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Many formal systems, particularly in computer science, rhayaptured by equations modulated
by side conditions asserting the “freshness of names”getlcas be reasoned about with Nominal
Equational Logic (NEL). Like most logics of this sort NEL ehaps this notion of freshness as a
first class logical connective. However, this can becomerigenient when attempting to translate
results from standard equational logic to the nominal isgttiThis paper presents proof rules for a
logic whose only connectives are equations, which we caithal Equation-only Logic (NEoL).
We prove that NEoL is just as expressive as NEL. We then givimple description of equality in
the empty NEoL-theory, then extend that result to descriégghiness in the empty NEL-theory.

1 Introduction

Many formal systems, particularly in computer science, fhaycaptured via equations modulated by
side conditions asserting certain namesfaggh for(not in the free names of) certain metavariables:

First-order logic: ® D (Va.W) = Va.(® D W) if ais fresh for®;
A-calculus: Aa.fa =, fif ais fresh forf;
r-calculus: (vax) |y = va(x|y) if ais fresh fory.

We may express such modulated equations, and hence reaswilyoabout the systems described by
them, withNominal Equational Logic (NEL]E]. NEL-theories can also express the notions of binding
and a-equivalence such systems exhibit [3]. NEL generalisesdstal equational logic by employing
the nominal setanodel [11], a refinement of the earlier Fraenkel-Mostowsks snodel[[9], where the
manipulation of names is modelled by the actiorpefmutations

In the examples above the ‘fresh for’ relation, represeimeEL by the symbol #’, is attached
to metavariables as a side condition to the equations. Hemiinis relation generalises naturally and
conveniently to a relation asserting certain names aré farscertainterms As such, in NEL and other
nominal logics,# is treated as a first class logical connective, rather tharelgnéeing used in side
conditions.

Standard equational logic is an extremely well studiedesyge.g. [1, Cha. 3]), and NEL's develop-
ment philosophy was to maintain as close a relationship ssilgle to this standard account, so that well
known results can be transferred to a setting with namesiadihlg with a minimum of difficulty. There
are two orthogonal ways in which this can be done. The firgd tsanslate techniques and results from
equational logic to NEL, such as term rewriting, Lawvereoties, algebras for a monad, and Birkhoff-
style closure results. The second is to combine NEL withrotléensions of equational logic, of which
a multitude exist - partial, order-sorted, conditional,mieership, fuzzy, and so forth.
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There is a tension here, as we wish to exploit known resukgjoational logic while also having the
convenience oft as a first class logical connective, so that NEL is no longellyen equational logic
at all. Consider the case of Lawvere theories [10]. In thisgary theoretic view of equational logic, an
equational theory is mapped takassifying categorywhose arrows are tuples of terms, and the equality
of arrows is asserted to correspond to the provable equaliterms in the theory. This is intuitive
because equality has a clear meaning in the category tiessetting, as it must in any mathematical
setting. This is not true of freshness, which is a notion bkepo the nominal sets model with no
obvious meaning in, say, standard category theory.

Fortunately, it is known that in a variety of contexts frests judgements can be translated into
equally expressive equations with freshness side conditibhe earliest such result to our knowledge is
for the related logic of Nominal Algebra (see eld. [8, Lend.}); the corresponding result for NEL is
Lem.[3.8 of this paper. We can therefore trggads syntactic sugar, and justifiably call NEL an equational
logic.

However, working with the standard proof rules for NEL, inialh# is extensively used as a first
class connective, may still be highly inconvenient whermntyto exploit known results of equational
logic. Developing an analogue of Lawvere theories for NE[4]rrequired some complex proofs relating
logical derivations in NEL to category theoretic propestiélaving freshness judgements in those proof
derivations with no obvious category theoretic intergieta and therefore being forced to apply the
conversion to equations of Lerh._B.8 each time, would have lesgemely laborious, and render the
proofs obscure. Instead, the development of Nominal Lagvtteeories used alternative proof rules for
NEL that employ equations only, relegating freshness isasrback to the side conditions.

In this paper we present these proof rules (in slightly medifiorm), which we call Nominal
Equation-only Logic (NEoL), and in SeEtl 4 we show that NEod &EL coincide. This result, which
until now has only appeared in Sec. 5.5 of the author’s tHgkiss crucial to the published proof that
Nominal Lawvere theories correspond to NEL-theories. Watgbat NEoL will continue to be conve-
nient when applying standard equational logic results tnesmand binding, even as NEL remains the
more convenient system for applications.

In standard equational logic two terms are provably equeath other in the empty theory if and only
if they are syntactically identical. Secl 5 presents forfitet time a simple syntax-directed description
of equality in the empty theory for NEoL. Cdr._5.5 extends ttesult to NEL to give a description of
freshness in the empty theory. Finally SEt. 6 compares NBALNEL to three related notions in the
literature of equational logic over nominal sets.

2 Nominal Sets

We will first introduce the basic mathematics of the nomirds snodel, which will be necessary for the
presentation of the syntax of Nominal Equational Logic ia tiext section.

Fix a countably infinite sed of atoms which we will use as names. The $&irm of (finite) permu-
tationsconsists of all bijectiongr: A — A whose domain

supp(m) = {a| m(a) # a} (1)

is finite. Perm is a group with multiplication as permutation compositigm(a) = 17(1(a)), and identity
as the permutation leaving all atoms unchange&erm is generated byranspositions(a b) that mapa
to b, bto aand leave all other atoms unchanged. We will make partiaigarof permutations known as
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generalised transpositiors, Lem. 10.2]. Let
AV 2 f(@ ... a) e A" g #ajforl<i<j<n} .

All the tuples of atoms we use in this paper will be from this Jaked = (ay,...,an), & = (a},...,a,) €
AWM with disjoint underlying sets. Then we define their gensaalitransposition as

@d) = (aay) - (anay) -

A Perm-setis a setX equipped with a function, dPerm-action, (71,x) — 717- X from Perm x X to X such
that! -x=xandrm- (17 -x) = rirt - x.

Given such aPerm-set X we say that a set of aton&sC A supports x¢ X if for all 1€ Perm,
supg(m) Na= 0 implies thatrr- x = x.

Definition 2.1. A nominal seis aPerm-setX with thefinite support propertyfor eachx € X there exists
some finitea C A supportingx.

If an elemeni is finitely supported then there is a unique least such stigpof9, Prop. 3.4], which
we write suppx) and callthe support of x This may be read as treet of free namesf a term. |If
ansuppx) = 0 for somea C A we say tha@é is fresh for xand writea # x, capturing thenot free in
relation.

Example 2.2. (i) Any set becomes a nominal set under the triBatm-action 71- x = X, with finite
support propertgupgx) = 0;

(i) A is a nominal set witlPerm-actionrt-a = m(a) andsupga) = {a};
(iiiy Perm is a nominal set wittPerm-action - ' = r77' m* and support as in{1);

(iv) Finite products of nominal sets are themselves nomsetd given the element-wisrm-action
andsupgXxy,. .., %n) = Ur<j<n SUPAX;);

(v) AM, and the set of finite sets of atonigsin (A), are nominal sets given the element-wikem-
actions. Supports correspond to underlying sets.

Lemma 2.3. Given a nominal set X, elemenexXX, and permutationst, 11 € Perm,
(i) GivenfiniteaC A, a#ximpliesrt-a# m-x;
(i) Thedisagreement setf rand 17 is
ds(m, ) £ {a| m(a) # (a)} .
Then dém, ') # x impliesT-x = 1 - x.
Proof. [12, Lem. 3.7] and[b, Lem. 7.3(iv)]. O

GivenPerm-setsX,Y we can define &#erm-action on functions : X — Y by
(mf)(x) £ m(f(rtx) .

Hence iff mapsx— ythenr- f mapsr-x — 1-y. A finitely supported functiois a function with finite
support under this definition; this terminology is necegsar even wherX,Y are nominal sets not all
functions between them have this property. In the particcdse thatf has empty support, we call it
equivariant This is equivalent to the condition that (f(x)) = f(rT-x) for all permutationst.
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3 Nominal Equational Logic

This section presents syntax and proof rules for Nominalaigoal Logic (NEL) [5]. In fact it is
sometimes useful to mildly generalise NEL so that its santsifa nominal set, rather than a set, of sorts,
as is done in[[4]. However this does not materially effect bgults of this paper and so the simpler
original presentation is here used.

Definition 3.1. A NEL-signatureX is specified by
() a setSorts, whose elements are called tharts ofZ;
(i) a nominal seOps, whose elements are called thgeration symbols df;

(iii) an equivarianttyping functionmapping each operation symhup € Ops to atypeconsisting of a
finite lists = (s3...,sn) of sorts ofZ and anothes € Sorts. We write thisop:s — s. Wheren=0
we writeop: s. Equivariance of the typing function means that eapfrt- op have the same type.

Example 3.2. A NEL-signature for the untyped-calculus can be defined by letting our sorts be the
singleton{tm} and operation symbols be

{varg|ac A} U{lam, |ac A} U{app}

representing object-level variables, lambda-abstrast@nd application respectively. TRerm-action
on these operations symbols is

T-vary £ varyg, T-lamg £ lamy,, m-app = app .
The typing function is
varg:tm, lamg:(tm) —tm, app:(tm,tm)—tm .
Definition 3.3. Fix a countably infinite sé¥ar of variables Then thetermsover are
t = x| opt---t

for 1T Perm, x € Var andop € Ops. We callrtx asuspensioand writer x simply asx. We callopty - - - t,
aconstructed term

The sorting environmentSEs are partial functions” : Var — Sorts with finite domain. We define
the set=(I") of terms of sors in I by

(i) if me Perm andx € dom(I") thenmx € Zr ) (T);
(ii) if op: (s1,...,sn) = sandt € X (M) for 1 <i < n, thenopt; -- -ty € Zs(IN).
Theobject-levelPerm-actionon terms(m,t € 2(IN)) — mxt € Z(I), is

T (17 X)
s (opty - - - tn)

X ;
(rr-op)(1r*ty) -+« (% ty) .

1> 11>

(2)

This action is used in the definition of substitution: givel’ € SEs, asubstitutiono : ' — I’ is a map
from eachx € dom(I") to 0(x) € Zr(x (I''). Given aternt € 4(I"), the termt{o} € Z,(I"') is defined by

(mx){o} & mxo(x) ;

(opty---th) {0} opti{o}---to{o} . (3)
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We will write the single term substitution that replaces thdablex with the termt and leaves all other
variables unchanged &5/x).

Terms are not in general finitely supported under Pkem-action [2). However there is another
notion of Perm-action on terms which has this property, so that eagh) is a nominal set. Theneta-
level Perm-actionon terms(m,t € Z,(I")) — -t € Z(I), is

m-(rx) & mrmix; @)
T (0pt-ty) 2 (Top)(mr-ty)-- (Mty)
The following Lemma relates these notions:
Lemma 3.4. Given te %,(I"), 1T € Perm and a substitutioro,
(i) m«(t{o}) = (mxt){o};
(i) mm-t=mxt{mr 1}, where(rr1-) is the substitution mapping each-x r*x.
Proof. Easy inductions on the structuretosee([5, Lem 5.2 & (30)] or 7, Lem. 2.3]. O

The freshness environmenEEs are partial functiong] with finite domain onVar, mapping each
x € domJ) to a pair(a,s) wherea € Z+in(A) ands € Sorts. FEs is then a nominal set under the action
(- 0)(x) = (r-a;s); sSUpA L) iS Uxedommy SUPAL(X)). If D(X) = (&, si) for 1 <i <nwe write[] as

(@ #X1:s1,-..,8n #Xnisn) - (5)

The intended meaning is thatis fresh forx;, which has sortj. These will capture the freshness side
conditions we discussed in the introduction. E&th FEs gives rise to a sorting environmet € SEs
by taking the second projection. We will abbrevigtg # x:sasa# x:sand 0# x:sasx:s.

Definition 3.5. A NEL-judgemenhas the form
OFagt~t s (6)

where € FEs, a € P4jn(A), s € Sorty andt,t’ € Z(0'). We will abbreviatel-a#t~t:s as
OFagt:sand0F0#t~t :sasd-t~t:s.
A NEL-theoryT is a collection of such judgements, which we calldaisoms

Example 3.6. The axioms forx 3n-equivalence over the untypédcalculus (Ex[3.R2), adapting![8, Ex.
2.15], are

(a) (x:tm)FalamgX:tm

(By) (@a#x:tm,y:tm)F app(lamyx)y~ X:tm

(B2) (y:tm)F app(lamgvary)y~y:tm

(Bs) (x:tm,b#y:tm)t app(lam,(lamyX))y ~ lam, (app(lamaX)y) : tm

(Ba) (x1:tm, Xz :tm,y:tm) - app(lama(appx Xx2))y ~ app(app(lamaxy)y) (app(lamaxz)y) : tm
(Bs) (b# x:tm)F app(lamgx)var, ~ (ab)x:tm
(n) (

a# x:tm)Flamy(appxvag) ~ X:tm .



R. Clouston 49

(REFL) 0 FEx t € 5.(0) ( )DFH#t%VS
REFL) ———— O e FEs,t € (00 SYMM
OFt~t:s > OFa#t ~t:s
OFagtat's  OrFa#t ~t":s OFagtst':s
(TRANS) i 2,,# (WEAK) — # — O0<D0 eFEs
OF (@mUap) gttt s OFagt~t:s
( 1)D’I—aﬁxa’:D OFa#t~t:s 'O s (O
SUBS o,0:0—=(O)
O'Fa#t{oc} ~t'{d'}:s
OFagt=t':s DPRrd gttt s o
(ATM-INTRO) D#al—a’ua#t%t’:sa#(a’t’t) (ATM-ELIM) Ora At~t s a#(0,a,t,t)
-EQUIVAR sus
(#-£Q )(a#x:s)l—n-a#nx:s ( P)(ds(n,n’)#x:s)l—rrx:an’x:s

Figure 1: Proof rules for NEL

Definition 3.7. [Logical Consequence] The setthieoremsof a NEL-theoryT is the least set of judge-
ments containing the axioms @fand closed under the rules of Fig. 1. We write

ObFragta~t:s

to indicate that the judgement is a theorentof

Fig.[1 uses the following new pieces of notation:

e In (weAk) the relationd] < [0 holds ifdom(J) C dom(0') and for allx € dom() we havell(x) =
(a,s) andJ'(x) = (@,s) so thataC @.

e Inrule (susT)

OFo~0o :0 (7)

stands for the hypothesé¥ - g # g (x) ~ o’(x) : sj for 1 <i < n, where[ is as [B).

e In (ATM-INTRO) and @TM-ELIM), if Ais a finite set of atoms and is as [) then

072 £ (@uUa#xy:ss,...,aUa# X sn) -

Note also thatAtm-INTRO) and aTm-ELIM) carry side conditions relating to freshness. These do not
refer to the freshness connectigeinternal to the logic. Rather, they refer to the not-in-tupport-of
relation # of Def[ 2.1l over the nominal sétEs, Zin(A), andZ(0°) with respect to the actiofnl(4).

In [5] semantics are given for NEL, in which sorts are intetpd as nominal sets and operation
symbols as finitely supported functions between them. Thefpules of Fig[l are shown to be sound
and complete for that semantics. In this paper, however, ievwark purely in terms of NEL's proof

theory.
The next Lemma shows how freshness judgements may be texhsido equivalent equational
judgements in NEL. This will be crucial to the results of thexhsection, where we will get rid of

freshness judgements entirely.
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Lemma 3.8. Given te %,([0') anda e Zsin(A),
Obragt:s < OFUPRE) Lot~ (@& ) «t s s
whered ¢ A is an ordering ofa anda € A(™ is a tuple of the same size such that s@p# (0,3, t).

Proof. Left-to-right: O#SUPHE) - 3 supp(d) #t : s by (ATM-INTRO); (AUsupp(d) # x:s) Fx~ (8&)x:
s by (susB; the result then follows bysuesT) and (3).

Right-to-left: O#SUPR) - supd) #t : s by (REFL) and (TM-INTRO); (SUPH&) # X :s) - a#
(@&)x:s by (#-EQUIVAR); then O#SUPRE) |- g 4 (&) «t : s by (sussT). Our hypothesis along with
(TRANS) and EYMM) gives usI#SUPRE) - g4 t : s; the result then follows byafm-ELIM). O

Example 3.9. The rule fora-equivalence for the untypett-calculus in Ex[3.6
(x:tm)Fa#lamgx:tm

is equivalent to
(b# x:tm) F lampx~ lam, (ab)x:tm . (8)

4 Nominal Equation-only Logic

This section presents syntax and proof rules for NEL witHoaghness connectives to the right of the
turnstile. We call this Nominal Equation-only Logic (NEoL), and shdwat it is just as expressive as
NEL.

Note that the previously published version of NEGL [4] irdsdl a rule calledrErM) that was some-
what unwieldy. This paper improves the presentation of NBglteplacing $ErM) with a special case
(susP, and then derives€rm) as Lem[4.B.

Definition 4.1. A NEoL-judgemenhas the form
OFt~t':s

wherel € FEg, s € Sorty andt,t’ € Z([0'). Note that NEoL-judgements are also NEL-judgements (Def.
B.9).

A NEoL-theoryT is a collection of such judgements, called its axioms.
Definition 4.2. The set oftheoremsof a NEoL-theoryT is the least set of judgements containing the
axioms ofT and closed under the rules of Fig. 2. We write
ORYta~t :s

to indicate that the judgement is a theorentof
SayU is as [5). Then the rules(Bs) in Fig. [2 uses the following new pieces of notation (réf. (7)
and Lem[3.B):

e '+ o~ 0’ stands for the hypothesé8+ o (x) ~ a’(x) :si for 1 <i <n;
e '+ o : O stands for the hypotheses
(OV)#SUPR3) 1 g (x) ~ (& &) * o (X) : s - (9)

for 1 <i<n, whered € A™ is an ordering o andd < A" is a tuple of the same size such that
supp &) # (0,3, 0(x)).
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OFtat':s
REFL) ——— O € FEs,t € (OO SYMM®) ————
( )Dl—tzt:s > (@) ( )Dl—t’%t:s
( O)Dl—twt’:s OrFt' ~t":s ( O)Dl—twt’:sD<D/ -
TRANS WEAK®) ———— €
OFt~t":s OFt~t:s >
( TO)D’I—awa’ OFo:0 OFt~t':s ' (@
SUBS g0 :0— -
O'Ft{o} =t'{d'}:s
( o 0P t~t':s HOLE) (susp
ATM-ELIM®) ————— a#(0O.t, sus
OFta~t':s (ds(r, M) # x:s) - X~ X s

Figure 2: Proof rules for NEoL

Theorem 4.3.1f T is a NEoL-theory (and hence a NEL-theory) thér9 t ~t':simpliesOFrt ~t':s.

Proof. We need only check that each of the rules for NEoL of Hi§j. 2 camlérived from the rules
for NEL of Fig. [1. RerL) and GusP are also rules of Fig.]11, whilesgmm©), (TRANS?), (WEAK®) and
(aTm-ELIM®) are clearly special cases of the corresponding rulessq1°) is a special case ob(BsT),
as [9) is equivalent to the usual conditioht- g # g(x) : s by Lem.[3.8. O

The next three lemmas relate logical consequence for NE@f. (B.2) with thePerm-actions on
terms [2) and_(4).

Lemma 4.4. Given a NEoL-theor{l', OF3 t ~t': s impliesO -9 Tt ~ m«t’ o s.

Proof.
Fta~t':s Ok {t/x}:(x:s) (X:s) X~ mX:s
OF mx{t/x} ~ mx{t'/x} :s

O
(suBsT)

Lemma 4.5. Given a NEoL-theorf', -3t ~t':simpliesm-OF m-t =~ mT-t' :s.
Proof. By Lem.[3.4(ii) this result may be attained visusr):

mOF(mio):0  OFmxtamst':s
m-OF (mst){m 1=} =~ (st ) {m =} :s

The second premise follows by Lem. ¥.4. Now takas [5) and for KX i < nlet be an ordering of;
andd be a suitably fresh tuple of the same size. Twera; Usupda) #x :si)Fmix ~ (& &)m1x ;s
for eachi by (susP); applying (vEAk®) gives us(7T- 0)#SUPR&) | 77-1x ~ (5 &)1 X : s;, which yields
the first premise. O

Lemma 4.6. Givenl € FEs, t € Z,([0"), and dsm, 17') #t,

OFOSETO) L9 st ~ 1 5t 0 s
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Proof. By induction on the structure of

Suspensions: Say= 11’x. By our freshness assumptials(rt, 1) = ds(rit’, ' i), so by gusP
ds(mr, M) # x: st " x~ W'’ x: s; the result then follows bywWEeAK®).

Constructed terms: if = opt;--- thenm«t = ((71-0p) X3 ---){0}, whereo maps each; — mxt;.
Similarly ' «t = ((77'-op)xq - - - ){ 0"}, whereo’ maps eacly; — 1 «t;. 71-0p= 1 -0op by our freshness
assumption and Lenf._2.3(ii). To applyues™) to get our result we need only then sha@ds™wm) |-
o ~ d’; or for eachi, O#9S™T) | r«t; &~ 17 #t;  s;. These judgements follow by induction. O

It is a fact about NEL that froml Fra#t:swe caninfeld - @ #t:sfora Ca. The next Lemma
gives the corresponding result for NEoL.

Lemma 4.7. Suppose we have an NEoL-thedlyfreshness environmehte FEs, term te Z,(00°) and
lists of atomsd, b € A" such that sup(b) # (a,t). Now suppose tha,b’ € A(™ for some nx n, with
supgd) C supfd) and suppb’) C supb). Then

[J#suprb) ot~ (@b)xt:s = [J#suprb) ot~ (@ B)*t:s

Proof. (supp@)Usuppt) #x:s) - x~ (& b/)x: s by (susP. We wish to useguss) to conclude that
[#suPHb) 10 x(t /x} ~ ((& B)x){t/x} : s; for this substitution to occur we must prove that

O#suPr) |- £t /x} : (supp(d) UsuppB) # x:s) . (10)
Now take freste € A, & ¢ AM. By Lem.[4.6 we have
[I#SUPHB)UsUpRE)USUPHE) |- (5 )t~ (AT)(B/ &) #t i s (11)
Applying Lem.[4.5 andWEAK®) to our hypothesis gives us
[J#SUPHY)USUPHC)USUPHE) |-t  (2C) #t :s (12)
Combining [11) and(12) withrRANS®) gives us
(y#uPBUSUPHE)SUPHE!) |t . (5 2) (B ©') ot : s
which is equivalent td (10) as required. O

Definition 4.8. Given a NEL-theoryT, let T° be the NEoL-theory produced by replacing each axiom of
the form [6) by the axioms

OFtat :sandDSUPR) -t~ (&) «t:s (13)

wherea e A" is an ordering oiand@ € A" is a tuple of the same size such teapg@) # (0, a,t).
(€) and [1B) are equivalent for NEL by Lemn. B.8.

Theorem 4.9. Let T be a NEL-theory. TheflFra#t~t :s implies thatO+F9, t ~t :s and
O#SuPR) |19, t ~ (3 &) xt : s, whered € A" is an ordering ofi andd € A(™ is a tuple of the same size
such that sup(®) # (0, a,t).

Therefore by Leni. 3.8 and Thin. 14.3 NEL and NEoL are equivalent
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Proof. Given aT-axiom the corresponding NEoL-judgement i§%axiom by Def[4.8. The proof then
proceeds by induction on the rules of Hig. 1, showing thattreesponding NEoL-judgements may be
derived by the rules of Fid.] 2.

This result is immediate forEFL) and GusP, which are also rules for NEoLWgAK) and @TM-ELIM)
follow easily by applications ofWeAk®) and a@TM-ELIMO).

(symm): Applying the induction hypothesis gives st ~ t’ : s and 0#SUPRE) |- t ~ (3 &) t : s.
Okt ~t:sby (symm®). Now O (8d)*t~ (dd)*t':s by Lem.[44, so bywWeAk®) and (fRANS®)
we haveJ#sUPRE) |-t/ ~ (3 &) *t' :s.

(Trans): The induction hypothesis gives U5t ~t' :'s, O#SUPRE) -t ~ (g &) #t:s, Ot ~t":s
and O7SUPRE) |t/ ~ (&, &) 1’ : s, whered, &, are orderings ofi;,a, respectively, and,, are fresh
tuples of the same sizeG.i-t ~t” : s by (TRANS®). Now suppose; # 3 (if they are not disjoint we use
Lem.[4.T to weaken one side until they are), and use suceeapplications ofWeak®), Lem.[4.4 and
(TRANS®):

[J#suppd;)Usupfa;) F9 t
*t’
(8p &) «t’
() (8 d)) xt .

d d))*
/
a é’

Q22

(
(&
(
(

\_/\_/\_/\_/

(sussT): By the induction hypothesig -t ~t' : s and0#SUPRE) |-t ~ (8 &) «t : 5, and if 0 is as [5)
then for 1< i < nwe havell - a(x) ~ ¢’(x) : s and (0)#SUPR&) |- g (x) ~ (& &) * o(%) : s; where
& is an ordering o and& is a fresh tuple of the same size.--t{o} ~t'{c’} : s by (suBs™). Now
(@d@)x*(t{o}) = ((8d)*t){o} by Lem.[3.4(i), so we look to applys(BST):

(O Y#SUPHA) | - [tsuPHEA)  #SUPHA) | o () #t ;s
()P Et{o} ~ (@d) +t){o} :s

The second premise is among our hypotheses, while the filsvifrom (susst®) for eachi:

0"k o(x)~ (@ &)«o(x):s
0"+ {o(x)/x} : (sup@)Usupdd’) #x:si) (supqa’)Usupqa”) #x:s)Fx~ (@ d)x:s
0" Fx{o(x)/xt ~ (@ &) x{(& &)« o(x)/x} :si

wherel[l” = ([')#suprd) Usupd’) Usupd) andg” is a fresh copy ofl . The first premise here follows from
our hypotheses anavEAk®); the second follows by Leni. 4.6, and the third lsy$P.

(ATM-INTRO): By the induction hypothesig -t ~t' : s and O#SUPHD) |-t ~ (& B') ¢t : s, whered is
an ordering off andb is a fresh tuple of the same siz@\#a Ft~t' by (WEAk®). We need to prove that
0+t~ (ab)(& B) xt : s, where[) = [J#ausuprb)usupdl) 3 s an ordering oft andb is a fresh copy.
Apply (suBsT):

O+t~ @b)xt:s  O'F{t/x}:(@Usupab) #x:s)  (aUsupb) #x:s)Fx~ (@b)x:s
O+ x{t/x} ~ (@b)x){(@b)*t/x} :s
The first premise follows from our hypothesis ange@k®); the second follows by Leni._4.6, and the

third by (susP.
(#-EQUIVAR): (@Usupd) # x:s) F mix~ (m-@d)mx: s by (susp. O
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dy(m, ) #x:sel OFty~tyisy - OFty~t) sy
OF mx~mX:s OFopt---th~opt---t,:s

Figure 3: Syntax-directed rules for Nominal Equality

5 The Empty Theory

In standard equational logic, provable equality correggoto literal syntactic equality in the empty
theory 0 without axioms. This is not the case for NEoL beeanfshe presence of freshness environments
and suspensions. In this section we give a simple syntactgid description of equality in the empty
NEoL-theory. It is then straightforward to extend this toesctiption of freshness in the empty NEL-
theory.

Definition 5.1. Fig.[3 provides syntax-directed rules for Nominal Equalitiie notation ds(r, ') # x:
s € 0’ means thatl(x) = (a,s) fora 2> ds(m, 7).

Theorem 5.2. The rules for NEoL of Fid.]2 imply the syntax-directed rulé§ig. [3.
Proof. The suspension case hold 6P and (veak®); the constructed term case gugst). O
-

Lemma 5.3. Say we have permutatiorrs 17 € Perm and a finite listd of atoms so that d, 1)
supfd). Letd be a list of fresh atoms of the same size. Then if we can derive

OFtat' :sand OFSUPRE) bt~ (3E) *t:s
by the syntax-directed rules of Fig. 3, then we can also deriv
OF msxt~ 1 «t':s

Proof. Suspensions: Say= &x andt’ = &'x, sods(§,&') # x:se 0 andds(&,(@8d)E) # x:s e
[J#suPd) \We must prove thall - 118 x~ W E'x, i.e. thatds(1ié, E') # x: s € (. Takeac ds(rié, M E’).

If a e ds(&,&’) we're done by our first assumption. Butdf(a) € ds(rt, i) thené (a) € supgd), so
ac ds(&,(dd)&) and by our second assumptian x : s € O#SUPRE)  But & was chosen fresh, so
a#xel.

Constructed terms: Lét=opt;--- andt’ = opt;---, so for alli, O+t ~t/ :'s;, OFSUPRI) |- f;
(ad)«tj:sj andop= (d&) - op. We must prove thall - (11- op) (1Txty) - - ~ (77 - 0p) (77 *t7)---. Now
supgd) # op, so by Lem.[2.B(i)suppd) # (8 &) -op=op. ds(r, M) C supfd), so by Lem.[2.3(ii)
m-op= 17 -op. Finally, O+ mrxtj ~ 1 «t] : s; follows by induction. O

Theorem 5.4. Suppose gt ~ t’ : s by the rules for NEoL of Fig[12. Thed -t ~t':s by the
syntax-directed rules of Fi] 3.
Therefore by Thni._5.2 the syntax-directed rules coincidle thie empty NEoL-theory.

Proof. By induction on the rules of Fid.l 2.

(susB follows immediately from the suspension case of Elg.R&F() follows by an easy induction
on the structure df. (symm®), (Weak®) and @Tm-ELIM®) are also straightforward.

(TRANS?): Sayt = mix, t' = ' xandt” = i’ x, sods(m, ') # x: s, dg(17, ") # x: s € 0. We need to
show thads(mt, ") # x: s € [, so takea € ds(1t, 1"). If a€ ds(T, 1) we are done by our first assumption,
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but if i(a) = '(a) thena € ds(17, 1’) so we are done by our second assumption. The constructed term
case is an easy induction.

(suBs™): SaydrFt~t'isOF mx~ mx:s, o(x) =&yanda’(x) =&y, sods(m, M) #x:se€
andds(&,&') #y:s e . The other premisd9) says thas(&, (@ &)E) #y: s e (V)#5UPHE) where
O(x) = (as), @is an ordering ofa, andd is a fresh tuple of the same size. We need to prove that
ds(é, m&") #y:se . Takeacds(n&, m&’). Ifac dg&,&’) we are done, so sdy(a) cds(m, m') Ca.
Thenac ds(&,(a&)&), soa#y:sc (0')#sWPR) butd was chosen fresh, so we are done.

Now taket,t’ as above, sds(m, 1) # x: s € O still, but o(x) = opt--- ando’(x) = opt;---. Then
fori<i<n OFt~t:s, (0)#UPHT) -t ~ (&) «t; : sandop = (@ &) - op, wherea, d,& are also
as abovesupgd) #opimpliesa# (8&)-op=op, som-op~ 1 -op. O’ - mxt; ~ =t/ by Lem.[5.3.

Finally, if t,t’" are constructed terms then the induction fargs) is straightforward. O

Corollary 5.5. The empty NEL-theory, following the rules of Hig. 1, coiesidvith the syntax-directed
rules of Fig.[3 along with these new rules for freshness:

mlagx:sel OFagtyisy - OFagty:sy,  a#op
OrFa#nx:s OrFagoph---th:s
Proof. Lem.[3.8, Thm[4.9 and Thrh. 5.4. O

6 Related Work

Equational logic for nominal unification. The first notion of equational logic over nominal sets to be
developed were the syntax-directed rules_of [13, Fig. 2jctvlivere used in the definition of nominal
unification. The syntax that directs this definition is bagedominal signatureswhich compared to the
signatures of Def._3]1 have a richer sort system and a skegrrdtan nominal set, of operation symbols.

The rules £-suspension),~-function symbol), -suspension) and#-function symbol) of [13]
clearly match the syntax-directed rules of Hig. 3 and Cds, &part from the premis&# op, which is
non-trivial only whenop may have non-empty support. If we add operation symbols riidr pairing,
atoms and atom-abstraction then, via Kij. 3 and Cai. 5.5ea@ver all of the rules of [13] except for
(=-abstraction-2) and#-abstraction-1):

azd OkFtx(ad)xt’ OFagt
OFat~a.t OFagat

wherea.t is the atom-abstraction bindirggin t. These are the rules far-equivalence. Following [3],
we may capture these rules by moving from the empty theoryedheory with one axiom

(b#X)Fax=~b.(ab)x

or equivalently,(x) - a# a.x.

Nominal Algebra (NA). NA [8] is a logic independently developed to reason aboustrae prop-
erties as NEL, but with some interestingly different desitpices. NA is built on hominal signatures,
so in the empty theory equality should be, as aboveguivalence over these signatures rather than the
weaker equivalence of Sed. 5. NA employs a set, rather thamnadb set, of operation symbols, which
may make it less expressive than NEL. For example, with NEt could define a nominal set of op-
eration symbols isomorphic to the nominal é® of disjoint pairs of atoms; this does not seem to be
possible with NA.
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Finally, NA employs a syntax-directed notion of freshndeat is weaker than that used by NEL; in
particular the transitive property

OFagt:s OFt~t':s
OFa#t':s

does not hold. In[]8, Sec. 5] design alternatives for NA wasewksed where atom-abstraction sorts
were eliminated and the freshness relation strengtheneatch that of NEL. However no notion of NA
with equality only has been proposed along the lines of NEdthpugh it seems likely that such a logic
could be defined by working in close analogy with the resuithis paper.

Synthetic Nominal Equational Logic (SNEL). Term Equational Systems|[6] are a category theo-
retic account of equational logic, including proof theoiis framework allows equational logic to be
naturally generalised from the category of sets to othergmates, with proof rules automatically gener-
ated in each new setting so long as the new categories obynceertain constraints. Following NEL
and NA, Term Equational Systems were developed in the catagfonominal sets, and the resulting
logic is called SNEL[[6, Sec. 5]. SNEL is another notion of nioah sets with equations only, but no
proof was offered that the addition of freshness judgemeantdd not strengthen the logic. The authors
were, however, aware of the results presented in this payérh could be seen as a sanity check on the
development of the equation-only SNEL.

It should also be noted that the syntax of SNEL is not entirekeeping with that which is commonly
used in nominal logic, as we have no freshness environmestsspensions. For example, the axigin (8)
for a-equivalence in the untypett-calculus would be written

[a,b]{x: 1} Flamyx(a) ~ lamyx(b) .

Here the metavariables explicitly refer to names they maedd on. This differs from the standard
mathematical treatment of bound names, which most apiglicabf nominal techniques try to capture.
It is an interesting question whether a more standard ptatsem of equational logic over nominal sets,
such as NEL or NA, could be derived in this category theoratittext.

References

[1] S. N. Burris (1998)Logic for Mathematics and Computer ScienBeentice Hall.

[2] R. Clouston (2009):Equational Logic for Names and BindersPh.D. thesis, University of Cambridge.
http://cecs.anu.edu.au/~rclouston/Clouston_Thesis.pdf.

[3] R. Clouston (2010)Binding in Nominal Equational Logicln: MFPS ENTCS265, pp. 259-276, ddio.
1016/j.entcs.2010.08.016.

[4] R. Clouston (2011):Nominal Lawvere TheoriesIn: WoLLIC, LNCS 6642, pp. 67-83, dain.1007/
978-3-642-20920-8_11.

[5] R. Clouston & A. M. Pitts (2007)Nominal Equational LogicENTCS172, pp. 223-257, ddi0.1016/j .
entcs.2010.08.016.

[6] M. Fiore & C-K. Hur (2008): Term Equational Systems and Logids: MFPS ENTCS218, pp. 171-192,
doii10.1016/j.entcs.2008.10.011.

[7]1 M. J. Gabbay & A. Mathijssen (2006Dne-and-a-halfth-order Logidn: PPDR ACM, pp. 189—-200, doi:0.
1145/1140335.1140359.

[8] M. J. Gabbay & A. Mathijssen (2009Nominal (Universal) Algebra: Equational Logic with Namesda
Binding J. Logic Computl9(6), pp. 1455-1508, ddi0 . 1007/s001650200016.


http://cecs.anu.edu.au/~rclouston/Clouston_Thesis.pdf
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.1007/978-3-642-20920-8_11
http://dx.doi.org/10.1007/978-3-642-20920-8_11
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.1016/j.entcs.2008.10.011
http://dx.doi.org/10.1145/1140335.1140359
http://dx.doi.org/10.1145/1140335.1140359
http://dx.doi.org/10.1007/s001650200016

R. Clouston 57

[9] M. J. Gabbay & A. M. Pitts (2002)A New Approach to Abstract Syntax with Variable BindifRgC 13, pp.
341-363,doit0.1016/j.entcs.2008.10.011,

[10] F. W. Lawvere (1963)Functorial Semantics of Algebraic Theorid3h.D. thesis, Columbia University.

[11] A. M. Pitts (2001):Nominal Logic: a First Order Theory of Names and BindifkgiCS 2215, pp. 219-242,
doi:10.1007/3-540-45500-0_11.

[12] A. M. Pitts (2006): Alpha-structural Recursion and InductionJ. ACM 53, pp. 459-506, dai0.1145/
1147954.1147961.

[13] C. Urban, A. M. Pitts & M. J. Gabbay (2004Nominal Unification TCS323(1-3), pp. 473-497, dai.
1007/s10817-009-9164-3.


http://dx.doi.org/10.1016/j.entcs.2008.10.011
http://dx.doi.org/10.1007/3-540-45500-0_11
http://dx.doi.org/10.1145/1147954.1147961
http://dx.doi.org/10.1145/1147954.1147961
http://dx.doi.org/10.1007/s10817-009-9164-3
http://dx.doi.org/10.1007/s10817-009-9164-3

	1 Introduction
	2 Nominal Sets
	3 Nominal Equational Logic
	4 Nominal Equation-only Logic
	5 The Empty Theory
	6 Related Work

