !A⊢EAL B
Γ,∆ ⊢EAL B

(Contr)
A1, . . . ,An ⊢EAL A Γ1 ⊢EAL!A1 . . . Γn ⊢EAL!An

Γ1 . . .Γn ⊢EAL!A
(Prom)

Definition 4.6 (LLFP signatureΣEAL for Elementary Affine Logic).
o : Type T : o -> Type V : o -> Type ⊸ : o -> o -> o ! : o -> o

c appl : ΠA,B :o. T(A) -> T(A ⊸ B)-> T(B) c val : ΠA:o. V(A) -> T(!A)

c abstr : ΠA,B :o. Πx:(T(A) -> T(B)) -> L
Light

x,T(A)->T(B) [T(A ⊸ B)]

c promV 1 : ΠA,B :o. Πx:(T(A ⊸ B)) -> L Closed
x,T(A⊸ B)[T(!A) -> V(B)]

c promV 2 : ΠA,B :o. Πx:(V(A ⊸ B)) -> L Closed
x,V(A⊸ B)[T(!A) -> V(B)]

whereo is the type of propositions,⊸ and ! are the obvious syntactic constructors,T is the basic judge-
ment, andV(·) is an auxiliary judgement. The predicates involved in the locks are defined as follows:

• Light (Γ ⊢ΣEAL x⇐ T(A)→ T(B)) holds iff if A is not of the shape !A then the bound variable ofx
occurs at most once in the normal form ofx.

• Closed (Γ ⊢ΣEAL x⇐ T(A)) holds iff the skeleton of x contains only free variables of typeo, i.e.no
variables of typeT(B), for anyB : o.

A few remarks are mandatory. The promotion rule in [2] is in effect afamily of natural deduction
rules with a growing number of assumptions. Our encoding achieves this via the auxiliary judgement
V(·), the effect of which is self-explanatory. Adequacy for thissignature can be achieved only in the
format of [19], namely:
Theorem 4.3(Adequacy for Elementary Affine Logic). if A1, . . . ,An are the atomic formulas occurring
in B1, . . . ,Bm,A, then B1 . . .Bm ⊢EAL A iff there existsM andA1:o, . . . ,An:o,x1: T(B1), . . . ,xm:T(Bm) ⊢ΣEAL

M⇐ T(A) (whereA, andBi represent the encodings of, respectively, A and Bi in CLLFP , for 1≤ i ≤ m)
and all variablesx1 . . .xm occurring more than once inM have type of the shapeT(Bi)≡ T(!Ci) for some
suitable formulaCi.
The check on the context of the Adequacy Theorem isexternalto the systemLLFP , but this is in the
nature of results which relateinternal andexternalconcepts. For example, the very concept ofLLFP

context, which appears in any adequacy result, is external to LLFP . Of course, this check is internalized
if the term is closed.

4.5 Square roots of natural numbers inCLLFP?

It is well-known that logical frameworks based on Constructive Type Theory do not permit definitions
of non-terminating functions (i.e., all the functions one can encode in such frameworks are total). One
interesting example ofCLLFP? system is the possibility of reasoning about partial functions by dele-
gating their computation to external oracles, and getting back their possible outputs, via the lock-unlock
mechanism ofCLLFP?.

For instance, we can encode natural numbers and compute their square roots by means of the follow-
ing signature (〈x,y〉 denotes the encoding of pairs, whose type is denoted byσ × τ, andfst andsnd are
the first and second projections, respectively):
nat: type O: nat S: nat->nat plus : nat->nat->nat minus : nat->nat->nat

mult : nat->nat->nat sqroot: nat->nat eval : nat->nat->type

sqrt : Πx:nat.L SQRT
y,nat×σ [(eval (sqroot x) (fst y))]
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whereeval represents the usual evaluation predicate, the variabley is a pair and

σ ≡ (eval (plus (minus x (mult z z)) (minus (mult z z) x) O))

andSQRT(Γ ⊢Σ y⇐ nat×σ) holds if and only if the first projection ofy is the minimum numberN such
that(x _−N∗N)+ (N∗N _−x) = 0, where+ and * are represented byplus andmult, while _− (represented
by minus in our signature) is defined as follows:

x _−y
∆
=

{

x−y if x≥ y

0 otherwise

Thus, the specification ofsqroot is not explicit inCLLFP?, since it is implicit in the definition ofSQRT.

5 Related work

Building a universal framework with the aim of “gluing” different tools and formalisms together is a long
standing goal that has been extensively explored in the inspiring work on Logical Frameworks by [4, 27,
35, 31, 7, 5, 26, 28, 29, 17]. Moreover, the appealing monadicstructure and properties of the lock/unlock
mechanism go back to Moggi’s notion of computational monads[25]. Indeed, our system can be seen
as a generalization to a family of dependentlax operators of Moggi’spartial λ -calculus [24] and of
the work carried out in [8, 23] (which is also the original source of the term “lax”). A correspondence
between lax modalities and monads in functional programming was pointed out in [1, 12]. On the other
hand, although the connection between constraints and monads in logic programming was considered
in the past,e.g., in [26, 10, 9], to our knowledge, our systems are the first attempt to establish a clear
correspondence between side conditions and monads in ahigher-order dependent-type theoryand in
logical frameworks. Of course, there are a lot of interesting points of contact with other systems in the
literature which should be explored. For instance, in [26],the authors introduce a contextual modal logic,
where the notion of context is rendered by means of monadic constructs. We only point out that, as we
did in our system, they could have also simplified their system by doing away with thelet construct in
favor of a deeper substitution. Schröder-Heister has discussed in a number of papers, seee.g. [33, 32],
various restrictions and side conditions on rules and on thenature of assumptions that one can add to
logical systems to prevent the arising of paradoxes. There are some potential connections between his
work and ours. It would be interesting to compare his requirements on side conditions being “closed
under substitution” to our notion ofwell-behavedpredicate. Similarly, there are commonalities between
his distinction betweenspecificand unspecificvariables, and our treatment of free variables in well-
behaved predicates. LFSC, presented in [34], is more reminiscent of our approach as “it extendsLF
to allow side conditions to be expressed using a simple first-order functional programming language”.
Indeed, the author factors the verifications of side-conditions out of the main proof. The task is delegated
to the type checker, which runs the code associated with the side-condition, verifying that it yields the
expected output. The proposed machinery is focused on providing improvements for SMT solvers.
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