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Many formal systems, particularly in computer science, maybe captured by equations modulated
by side conditions asserting the “freshness of names”; these can be reasoned about with Nominal
Equational Logic (NEL). Like most logics of this sort NEL employs this notion of freshness as a
first class logical connective. However, this can become inconvenient when attempting to translate
results from standard equational logic to the nominal setting. This paper presents proof rules for a
logic whose only connectives are equations, which we call Nominal Equation-only Logic (NEoL).
We prove that NEoL is just as expressive as NEL. We then give a simple description of equality in
the empty NEoL-theory, then extend that result to describe freshness in the empty NEL-theory.

1 Introduction

Many formal systems, particularly in computer science, maybe captured via equations modulated by
side conditions asserting certain names arefresh for(not in the free names of) certain metavariables:

First-order logic: Φ ⊃ (∀a.Ψ) = ∀a.(Φ ⊃ Ψ) if a is fresh forΦ;

λ -calculus: λ a. f a =η f if a is fresh for f ;

π-calculus: (νa x) | y = νa(x | y) if a is fresh fory.

We may express such modulated equations, and hence reason formally about the systems described by
them, withNominal Equational Logic (NEL)[5]. NEL-theories can also express the notions of binding
andα-equivalence such systems exhibit [3]. NEL generalises standard equational logic by employing
thenominal setsmodel [11], a refinement of the earlier Fraenkel-Mostowski sets model [9], where the
manipulation of names is modelled by the action ofpermutations.

In the examples above the ‘fresh for’ relation, representedin NEL by the symbol ‘≈�’, is attached
to metavariables as a side condition to the equations. However this relation generalises naturally and
conveniently to a relation asserting certain names are fresh for certainterms. As such, in NEL and other
nominal logics,≈� is treated as a first class logical connective, rather than merely being used in side
conditions.

Standard equational logic is an extremely well studied system (e.g. [1, Cha. 3]), and NEL’s develop-
ment philosophy was to maintain as close a relationship as possible to this standard account, so that well
known results can be transferred to a setting with names and binding with a minimum of difficulty. There
are two orthogonal ways in which this can be done. The first is to translate techniques and results from
equational logic to NEL, such as term rewriting, Lawvere theories, algebras for a monad, and Birkhoff-
style closure results. The second is to combine NEL with other extensions of equational logic, of which
a multitude exist - partial, order-sorted, conditional, membership, fuzzy, and so forth.
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There is a tension here, as we wish to exploit known results ofequational logic while also having the
convenience of≈� as a first class logical connective, so that NEL is no longer really an equational logic
at all. Consider the case of Lawvere theories [10]. In this category theoretic view of equational logic, an
equational theory is mapped to aclassifying category, whose arrows are tuples of terms, and the equality
of arrows is asserted to correspond to the provable equalityof terms in the theory. This is intuitive
because equality has a clear meaning in the category theoretic setting, as it must in any mathematical
setting. This is not true of freshness, which is a notion bespoke to the nominal sets model with no
obvious meaning in, say, standard category theory.

Fortunately, it is known that in a variety of contexts freshness judgements can be translated into
equally expressive equations with freshness side conditions. The earliest such result to our knowledge is
for the related logic of Nominal Algebra (see e.g. [8, Lem. 4.5.1]); the corresponding result for NEL is
Lem. 3.8 of this paper. We can therefore treat≈� as syntactic sugar, and justifiably call NEL an equational
logic.

However, working with the standard proof rules for NEL, in which ≈� is extensively used as a first
class connective, may still be highly inconvenient when trying to exploit known results of equational
logic. Developing an analogue of Lawvere theories for NEL in[4] required some complex proofs relating
logical derivations in NEL to category theoretic properties. Having freshness judgements in those proof
derivations with no obvious category theoretic interpretation, and therefore being forced to apply the
conversion to equations of Lem. 3.8 each time, would have been extremely laborious, and render the
proofs obscure. Instead, the development of Nominal Lawvere theories used alternative proof rules for
NEL that employ equations only, relegating freshness assertions back to the side conditions.

In this paper we present these proof rules (in slightly modified form), which we call Nominal
Equation-only Logic (NEoL), and in Sec. 4 we show that NEoL and NEL coincide. This result, which
until now has only appeared in Sec. 5.5 of the author’s thesis[2], is crucial to the published proof that
Nominal Lawvere theories correspond to NEL-theories. We posit that NEoL will continue to be conve-
nient when applying standard equational logic results to names and binding, even as NEL remains the
more convenient system for applications.

In standard equational logic two terms are provably equal toeach other in the empty theory if and only
if they are syntactically identical. Sec. 5 presents for thefirst time a simple syntax-directed description
of equality in the empty theory for NEoL. Cor. 5.5 extends this result to NEL to give a description of
freshness in the empty theory. Finally Sec. 6 compares NEoL and NEL to three related notions in the
literature of equational logic over nominal sets.

2 Nominal Sets

We will first introduce the basic mathematics of the nominal sets model, which will be necessary for the
presentation of the syntax of Nominal Equational Logic in the next section.

Fix a countably infinite setA of atoms, which we will use as names. The setPerm of (finite) permu-
tationsconsists of all bijectionsπ : A→ A whose domain

supp(π) , {a | π(a) 6= a} (1)

is finite.Perm is a group with multiplication as permutation compositionπ ′π(a) = π ′(π(a)), and identity
as the permutationι leaving all atoms unchanged.Perm is generated bytranspositions(a b) that mapa
to b, b to a and leave all other atoms unchanged. We will make particularuse of permutations known as
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generalised transpositions[5, Lem. 10.2]. Let

A
(n) , {(a1, . . . ,an) ∈ A

n | ai 6= a j for 1≤ i < j ≤ n} .

All the tuples of atoms we use in this paper will be from this set. Take~a= (a1, . . . ,an),~a′ = (a′1, . . . ,a
′
n)∈

A
(n) with disjoint underlying sets. Then we define their generalised transposition as

(~a~a′) , (a1 a′1) · · · (an a′n) .

A Perm-setis a setX equipped with a function, orPerm-action,(π,x) 7→ π ·x from Perm×X to X such
thatι ·x= x andπ · (π ′ ·x) = ππ ′ ·x.

Given such aPerm-set X we say that a set of atomsa ⊆ A supports x∈ X if for all π ∈ Perm,
supp(π)∩a= /0 implies thatπ ·x= x.

Definition 2.1. A nominal setis aPerm-setX with thefinite support property: for eachx∈X there exists
some finitea⊆ A supportingx.

If an elementx is finitely supported then there is a unique least such support set [9, Prop. 3.4], which
we write supp(x) and callthe support of x. This may be read as theset of free namesof a term. If
a∩ supp(x) = /0 for somea ⊆ A we say thata is fresh for xand writea # x, capturing thenot free in
relation.

Example 2.2. (i) Any set becomes a nominal set under the trivialPerm-actionπ · x = x, with finite
support propertysupp(x) = /0;

(ii) A is a nominal set withPerm-actionπ ·a= π(a) andsupp(a) = {a};

(iii) Perm is a nominal set withPerm-actionπ ·π ′ = ππ ′π−1 and support as in (1);

(iv) Finite products of nominal sets are themselves nominalsets given the element-wisePerm-action
andsupp(x1, . . . ,xn) =

⋃
1≤i≤nsupp(xi);

(v) A
(n), and the set of finite sets of atomsP f in(A), are nominal sets given the element-wisePerm-

actions. Supports correspond to underlying sets.

Lemma 2.3. Given a nominal set X, element x∈ X, and permutationsπ,π ′ ∈ Perm,

(i) Given finitea⊆A, a # x impliesπ ·a # π ·x;

(ii) Thedisagreement setof π andπ ′ is

ds(π,π ′) , {a | π(a) 6= π ′(a)} .

Then ds(π,π ′) # x impliesπ ·x= π ′ ·x.

Proof. [12, Lem. 3.7] and [5, Lem. 7.3(iv)].

GivenPerm-setsX,Y we can define aPerm-action on functionsf : X →Y by

(π · f )(x) , π · ( f (π−1 ·x)) .

Hence if f mapsx 7→ y thenπ · f mapsπ ·x 7→ π ·y. A finitely supported functionis a function with finite
support under this definition; this terminology is necessary as even whereX,Y are nominal sets not all
functions between them have this property. In the particular case thatf has empty support, we call it
equivariant. This is equivalent to the condition thatπ · ( f (x)) = f (π ·x) for all permutationsπ.
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3 Nominal Equational Logic

This section presents syntax and proof rules for Nominal Equational Logic (NEL) [5]. In fact it is
sometimes useful to mildly generalise NEL so that its sorts form a nominal set, rather than a set, of sorts,
as is done in [4]. However this does not materially effect theresults of this paper and so the simpler
original presentation is here used.

Definition 3.1. A NEL-signatureΣ is specified by

(i) a setSortΣ, whose elements are called thesorts ofΣ;

(ii) a nominal setOpΣ, whose elements are called theoperation symbols ofΣ;

(iii) an equivarianttyping functionmapping each operation symbolop∈ OpΣ to a typeconsisting of a
finite list~s= (s1 . . . ,sn) of sorts ofΣ and anothers ∈ SortΣ. We write thisop :~s→ s. Wheren= 0
we writeop : s. Equivariance of the typing function means that eachop,π ·op have the same type.

Example 3.2. A NEL-signature for the untypedλ -calculus can be defined by letting our sorts be the
singleton{tm} and operation symbols be

{vara | a∈ A}∪{lama | a∈ A}∪{app}

representing object-level variables, lambda-abstractions and application respectively. ThePerm-action
on these operations symbols is

π ·vara , varπ(a), π · lama , lamπ(a), π ·app , app .

The typing function is

vara : tm, lama : (tm)→ tm, app: (tm,tm)→ tm .

Definition 3.3. Fix a countably infinite setVar of variables. Then thetermsoverΣ are

t ::= π x | opt· · · t

for π ∈ Perm, x∈Var andop∈OpΣ. We callπ x asuspensionand writeι x simply asx. We callopt1 · · · tn
aconstructed term.

Thesorting environmentsSEΣ are partial functionsΓ : Var ⇀ SortΣ with finite domain. We define
the setΣs(Γ) of terms of sorts in Γ by

(i) if π ∈ Perm andx∈ dom(Γ) thenπ x∈ ΣΓ(x)(Γ);

(ii) if op : (s1, . . . ,sn)→ s andti ∈ Σsi (Γ) for 1≤ i ≤ n, thenopt1 · · · tn ∈ Σs(Γ).

Theobject-levelPerm-actionon terms,(π, t ∈ Σs(Γ)) 7→ π ∗ t ∈ Σs(Γ), is

π ∗ (π ′ x) , ππ ′ x ;
π ∗ (opt1 · · · tn) , (π ·op)(π ∗ t1) · · · (π ∗ tn) .

(2)

This action is used in the definition of substitution: givenΓ,Γ′ ∈ SEΣ, asubstitutionσ : Γ → Γ′ is a map
from eachx∈ dom(Γ) to σ(x) ∈ ΣΓ(x)(Γ′). Given a termt ∈ Σs(Γ), the termt{σ} ∈ Σs(Γ′) is defined by

(π x){σ} , π ∗σ(x) ;
(opt1 · · · tn){σ} , opt1{σ}· · · tn{σ} .

(3)
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We will write the single term substitution that replaces thevariablex with the termt and leaves all other
variables unchanged as(t/x).

Terms are not in general finitely supported under thePerm-action (2). However there is another
notion ofPerm-action on terms which has this property, so that eachΣs(Γ) is a nominal set. Themeta-
levelPerm-actionon terms,(π, t ∈ Σs(Γ)) 7→ π · t ∈ Σs(Γ), is

π · (π ′ x) , ππ ′π−1x ;
π · (opt1 · · · tn) , (π ·op)(π · t1) · · · (π · tn) .

(4)

The following Lemma relates these notions:

Lemma 3.4. Given t∈ Σs(Γ), π ∈ Perm and a substitutionσ ,

(i) π ∗ (t{σ}) = (π ∗ t){σ};

(ii) π · t = π ∗ t{π−1−}, where(π−1−) is the substitution mapping each x7→ π−1x.

Proof. Easy inductions on the structure oft; see [5, Lem 5.2 & (30)] or [7, Lem. 2.3].

The freshness environmentsFEΣ are partial functions∇ with finite domain onVar, mapping each
x∈ dom(∇) to a pair(a,s) wherea∈ P f in(A) ands ∈ SortΣ. FEΣ is then a nominal set under the action
(π ·∇)(x) = (π ·a,s); supp(∇) is

⋃
x∈dom(∇) supp(∇(x)). If ∇(xi) = (ai,si) for 1≤ i ≤ n we write∇ as

(a1 ≈� x1 : s1, . . . ,an ≈� xn : sn) . (5)

The intended meaning is thatai is fresh forxi , which has sortsi. These will capture the freshness side
conditions we discussed in the introduction. Each∇ ∈ FEΣ gives rise to a sorting environment∇: ∈ SEΣ
by taking the second projection. We will abbreviate{a} ≈� x : s asa≈� x : s and /0≈� x : s asx : s.

Definition 3.5. A NEL-judgementhas the form

∇ ⊢ a≈� t ≈ t ′ : s (6)

where∇ ∈ FEΣ, a ∈ P f in(A), s ∈ SortΣ and t, t ′ ∈ Σs(∇:). We will abbreviate∇ ⊢ a ≈� t ≈ t : s as
∇ ⊢ a≈� t : s and∇ ⊢ /0≈� t ≈ t ′ : s as∇ ⊢ t ≈ t ′ : s.

A NEL-theoryT is a collection of such judgements, which we call itsaxioms.

Example 3.6. The axioms forαβη-equivalence over the untypedλ -calculus (Ex. 3.2), adapting [8, Ex.
2.15], are

(α) (x : tm) ⊢ a≈� lama x : tm

(β1) (a≈� x : tm,y : tm) ⊢ app(lama x)y≈ x : tm

(β2) (y : tm) ⊢ app(lama vara)y≈ y : tm

(β3) (x : tm,b≈� y : tm) ⊢ app(lama (lamb x))y≈ lamb(app(lamax)y) : tm

(β4) (x1 : tm,x2 : tm,y : tm) ⊢ app(lama(appx1 x2))y≈ app(app(lama x1)y)(app(lamax2)y) : tm

(β5) (b≈� x : tm) ⊢ app(lamax)varb ≈ (a b)x : tm

(η) (a≈� x : tm) ⊢ lama(appxvara)≈ x : tm .
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(REFL)
∇ ⊢ t ≈ t : s

∇ ∈ FEΣ, t ∈ Σs(∇:) (SYMM)
∇ ⊢ a≈� t ≈ t ′ : s

∇ ⊢ a≈� t ′ ≈ t : s

(TRANS)
∇ ⊢ a1 ≈� t ≈ t ′ : s ∇ ⊢ a2 ≈� t ′ ≈ t ′′ : s

∇ ⊢ (a1∪a2)≈� t ≈ t ′′ : s
(WEAK)

∇ ⊢ a≈� t ≈ t ′ : s

∇′ ⊢ a≈� t ≈ t ′ : s
∇ ≤ ∇′ ∈ FEΣ

(SUBST)
∇′ ⊢ σ ≈ σ ′ : ∇ ∇ ⊢ a≈� t ≈ t ′ : s

∇′ ⊢ a≈� t{σ} ≈ t ′{σ ′} : s
σ ,σ ′ : ∇: → (∇′):

(ATM -INTRO)
∇ ⊢ a′ ≈� t ≈ t ′ : s

∇≈�a ⊢ a′∪a≈� t ≈ t ′ : s
a # (a′, t, t ′) (ATM -ELIM )

∇≈�a ⊢ a′ ≈� t ≈ t ′ : s

∇ ⊢ a′ ≈� t ≈ t ′ : s
a # (∇,a′, t, t ′)

(≈�-EQUIVAR)
(a≈� x : s) ⊢ π ·a≈� π x : s

(SUSP)
(ds(π,π ′)≈� x : s) ⊢ π x≈ π ′ x : s

Figure 1: Proof rules for NEL

Definition 3.7. [Logical Consequence] The set oftheoremsof a NEL-theoryT is the least set of judge-
ments containing the axioms ofT and closed under the rules of Fig. 1. We write

∇ ⊢T a≈� t ≈ t ′ : s

to indicate that the judgement is a theorem ofT.
Fig. 1 uses the following new pieces of notation:

• In (WEAK) the relation∇ ≤ ∇′ holds ifdom(∇)⊆ dom(∇′) and for allx∈ dom(∇) we have∇(x) =
(a,s) and∇′(x) = (a′,s) so thata⊆ a′.

• In rule (SUBST)
∇′ ⊢ σ ≈ σ ′ : ∇ (7)

stands for the hypotheses∇′ ⊢ ai ≈� σ(xi)≈ σ ′(xi) : si for 1≤ i ≤ n, where∇ is as (5).

• In (ATM -INTRO) and (ATM -ELIM ), if a is a finite set of atoms and∇ is as (5) then

∇≈�a , (a1∪a≈� x1 : s1, . . . , an∪a≈� xn : sn) .

Note also that (ATM -INTRO) and (ATM -ELIM) carry side conditions relating to freshness. These do not
refer to the freshness connective≈� internal to the logic. Rather, they refer to the not-in-the-support-of
relation # of Def. 2.1 over the nominal setsFEΣ, P f in(A), andΣs(∇:) with respect to the action (4).

In [5] semantics are given for NEL, in which sorts are interpreted as nominal sets and operation
symbols as finitely supported functions between them. The proof rules of Fig. 1 are shown to be sound
and complete for that semantics. In this paper, however, we will work purely in terms of NEL’s proof
theory.

The next Lemma shows how freshness judgements may be translated into equivalent equational
judgements in NEL. This will be crucial to the results of the next section, where we will get rid of
freshness judgements entirely.
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Lemma 3.8. Given t∈ Σs(∇:) anda∈ P f in(A),

∇ ⊢T a≈� t : s ⇔ ∇≈�supp(~a′) ⊢T t ≈ (~a~a′)∗ t : s

where~a∈ A
(n) is an ordering ofa and~a′ ∈ A

(n) is a tuple of the same size such that supp(~a′) # (∇,a, t).

Proof. Left-to-right: ∇≈�supp(~a′) ⊢ a∪supp(~a′)≈� t : s by (ATM -INTRO); (a∪supp(~a′)≈� x : s) ⊢ x≈ (~a~a′)x :
s by (SUSP); the result then follows by (SUBST) and (3).

Right-to-left: ∇≈�supp(~a′) ⊢ supp(~a′) ≈� t : s by (REFL) and (ATM -INTRO); (supp(~a′) ≈� x : s) ⊢ a ≈�
(~a~a′)x : s by (≈�-EQUIVAR); then∇≈�supp(~a′) ⊢ a ≈� (~a~a′) ∗ t : s by (SUBST). Our hypothesis along with
(TRANS) and (SYMM) gives us∇≈�supp(~a′) ⊢ a≈� t : s; the result then follows by (ATM -ELIM ).

Example 3.9. The rule forα-equivalence for the untypedλ -calculus in Ex. 3.6

(x : tm) ⊢ a≈� lamax : tm

is equivalent to
(b≈� x : tm) ⊢ lamax≈ lamb (a b)x : tm . (8)

4 Nominal Equation-only Logic

This section presents syntax and proof rules for NEL withoutfreshness connectives to the right of the
turnstile⊢. We call this Nominal Equation-only Logic (NEoL), and show that it is just as expressive as
NEL.

Note that the previously published version of NEoL [4] included a rule called (PERM) that was some-
what unwieldy. This paper improves the presentation of NEoLby replacing (PERM) with a special case
(SUSP), and then derives (PERM) as Lem. 4.6.

Definition 4.1. A NEoL-judgementhas the form

∇ ⊢ t ≈ t ′ : s

where∇ ∈ FEΣ, s∈ SortΣ andt, t ′ ∈ Σs(∇:). Note that NEoL-judgements are also NEL-judgements (Def.
3.5).

A NEoL-theoryT is a collection of such judgements, called its axioms.

Definition 4.2. The set oftheoremsof a NEoL-theoryT is the least set of judgements containing the
axioms ofT and closed under the rules of Fig. 2. We write

∇ ⊢o
T t ≈ t ′ : s

to indicate that the judgement is a theorem ofT.
Say∇ is as (5). Then the rule (SUBSTo) in Fig. 2 uses the following new pieces of notation (ref. (7)

and Lem. 3.8):

• ∇′ ⊢ σ ≈ σ ′ stands for the hypotheses∇′ ⊢ σ(xi)≈ σ ′(xi) : si for 1≤ i ≤ n;

• ∇′ ⊢ σ : ∇ stands for the hypotheses

(∇′)≈�supp(~a′i) ⊢ σ(x)≈ (~ai ~a
′
i)∗σ(x) : s . (9)

for 1≤ i ≤ n, where~ai ∈A
(n) is an ordering ofai and~a′i ∈A

(n) is a tuple of the same size such that
supp(~a′i) # (∇′,ai ,σ(x)).
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(REFL)
∇ ⊢ t ≈ t : s

∇ ∈ FEΣ, t ∈ Σs(∇:) (SYMMo)
∇ ⊢ t ≈ t ′ : s

∇ ⊢ t ′ ≈ t : s

(TRANSo)
∇ ⊢ t ≈ t ′ : s ∇ ⊢ t ′ ≈ t ′′ : s

∇ ⊢ t ≈ t ′′ : s
(WEAKo)

∇ ⊢ t ≈ t ′ : s

∇′ ⊢ t ≈ t ′ : s
∇ ≤ ∇′ ∈ FEΣ

(SUBSTo)
∇′ ⊢ σ ≈ σ ′ ∇′ ⊢ σ : ∇ ∇ ⊢ t ≈ t ′ : s

∇′ ⊢ t{σ} ≈ t ′{σ ′} : s
σ ,σ ′ : ∇: → (∇′):

(ATM -ELIM o)
∇≈�a ⊢ t ≈ t ′ : s

∇ ⊢ t ≈ t ′ : s
a # (∇, t, t ′) (SUSP)

(ds(π,π ′)≈� x : s) ⊢ π x≈ π ′ x : s

Figure 2: Proof rules for NEoL

Theorem 4.3. If T is a NEoL-theory (and hence a NEL-theory) then∇ ⊢o
T

t ≈ t ′ : s implies∇ ⊢T t ≈ t ′ : s.

Proof. We need only check that each of the rules for NEoL of Fig. 2 can be derived from the rules
for NEL of Fig. 1. (REFL) and (SUSP) are also rules of Fig. 1, while (SYMMo), (TRANSo), (WEAKo) and
(ATM -ELIM o) are clearly special cases of the corresponding rules. (SUBSTo) is a special case of (SUBST),
as (9) is equivalent to the usual condition∇′ ⊢ ai # σ(xi) : s by Lem. 3.8.

The next three lemmas relate logical consequence for NEoL (Def. 4.2) with thePerm-actions on
terms (2) and (4).

Lemma 4.4. Given a NEoL-theoryT, ∇ ⊢o
T

t ≈ t ′ : s implies∇ ⊢o
T

π ∗ t ≈ π ∗ t ′ : s.

Proof.

(SUBSTo)
∇ ⊢ t ≈ t ′ : s ∇ ⊢ {t/x} : (x : s) (x : s) ⊢ π x≈ π x : s

∇ ⊢ π x{t/x} ≈ π x{t ′/x} : s

Lemma 4.5. Given a NEoL-theoryT, ∇ ⊢o
T

t ≈ t ′ : s impliesπ ·∇ ⊢o
T

π · t ≈ π · t ′ : s.

Proof. By Lem. 3.4(ii) this result may be attained via (SUSPo):

π ·∇ ⊢ (π−1−) : ∇ ∇ ⊢ π ∗ t ≈ π ∗ t ′ : s

π ·∇ ⊢ (π ∗ t){π−1−} ≈ (π ∗ t ′){π−1−} : s

The second premise follows by Lem. 4.4. Now take∇ as (5) and for 1≤ i ≤ n let~ai be an ordering ofai

and~a′i be a suitably fresh tuple of the same size. Then(π ·ai∪supp(~a′i)≈� xi : si)⊢ π−1xi ≈ (~ai ~a′i)π−1 xi : si

for eachi by (SUSP); applying (WEAKo) gives us(π ·∇)≈�supp(~a′i) ⊢ π−1xi ≈ (~ai ~a′i)π−1 xi : si , which yields
the first premise.

Lemma 4.6. Given∇ ∈ FEΣ, t ∈ Σs(∇:), and ds(π,π ′) # t,

∇≈�ds(π,π ′) ⊢o
T

π ∗ t ≈ π ′ ∗ t : s
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Proof. By induction on the structure oft.
Suspensions: Sayt = π ′′ x. By our freshness assumptionds(π,π ′) = ds(ππ ′′,π ′π ′′), so by (SUSP)

ds(π,π ′)≈� x : s ⊢ ππ ′′ x≈ π ′π ′′ x : s; the result then follows by (WEAKo).
Constructed terms: ift = opt1 · · · thenπ ∗ t = ((π ·op)x1 · · ·){σ}, whereσ maps eachxi 7→ π ∗ ti .

Similarly π ′ ∗ t = ((π ′ ·op)x1 · · · ){σ ′}, whereσ ′ maps eachxi 7→ π ′ ∗ ti . π ·op= π ′ ·opby our freshness
assumption and Lem. 2.3(ii). To apply (SUBSTo) to get our result we need only then show∇≈�ds(π,π ′) ⊢
σ ≈ σ ′; or for eachi, ∇≈�ds(π,π ′) ⊢ π ∗ ti ≈ π ′ ∗ ti : si . These judgements follow by induction.

It is a fact about NEL that from∇ ⊢T a≈� t : s we can infer∇ ⊢T a′ ≈� t : s for a′ ⊆ a. The next Lemma
gives the corresponding result for NEoL.

Lemma 4.7. Suppose we have an NEoL-theoryT, freshness environment∇ ∈ FEΣ, term t∈ Σs(∇:) and
lists of atoms~a,~b∈ A

(n) such that supp(~b) # (~a, t). Now suppose that~a′,~b′ ∈ A
(m) for some m≤ n, with

supp(~a′)⊆ supp(~a) and supp(~b′)⊆ supp(~b). Then

∇≈�supp(~b) ⊢o
T

t ≈ (~a~b)∗ t : s ⇒ ∇≈�supp(~b′) ⊢o
T

t ≈ (~a′~b′)∗ t : s

Proof. (supp(~a)∪supp(~b′)≈� x : s) ⊢ x≈ (~a′~b′)x : s by (SUSP). We wish to use (SUBSTo) to conclude that

∇≈�supp(~b′) ⊢o
T

x{t/x} ≈ ((~a′~b′)x){t/x} : s; for this substitution to occur we must prove that

∇≈�supp(~b′) ⊢ {t/x} : (supp(~a)∪supp(~b′)≈� x : s) . (10)

Now take fresh~c∈A
(n),~c ′ ∈A

(m). By Lem. 4.6 we have

∇≈�supp(~b′)∪supp(~c)∪supp(~c′) ⊢ (~a~c)∗ t ≈ (~a~c)(~b′ ~c ′)∗ t : s . (11)

Applying Lem. 4.5 and (WEAKo) to our hypothesis gives us

∇≈�supp(~b′)∪supp(~c)∪supp(~c′) ⊢ t ≈ (~a~c)∗ t : s . (12)

Combining (11) and (12) with (TRANSo) gives us

∇≈�supp(~b′)∪supp(~c)∪supp(~c′) ⊢ t ≈ (~a~c)(~b′ ~c ′)∗ t : s

which is equivalent to (10) as required.

Definition 4.8. Given a NEL-theoryT, letTo be the NEoL-theory produced by replacing each axiom of
the form (6) by the axioms

∇ ⊢ t ≈ t ′ : s and∇≈�supp(~a′) ⊢ t ≈ (~a~a′)∗ t : s (13)

where~a∈ A
(n) is an ordering ofa and~a′ ∈ A

(n) is a tuple of the same size such thatsupp(~a′) # (∇,a, t).
(6) and (13) are equivalent for NEL by Lem. 3.8.

Theorem 4.9. Let T be a NEL-theory. Then∇ ⊢T a ≈� t ≈ t ′ : s implies that∇ ⊢o
To t ≈ t ′ : s and

∇≈�supp(~a′) ⊢o
To t ≈ (~a~a′)∗ t : s, where~a∈A

(n) is an ordering ofa and~a′ ∈A
(n) is a tuple of the same size

such that supp(~a′) # (∇,a, t).
Therefore by Lem. 3.8 and Thm. 4.3 NEL and NEoL are equivalent.
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Proof. Given aT-axiom the corresponding NEoL-judgement is aT
o-axiom by Def. 4.8. The proof then

proceeds by induction on the rules of Fig. 1, showing that thecorresponding NEoL-judgements may be
derived by the rules of Fig. 2.

This result is immediate for (REFL) and (SUSP), which are also rules for NEoL. (WEAK) and (ATM -ELIM )
follow easily by applications of (WEAKo) and (ATM -ELIM o).

(SYMM): Applying the induction hypothesis gives us∇ ⊢ t ≈ t ′ : s and∇≈�supp(~a′) ⊢ t ≈ (~a~a′) ∗ t : s.
∇ ⊢ t ′ ≈ t : s by (SYMMo). Now ∇ ⊢ (~a~a′) ∗ t ≈ (~a~a′) ∗ t ′ : s by Lem. 4.4, so by (WEAKo) and (TRANSo)
we have∇≈�supp(~a′) ⊢ t ′ ≈ (~a~a′)∗ t ′ : s.

(TRANS): The induction hypothesis gives us∇ ⊢ t ≈ t ′ : s, ∇≈�supp(~a′1) ⊢ t ≈ (~a1~a′1)∗ t : s, ∇ ⊢ t ′ ≈ t ′′ : s
and∇≈�supp(~a′2) ⊢ t ′ ≈ (~a2~a′2)∗ t ′ : s, where~a1,~a2 are orderings ofa1,a2 respectively, and~a′1,~a

′
2 are fresh

tuples of the same sizes.∇ ⊢ t ≈ t ′′ : s by (TRANSo). Now supposea1 # a2 (if they are not disjoint we use
Lem. 4.7 to weaken one side until they are), and use successive applications of (WEAKo), Lem. 4.4 and
(TRANSo):

∇≈�supp(~a′1)∪supp(~a′2) ⊢o
T

t ≈ (~a1~a′1)∗ t
≈ (~a1~a′1)∗ t ′

≈ (~a1~a′1)(~a2~a′2)∗ t ′

≈ (~a1~a′1)(~a2~a′2)∗ t .

(SUBST): By the induction hypothesis∇ ⊢ t ≈ t ′ : s and∇≈�supp(~a′) ⊢ t ≈ (~a~a′)∗ t : s, and if∇ is as (5)
then for 1≤ i ≤ n we have∇′ ⊢ σ(xi) ≈ σ ′(xi) : si and(∇′)≈�supp(~a′i) ⊢ σ(xi) ≈ (~ai ~a′i) ∗σ(xi) : si where
~ai is an ordering ofai and~a′i is a fresh tuple of the same size.∇ ⊢ t{σ} ≈ t ′{σ ′} : s by (SUBSTo). Now
(~a~a′)∗ (t{σ}) = ((~a~a′)∗ t){σ} by Lem. 3.4(i), so we look to apply (SUBSTo):

(∇′)≈�supp(~a′) ⊢ σ : ∇≈�supp(~a′) ∇≈�supp(~a′) ⊢ t ≈ (~a~a′)∗ t : s

(∇′)≈�supp(~a′) ⊢ t{σ} ≈ ((~a~a′)∗ t){σ} : s

The second premise is among our hypotheses, while the first follows from (SUBSTo) for eachi:

∇′′ ⊢ σ(xi)≈ (~ai ~a
′
i)∗σ(xi) : si

∇′′ ⊢ {σ(xi)/x} : (supp(~a′)∪supp(~a′′)≈� x : si) (supp(~a′)∪supp(~a′′)≈� x : s) ⊢ x≈ (~a′ ~a′′)x : si

∇′′ ⊢ x{σ(xi)/x} ≈ (~a′ ~a′′)x{(~ai ~a
′
i)∗σ(xi)/x} : si

where∇′′ = (∇′)≈�supp(~a′)∪supp(~a′′)∪supp(~a′i) and~a′′ is a fresh copy of~a′. The first premise here follows from
our hypotheses and (WEAKo); the second follows by Lem. 4.6, and the third by (SUSP).

(ATM -INTRO): By the induction hypothesis∇ ⊢ t ≈ t ′ : s and∇≈�supp(~b′) ⊢ t ≈ (~a′~b′)∗ t : s, where~a′ is
an ordering ofa′ and~b′ is a fresh tuple of the same size.∇≈�a ⊢ t ≈ t ′ by (WEAKo). We need to prove that
∇′ ⊢ t ≈ (~a~b)(~a′~b′) ∗ t : s, where∇′ = ∇≈�a∪supp(~b)∪supp(~b′), ~a is an ordering ofa and~b is a fresh copy.
Apply (SUBSTo):

∇′ ⊢ t ≈ (~a~b′)∗ t : s ∇′ ⊢ {t/x} : (a∪supp(~b)≈� x : s) (a∪supp(~b)≈� x : s) ⊢ x≈ (~a~b)x : s

∇′ ⊢ x{t/x} ≈ ((~a~b)x){(~a~b′)∗ t/x} : s

The first premise follows from our hypothesis and (WEAKo); the second follows by Lem. 4.6, and the
third by (SUSP).

(≈�-EQUIVAR): (a∪supp(~a′)≈� x : s) ⊢ π x≈ (π ·~a~a′)π x : s by (SUSP).
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ds(π,π ′)≈� x : s ∈ ∇
∇ ⊢ π x≈ π ′ x : s

∇ ⊢ t1 ≈ t ′1 : s1 · · · ∇ ⊢ tn ≈ t ′n : sn

∇ ⊢ opt1 · · · tn ≈ opt′1 · · · t
′
n : s

Figure 3: Syntax-directed rules for Nominal Equality

5 The Empty Theory

In standard equational logic, provable equality corresponds to literal syntactic equality in the empty
theory /0 without axioms. This is not the case for NEoL because of the presence of freshness environments
and suspensions. In this section we give a simple syntax-directed description of equality in the empty
NEoL-theory. It is then straightforward to extend this to a description of freshness in the empty NEL-
theory.

Definition 5.1. Fig. 3 provides syntax-directed rules for Nominal Equality. The notation ‘ds(π,π ′)≈� x :
s ∈ ∇’ means that∇(x) = (a,s) for a⊇ ds(π,π ′).

Theorem 5.2. The rules for NEoL of Fig. 2 imply the syntax-directed rules of Fig. 3.

Proof. The suspension case hold by (SUSP) and (WEAKo); the constructed term case by (SUBSTo).

Lemma 5.3. Say we have permutationsπ,π ′ ∈ Perm and a finite list~a of atoms so that ds(π,π ′) ⊆
supp(~a). Let~a′ be a list of fresh atoms of the same size. Then if we can derive

∇ ⊢ t ≈ t ′ : s and∇≈�supp(~a′) ⊢ t ≈ (~a~a′)∗ t : s

by the syntax-directed rules of Fig. 3, then we can also derive

∇ ⊢ π ∗ t ≈ π ′ ∗ t ′ : s

Proof. Suspensions: Sayt = ξ x and t ′ = ξ ′ x, so ds(ξ ,ξ ′) ≈� x : s ∈ ∇ and ds(ξ ,(~a~a′)ξ ) ≈� x : s ∈
∇≈�supp(~a′). We must prove that∇⊢ πξ x≈ π ′ξ ′ x, i.e. thatds(πξ ,π ′ξ ′)≈� x : s∈∇. Takea∈ ds(πξ ,π ′ξ ′).
If a ∈ ds(ξ ,ξ ′) we’re done by our first assumption. But ifξ (a) ∈ ds(π,π ′) then ξ (a) ∈ supp(~a), so
a ∈ ds(ξ ,(~a~a′)ξ ) and by our second assumptiona ≈� x : s ∈ ∇≈�supp(~a′). But ~a′ was chosen fresh, so
a≈� x∈ ∇.

Constructed terms: Lett = opt1 · · · and t ′ = opt′1 · · · , so for all i, ∇ ⊢ ti ≈ t ′i : si , ∇≈�supp(~a′) ⊢ ti ≈
(~a~a′)∗ ti : si andop= (~a~a′) ·op. We must prove that∇ ⊢ (π ·op)(π ∗ t1) · · · ≈ (π ′ ·op)(π ′ ∗ t ′1) · · · . Now
supp(~a′) # op, so by Lem. 2.3(i)supp(~a) # (~a~a′) · op= op. ds(π,π ′) ⊆ supp(~a), so by Lem. 2.3(ii)
π ·op= π ′ ·op. Finally, ∇ ⊢ π ∗ ti ≈ π ′ ∗ t ′i : si follows by induction.

Theorem 5.4. Suppose∇ ⊢o
/0 t ≈ t ′ : s by the rules for NEoL of Fig. 2. Then∇ ⊢ t ≈ t ′ : s by the

syntax-directed rules of Fig. 3.
Therefore by Thm. 5.2 the syntax-directed rules coincide with the empty NEoL-theory.

Proof. By induction on the rules of Fig. 2.
(SUSP) follows immediately from the suspension case of Fig. 3. (REFL) follows by an easy induction

on the structure oft. (SYMMo), (WEAKo) and (ATM -ELIM o) are also straightforward.
(TRANSo): Sayt = π x, t ′ = π ′ x andt ′′ = π ′′ x, sods(π,π ′)≈� x : s, ds(π ′,π ′′)≈� x : s ∈ ∇. We need to

show thatds(π,π ′′)≈� x : s∈∇, so takea∈ ds(π,π ′′). If a∈ ds(π,π ′) we are done by our first assumption,
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but if π(a) = π ′(a) thena∈ ds(π ′,π ′′) so we are done by our second assumption. The constructed term
case is an easy induction.

(SUBSTo): Say∇ ⊢ t ≈ t ′ is ∇ ⊢ π x ≈ π x : s, σ(x) = ξ y andσ ′(x) = ξ ′ y, sods(π,π ′) ≈� x : s ∈ ∇
andds(ξ ,ξ ′) ≈� y : s ∈ ∇′. The other premise (9) says thatds(ξ ,(~a~a′)ξ ) ≈� y : s ∈ (∇′)≈�supp(~a′) where
∇(x) = (a,s), ~a is an ordering ofa, and~a′ is a fresh tuple of the same size. We need to prove that
ds(πξ ,π ′ξ ′)≈� y : s∈∇′. Takea∈ ds(πξ ,π ′ξ ′). If a∈ ds(ξ ,ξ ′) we are done, so sayξ (a)∈ ds(π,π ′)⊆ a.
Thena∈ ds(ξ ,(~a~a′)ξ ), soa≈� y : s ∈ (∇′)≈�supp(~a′), but~a′ was chosen fresh, so we are done.

Now taket, t ′ as above, sods(π,π ′)≈� x : s ∈ ∇ still, but σ(x) = opt1 · · · andσ ′(x) = opt′1 · · · . Then
for 1≤ i ≤ n, ∇′ ⊢ ti ≈ t ′i : si, (∇′)≈�supp(~a′) ⊢ ti ≈ (~a~a′)∗ ti : s andop= (~a~a′) ·op, wherea,~a,~a′ are also
as above.supp(~a′) # op impliesa # (~a~a′) ·op= op, soπ ·op≈ π ′ ·op. ∇′ ⊢ π ∗ ti ≈ π ∗ t ′i by Lem. 5.3.

Finally, if t, t ′ are constructed terms then the induction for (SUBSTo) is straightforward.

Corollary 5.5. The empty NEL-theory, following the rules of Fig. 1, coincides with the syntax-directed
rules of Fig. 3 along with these new rules for freshness:

π−1 ·a≈� x : s ∈ ∇
∇ ⊢ a≈� π x : s

∇ ⊢ a≈� t1 : s1 · · · ∇ ⊢ a≈� tn : sn a # op

∇ ⊢ a≈� opt1 · · · tn : s

Proof. Lem. 3.8, Thm. 4.9 and Thm. 5.4.

6 Related Work

Equational logic for nominal unification. The first notion of equational logic over nominal sets to be
developed were the syntax-directed rules of [13, Fig. 2], which were used in the definition of nominal
unification. The syntax that directs this definition is basedonnominal signatures, which compared to the
signatures of Def. 3.1 have a richer sort system and a set, rather than nominal set, of operation symbols.

The rules (≈-suspension), (≈-function symbol), (≈�-suspension) and (≈�-function symbol) of [13]
clearly match the syntax-directed rules of Fig. 3 and Cor. 5.5, apart from the premisea # op, which is
non-trivial only whenop may have non-empty support. If we add operation symbols for unit, pairing,
atoms and atom-abstraction then, via Fig. 3 and Cor. 5.5, we recover all of the rules of [13] except for
(≈-abstraction-2) and (≈�-abstraction-1):

a 6= a′ ∇ ⊢ t ≈ (a a′)∗ t ′ ∇ ⊢ a≈� t ′

∇ ⊢ a. t ≈ a′. t ′ ∇ ⊢ a≈� a. t

wherea. t is the atom-abstraction bindinga in t. These are the rules forα-equivalence. Following [3],
we may capture these rules by moving from the empty theory to the theory with one axiom

(b≈� x) ⊢ a.x≈ b.(a b)x

or equivalently,(x) ⊢ a≈� a.x.
Nominal Algebra (NA). NA [8] is a logic independently developed to reason about thesame prop-

erties as NEL, but with some interestingly different designchoices. NA is built on nominal signatures,
so in the empty theory equality should be, as above,α-equivalence over these signatures rather than the
weaker equivalence of Sec. 5. NA employs a set, rather than nominal set, of operation symbols, which
may make it less expressive than NEL. For example, with NEL one could define a nominal set of op-
eration symbols isomorphic to the nominal setA

(2) of disjoint pairs of atoms; this does not seem to be
possible with NA.
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Finally, NA employs a syntax-directed notion of freshness that is weaker than that used by NEL; in
particular the transitive property

∇ ⊢ a≈� t : s ∇ ⊢ t ≈ t ′ : s

∇ ⊢ a≈� t ′ : s

does not hold. In [8, Sec. 5] design alternatives for NA were discussed where atom-abstraction sorts
were eliminated and the freshness relation strengthened tomatch that of NEL. However no notion of NA
with equality only has been proposed along the lines of NEoL,although it seems likely that such a logic
could be defined by working in close analogy with the results of this paper.

Synthetic Nominal Equational Logic (SNEL). Term Equational Systems [6] are a category theo-
retic account of equational logic, including proof theory.This framework allows equational logic to be
naturally generalised from the category of sets to other categories, with proof rules automatically gener-
ated in each new setting so long as the new categories obey certain certain constraints. Following NEL
and NA, Term Equational Systems were developed in the category of nominal sets, and the resulting
logic is called SNEL [6, Sec. 5]. SNEL is another notion of nominal sets with equations only, but no
proof was offered that the addition of freshness judgementswould not strengthen the logic. The authors
were, however, aware of the results presented in this paper,which could be seen as a sanity check on the
development of the equation-only SNEL.

It should also be noted that the syntax of SNEL is not entirelyin keeping with that which is commonly
used in nominal logic, as we have no freshness environments or suspensions. For example, the axiom (8)
for α-equivalence in the untypedλ -calculus would be written

[a,b]{x : 1} ⊢ lamax(a) ≈ lamb x(b) .

Here the metavariables explicitly refer to names they may depend on. This differs from the standard
mathematical treatment of bound names, which most applications of nominal techniques try to capture.
It is an interesting question whether a more standard presentation of equational logic over nominal sets,
such as NEL or NA, could be derived in this category theoreticcontext.
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