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This paper studies the problem of computing Nash equilibrium in wireless networks modeled by
Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe
complex features such as timed energy constraints. Our contribution is a method for solving this
problem using Statistical Model Checking. The method has been implemented in UPPAAL model
checker and has been applied to the analysis of Aloha CSMA/CDand IEEE 802.15.4 CSMA/CA
protocols.

1 Introduction

One of the important aspects in designing wireless ad-hoc networks is to make sure that a network is
robust to the selfish behavior of its participants. This problem can be formulated in terms of a game
considering that network nodes behave in a rational way and want to maximize their utility. A wireless
network is robust iff its configuration satisfies Nash equilibrium (NE), i.e. it is not profitable for a node
to alter its behavior to the detriment of other nodes.

In this paper we propose a new methodology to compute NE in wireless ad-hoc networks. Our
approach is based on Statistical Model Checking (SMC) [24, 18], an approach used in the formal verifi-
cation area. SMC has a wide range of applications in the areassuch as systems biology or automotive.
The core idea of SMC is to monitor a number of simulations of a system and then use the results of
statistics (e.g. sequential analysis) to get an overall estimate of the probability that the system will be-
have in some manner. Thus SMC can help to overcome the undecidability issues, that arise in the formal
analysis of wireless ad-hoc networks [1]. While the idea ressembles the one of classical Monte Carlo
simulation, it is based on a formal semantics of systems thatallows us to reason on very complex behav-
ioral properties of systems (hence the terminology). This includes classical reachability property such as
“can i reach such a state?”, but also non trivial properties such as “can i reach this state x times in less
than y units of time?”.

Here we use a semantics for systems that is based on timed automata. We assume that elements
of a network are modeled using Weighted Timed Automata (WTA), that is a model for timed system
together with a stochastic semantics. The model permits, for example, to describe stochastically how the
behaviors of a system involve with respect to time. As an example, probability can be used to say that
the system is more likely to move to the next state in five unitsof time rather than in ten. Our approach
permits to describe arbitrary distributions when combining individual components. In addition, WTA
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are equiped with nice communication primitives between components, including e.g. message passing.
The fact that we rely on WTA allows us to describe utility functions with cost constraint temporal logic
called PWCTL. PWCTL is a logic that allows to temporally quantify on behaviors of components as
well as on their individual features (cost, energy consumption). By the existing results, we know that one
can always define a probability measure on sets of run of a WTA that satisfy a given property written in
cost constraint temporal logic. The latter clearly arises the importance of defining a formal semantics for
system’s models.

Going back to modeling wireless ad-hoc network, we will assume that each node can work according
to one out of finitely many configurations that we call strategies (a strategy being a choice of a config-
uraiton). We also assume that each network node has a goal anda node’s utility function is equal to
the probability that this goal will be reached on a random system run. Each node will be represented
with a WTA and a goal will be described with PWCTL. Our algorithm for computing NE consists of
two phases. First, we apply simulation-based algorithm to compute a strategy that most likely (heuristic)
satisfies NE. This is done by monitoring several runs of the systems with respect to a property and then
use classical Monte Carlo ratio to estimate the probabilitythat this strategy is indeed the good one. In
the second phase we apply statistics to test the hypothesis that this strategy actually satisfies NE. Indeed,
it is well-known that such a NE may not exist [16], so our statistical algorithm goes for the best estimate
out of it that corresponds to a relaxed NE for the system.

We implemented a distributed version of this algorithm thatuses UPPAAL statistical model checker
as a simulation engine [13]. The UPPAAL toolset offers a nice user interface that makes it one of the most
widely used formal verification based tool in academia. Thanks to the independent simulations that the
algorithm generates, this problem can easily be parallelized and distributed on, e.g., PC clusters.

Finally, we apply our tool to the analysis of two probabilistic CSMA (Carrier Sense Multiple Access)
protocols: k-persistent Aloha CSMA/CD protocol and IEEE 802.15.4 CSMA/CA protocol. The two
case studies we present in this paper serve mainly demonstration purposes. However, we are the first
who study Nash Equilibrium inunslottedAloha (the slotted version of Aloha was previously studied
in [19] and [23]). Our result that there exists only “always transmit” Nash Equilibrium strategy in IEEE
802.15.4 CSMA/CA reproduces the analogous result for the IEEE 802.11 CSMA/CA protocol [9].

The problem of computing Nash Equilibrium in wireless ad-hoc networks was first considered in [19]
and surveid in [23]. Most of existing works are based on an analytical solution which does not scale well
with complex models [15, 19]. Similarly to us, some other works [9] are based on a simulation-based
approach. However, contrary to us, they do not assign any statistical confidence to the results, and they
do not take advantage of temporal logic to express arbitraryobjectives.

2 Weighted Timed Automata

In this section, we briefly recap the concept of Weighted Timed Automata (WTA), see [12] for more
details. We denoteB(X) to be a finite conjunction of bounds of the formx∼ n wherex∈ X, n∈ IIN, and
∼∈ {<,≤,>,≥}.

Definition 1 A Weighted Timed Automaton1 (WTA) is a tupleA = (L, ℓ0,X,E,R, I) where: (i) L is a
finite set of locations, (ii)ℓ0 ∈ L is the initial location, (iii) X is a finite set of real-valued variables called

1In the classical notion of priced timed automata [6, 5] cost-variables (e.g. clocks where the rate may differ from 1) may
not be referenced in guards, invariants or in resets, thus making e.g. optimal reachability decidable. This is in contrast to our
notion of WTA, which is as expressive as linear hybrid systems [10].
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clocks, (iv) E⊆ L×B(X)×2X ×L is a finite set of edges,(v) R : L → Z≥0 assigns a rate vector to each
location, and (vi) I: L → B(X) assigns an invariant to each location.

A state of a WTA is a pair(l ,v) that consists of a locationl and a valuation of clocksν : X → IR≥0.
From a state(l ,v) ∈ L× IRX

≥0 a WTA can either let time progress or do a discrete transitionand reach
a new location. During time delay clocks are growing with therates defined byR(l), and the resulting
clock valuation should satisfy invariantI(l). A discrete transition from(l ,v) to (l ′,v′) is possible if there
is (l ,g,Y, l ′) ∈ E such thatv satisfiesg andv′ is obtained fromv by resetting clocks from the setY to 0.
A run of WTA is a sequence of alternating time and discrete transitions. Several WTAM1,M2, . . . ,Mn,
can communicate via inputs and outputs to generate Networksof WTAs (NWTAs)M1‖M2‖ . . .‖Mn.

In our early works [12], the stochastic semantics of WTA components associates probability distri-
butions on both the delays one can spend in a given state as well as on the transition between states. In
UPPAAL uniform distributions are applied for bounded delays and exponential distributions for the case
where a component can remain indefinitely in a state. In a network of WTAs the components repeatedly
race against each other, i.e. they independently and stochastically decide on their own how much to delay
before outputting, with the “winner” being the component that chooses the minimum delay. As observed
in [12], the stochastic semantics of each WTA is rather simple (but quite realistic), arbitrarily complex
stochastic behavior can be obtained by their composition when mixing individual distributions through
message passing. The beauty of our model is that these distributions are naturally and automatically
defined by the network of WTAs.

Our implementation supports extension of WTA, coming from the language of the UPPAAL model
checker [17]. Such models can contain integer variables that can be present in transition guards, and they
can be updated only when a discrete transition is taken. Additionally, we support other features of the
UPPAAL model checker’s input language such as data structures and user-defined functions.

A parametrized WTAM(p) is a WTA in which some integer constant (transition weight orconstant
in variable assignment/clock invariant) is replaced by a parameterp.

For defining properties we use cost-constraint temporal logic PWCTL, which contains formulas of
the form♦c≤Cφ . Herec is an observer clock (that is never reset and grows to infinityon any infinite run
of a WTA),C∈ IR≥0 is a constant andφ is a state-predicate. We say that a runπ satisfies♦c≤Cφ if there
exists a state(l ,v) ∈ π in this run such that it satisfiesφ andv(c)≤C. We definePr[M |= ψ ] to be equal
to the probability that a random run ofM satisfiesψ .

3 Modeling Formalism and problem statement

We consider that each node operates according to one out of finitely many configurations. Thus a network
of N nodes can be modelled by:

S(p1, p2, . . . , pN)≡ M(p1)‖M(p2)‖ . . .‖M(pN)‖C (1)

whereM is a parametrized model of a node,pi ∈ P (i.e, the behavior of a node relies on some value -
strategy - assigned to the parameters),P is a finite set of configurations andC is a model of a medium.

Consider a parameterized NWTAS(p1, p2, . . . , pN) that models a wireless network ofN nodes. Here
eachpi defines a configuration of a nodei and ranges over a finite domainP. Since the players (nodes)
are symmetric, we can analyze the game from the point of view of the first node only. Thus we will
consider the goal of the first node only, and this goal is defined by a PWCTL formulaψ .
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We can view a system as a gameG= (N,P,U), whereN is a number of players (nodes),P is a set of
strategies (parameters) andU : PN → [0,1] is an utility function of the first player defined as

U(p1, p2, . . . , pN)≡ Pr[S(p1, p2, . . . , pN) |= ψ ] (2)

We consider that there is a master node that knows the networkconfiguration (here the number of
nodes) and broadcasts the strategy (parameter) that all thenodes should use.

If all the nodes are honest, they will play according to the strategy proposed by the master node.
Thus in this case the master node should use a symmetric optimal strategy, i.e. a strategyp such that for
all other strategiesp′ we haveU(p, p, . . . , p)≥U(p′, p′, . . . , p′).

However, if there are selfish nodes, they might deviate from the symmetric optimal strategy to in-
crease the value of their utility functions (and the rest of the nodes can possibly suffer from that). Thus
we will consider a Nash Equilibrium strategy that is stable with respect to the behavior of such selfish
nodes (but possibly this strategy is less efficient than the symmetric optimal one). More formally, a strat-
egy p is said to be a Nash Equilibrium (NE), iff for allp′ ∈ P we haveU(p, p, . . . , p)≥U(p′, p, . . . , p).

However, a Nash Equilibrium may not exist [16]2, thus in this paper we will consider arelaxed
definition of Nash Equilibrium.

Definition 2 A strategy p satisfies symmetricδ -relaxed NE iff for all p′ ∈ P we have U(p, p, . . . , p) ≥
δ ·U(p′, p, . . . , p).

The value ofδ measures the quality of a strategyp. If δ ≥ 1, thenδ -relaxed NE satisfies the
traditional definition of the (non-relaxed) NE. Otherwise,if 1 − δ is small, then we can conclude that
a node’s gain of switching is negligible and it’ll stick withthe δ -relaxed NE strategy. Aδ -relaxed NE
strategy can be also used when a set of possible strategies isinfinite. In this case we can discritize this
set (approximate it by afinite set of strategies) and search for aδ -relaxed NE strategy in this finite set.
If an utility function is smooth, then this strategy can be a good approximation for a NE in the original
(infinite) set of strategies.

In this paper, we will solve the problem of searching for a strategy that satisfiesδ -relaxed NE for as
largeδ as it is possible.

For readability, in the rest of the paper we will writeU(p′, p) andS(p′, p) instead ofU(p′, p, . . . , p)
andS(p′, p, . . . , p), respectively.

4 Algorithm for Computing Nash Equilibrium

One may suggest that in order to compute NE we can compute the values ofU(p′, p) for all pairs(p′, p)
and then use definition 2 to compute the maximal value ofδ . However, we can’t do that because the
problem of evaluating PWCTL formula on a model (i.e. computing Pr[S|= ψ ]) is undecidable in general
for WTA [7].

In this paper, we will use Statistical Model Checking (SMC) [18] based approach to overcome this
undecidability problem. The main idea of this approach is toperform a large number of simulations and
then apply the results of statistics to estimate the probability that a system satisfies a given property.

Our method of computing NE consists of two phases. During thefirst phase (presented in Section
4.1) we apply a simulation-based algorithm to search for thebest candidatep for a Nash Equilibrium.
Then, in the second phase (presented in Section 4.2), we apply statistics to evaluatep, i.e. to find the

2Note, that we assume only non-mixed (pure) strategies.
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Algorithm 1 Computation Of The Best Candidate For Nash Equilibrium
Input : P= {pi} — finite set of parameters,U(pi , pk) — utility function,d ∈ [0,1] — threshold
Algorithm :
1. for every pi ∈ P compute estimatioñU(pi , pi)

2. waiting := P
3. candidates:= /0
4. while len(waiting)> 1:
5. pick some unexplored pair(pi , pk) ∈ P×waiting
6. computeestimationŨ(pi , pk)

7. if Ũ(pk, pk)< d ·Ũ(pi , pk):
8. removepk from waiting
9. else if∀p′i Ũ(p′i , pk) is already computed
10. removepk from waiting
11. add pk to candidates
12. return argmaxp∈candidatesminp′∈P(Ũ(p, p)/Ũ(p′, p))

maximumδ such that with a given significance level we can accept the statistical hypothesis thatp is a
δ -relaxed Nash Equilibrium.

In the rest of the paper, we use straightforward simulation-based Monte Carlo method for computing
estimations of utility function’s values. In this method weperform n random simulations ofS(p′, p)
for a given pair(p′, p) and count the numberk of how many simulations satisfiedψ . Then we use the
following estimation:Ũ(p′, p) = k/n.

4.1 Finding a Candidate for a Nash Equilibrium

As a first step, the algorithm computes estimationsŨ(p′, p) for variousp′ andp and search for a param-
eterp that maximizes the value of minp′∈P(Ũ(p, p)/Ũ(p′, p)).

Additionally, we speedup the search by introducing a heuristic thresholdd (that is a parameter of our
algorithm) and pruning parametersp such thatŨ(p, p)/Ũ(p′, p)< d.

Our algorithm (see Algorithm 1) starts with the computationof estimationsŨ(pi , pk) at diagonal
points (i.e. wheni = k). After that we iteratively pick a random pair of strategies(pi , pk) and compute
Ũ(pi , pk). If Ũ(pk, pk)/Ũ(pi , pk) < d, then we remove strategypk from the further consideration and
will never consider again pairs of the form(?, pk).

We iterate the while-loop until we split all the parameters into thosep for which we already computed
the value of minp′∈P(Ũ(p, p)/Ũ(p′, p)), and those, for which we know that̃U(p, p)/Ũ(p′, p) < d for
somep′. Then at line 12 we choose a strategyp that maximizes minp′∈P(Ũ(p, p)/Ũ (p′, p))

It should be noted, that if a thresholdd is large, then our algorithm can possibly return no result
(because all the candidates will be filtered out). In this case one can retry with a smallerd and reuse the
already computed estimations. Ifd is equal to zero, then the algorithm is guaranteed to return aresult.

4.2 Evaluation of a Relevance of the Candidate

Consider that after the first phase we selected a strategyp. Let Hp,δ be a statistical hypothesis thatp is a
δ -relaxed NE. Now we want to find the maximalδ such that we can accept the hypothesisHp,δ with a
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given significance levelα (that is a parameter of the algorithm)3.
To do that we firstly reestimatẽU(p′, p) for everyp′ ∈ P (possibly using the number of simulations

that is different from the one that was used in the first phase,this will be discussed below).
Then we apply the following theorem:

Theorem 1 Suppose that for all p′ ∈S we estimated̃U(p′, p) using n random simulations, and f(δ )≤α ,
where

f (δ )≡ ∑
i=1..N

1
2

(
1−er f

(√
n(Ũ(p, p)−δ ·Ũ(pi , p))

))
(3)

and er f(x) = 2√
π
∫ x

0 e−t2
dt is Gauss error function. Then we can accept the statistical hypothesis Hp,δ

with the significance level ofα .

Proof: Let qi =U(pi, pk) andq̃i = Ũ(pi , pk). Thenpk satisfiesδ -relaxed Nash Equilibrium iff∀i ·qk ≥
δqi Consider that we haven Bernoulli random variablesζ1,ζ2, . . . ,ζn wherePr[ζi = 1] = qi . Consider
that random variableξi is a mean ofn independent observations ofζi , i.e. ξi = ∑ j=1..n ζi/n Then each
q̃i is an independent observation ofξi and for largen we haveξi ∼ N (qi ,qi(1−qi)/n). Probability of
making type II error (accept Hpk,δ when it is false) is less or equal to

Pr[ξ1 = q̃1,ξ2 = q̃2, . . . ,ξn = q̃N‖
∨

i=1..N

qk < δ ·qi ] (4)

, that in turn is less or equal to

∑
i=1..N

Pr[ξ1 = q̃1,ξ2 = q̃2, . . . ,ξn = q̃N‖qk < δ ·qi ] (5)

, that in turn is less or equal to

∑
i=1..N

Pr[ξi = q̃i ,ξk = p̃k‖qk < δ ·qi ] (6)

, that in turn is less or equal to

∑
i=1..N

Pr[(ξk−δ ·ξi) = (q̃k−δ · q̃i)‖qk−δ ·qi < 0] (7)

For eachi we have:

(ξk−δ ·ξi)∼ N (qk−δqi,(qk(1−qk)+qi(1−qi))/n) (8)

The truth of the theorem follows from the fact thatqk(1−qk)+qi(1−qi)≤ 0.5. �

We apply this theorem in the following way. We first search foran integer-valuedb such thatf (b)<
0. Then we use bisection numerical method to find a root of an equation f (δ ) = α on the interval[0,b].
It can be easily seen that the functionf decreases andf (0) > 0 and it implies that thisδ satisfies the
condition of the theorem.

Our method provides only a lower bound forδ and the theorem 1 does not state how many simu-
lations are needed to compute a good estimation ofδ . Indeed, we can compute statistically validδ for

3The significance level is a statistical parameter that defines the probability of accepting a hypothesis although it is actually
false.
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Figure 1: The experimental evaluation of the application oftheorem 1. In the upper plots thex axis
denotes the number of simulationsn, andy axis denotes an average estimated value ofδ computed using
theorem 1 for these numbers of simulations and the significance level ofα = 0.05. N is the total number
of strategies. The bottom plots demonstrate the frequency distribution for the computed values ofδ for
100000 simulations and 100 possible strategies. The left and right plots correspond to the cases when
the real value ofδ is equal to 1.0 and 1.1.

any number of simulations. And if the estimated value ofδ is small, it can be a result of the fact that the
number of simulations is insufficient or the real value ofδ is small (or both).

Thus we performed an experiment to see how accurate is our method depending on the number of
simulations. We developed a simple model of our method, and in this model we assume that there areN
strategies{p1, p2, . . . pN}, and we want to check thatp1 is a Nash Equilibrium. The value of the utility
functionU(p1, p) is equal to 0.5 for p 6= p1, and it is equal to 0.5·δ whenp= p1 (thusp1 is aδ -relaxed
NE). The experimental data for the cases whenδ = 1.0 andδ = 1.1 is presented at Fig. 1. A reader can
see that the results for these two cases are similar, and our other experiments (withδ ranging from 0.5 to
2.0) also demonstrate this similarity. The accuracy of our method increases as the number of simulation
n increases or the number of possible strategiesN decreases. One can also see, that for this experiment
100000 simulations seem to be enough to compute a good approximation forδ that is both statistically
valid (this is ensured by the theorem 1) and close to the real value ofδ .

4.3 Implementation Details

We developed a tool written in Python programming language that implements the proposed algorithm.
This tool uses UPPAAL model checker as a simulation and monitoring engine for PWCTL properties.

Our algorithm is based on Monte Carlo simulations and thus itis embarrassingly parallisable. In
our implementation we exploit this parallelisability by computing the estimations for different pairs of
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Figure 2: Model of Aloha in UPPAAL

strategies on different nodes. The tool can be run on a cluster. One node acts as a master and picks the
parameterspi , p j that the slave nodes use to compute the estimationsŨ(pi , p j). The master node does not
use any external job scheduler and submits jobs on its own using SSH connection to the computational
nodes. Currently we rely on the fact that the nodes share the same distributed file system, but in principle
the master node can deploy all executables and models by itself.

5 Results of Application

In this paper we report on results of application of our tool to two contention resolution protocols. The
first one is Aloha CSMA/CD protocol that we model on a very abstract level and we’ll describe our
model in details. The second one is IEEE 802.15.4 CSMA/CA that we model with a high precision and
we’ll just briefly sketch its structure.

For both case studies we used the following parameters. The number of simulations for estimation of
utility function’s values is equal to 10000 for the first phase of our algorithm (searching for the best can-
didate for NE) and 100000 for the second phase (evaluation ofthis candidate). The value ofd parameter
is equal to 0.9, and the value of significance levelα is equal to 0.05.

All the experiments were performed on the 8 node cluster, where each node has an Intelc© CoreR©2
Quad CPU.

5.1 Application to Aloha CSMA/CD protocol

Aloha protocol [2] is a simple Carrier Sense Multiple Accesswith Collision Detection (CSMA/CD)
protocol that was used in the first known wireless data network developed at the University of Hawaii in
1971.

In this protocol it is assumed that there are several nodes that share the same wireless medium. Each
node is listening to its own signal during its transmission and checks that the signal is not corrupted by
another node’s transmission. In case of collision both nodes will stop transmitting immediately and wait
for a random time before they’ll try to transmit again.
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Figure 3:Ũ(p′, p) (left) and its diagonal slice (right) for Aloha with 5 nodes

Number of nodes 2 3 4 5 6 7 8
δ -relaxed NE strategypNE 0.37 0.40 0.35 0.35 0.41 0.42 0.41
Value ofδ 0.992 0.980 0.992 0.990 0.993 0.992 0.987
Ũ(pNE, pNE) 0.99 0.98 0.95 0.89 0.75 0.61 0.50
Symmetric optimal strategypopt 0.30 0.30 0.26 0.22 0.19 0.15 0.14
Ũ(pOpt, popt) 0.99 0.98 0.96 0.90 0.87 0.98 0.76
Computation time 2m5s 3m44s 7m62s 15m45s 26m11s 37m55s 59m15s

Table 1: Nash equilibrium (NE) and Symmetric optimal (Opt) strategies for Aloha

In our paper we consider unslotted Aloha in which the nodes are not necessary synchronized. Ad-
ditionally, we study k-persistent variant of Aloha, i.e. a protocol implementation in which a random
delay before retransmission is distributed according to a geometric distribution. This means that for each
next time slot a node will transmit with probabilityTransmitProb and will wait for one more slot (and
then decide again) with probability 1−TransmitProb. We assume that a node can change the value
of TransmitProb, thus a strategy of a node consists of choosing a value ofTransmitProb. We also
assume that a node can use one out of 100 of discretized values{0.01,0.02, . . . ,1} of TransmitProb.

The UPPAAL model of a single node is presented at Fig. 2. Wireless media is modeled using a broad-
cast channelbusy (in which a signal is sent each time a new transmission starts) and integer variable
nt (that stores the number of stations that are currently transmitting). Variablens stores the number of
successful transmissions. Time can pass only in locationsINITIAL,TRANSMIT andWAIT, two other loca-
tions areurgent. A node uses clocksx, time (that stores a time passed since the beginning) andenergy

(that stores the amount of energy consumed, i.e. the amount of time spent in the locationTRANSMIT).
We assume that there is a random uniformly distributed offset between the initial states of the

nodes (it is modeled by delay in locationINITIAL). This may correspond to the situation, when there
is a wireless sensor network and all sensors are aimed towards the same event. As soon as this event
happens, all the node will start transmission, but they willnot be necessarily synchronized.

In our experiments we assumed that the goal of a node is to transmit a single frame within 50 time
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units and to limit energy consumption by 3. This goal can be expressed using the following PWCTL
formula:

♦Node(0).time≤50(Node(0).ns≥ 1∧Node(0).energy≤ 3) (9)

It should be noted, that even our (unslotted) Aloha model looks simple, we can’t propose an analytical
way of computingU(p′, p) for a given values ofp′ andp. The problem is that our model works in real-
time and we can’t decompose its behavior into rounds (slots)and computeU(p′, p) recursively based on
the nodes’ actions in the current round and values ofU(p′, p) in the next possible rounds (like it was
done in [19] forslottedAloha).

Fig. 3 depicts the plot of the utility function estimatioñU(p′, p) for the first player for the network of
5 nodes (remind, thatp′ is a strategy of the first player, andp is common strategy of all the other players).
It also shows Nash Equilibrium (NE) and symmetric optimal (Opt) strategies. It should be noted, that
due to the usage ofd parameter our algorithm didn’t computẽU(p′, p) for all possiblep andp′ (in fact,
only 3742 out of 10000 values were computed).

Intuitively, a Nash Equilibrium for Aloha exists, because anode has to satisfy both time and energy
constraints. When the honest nodes use the value ofTransmitProb that is close to 1, it forces the selfish
node to use a smaller value ofTransmitProb to bound the number of collisions (and hence the energy
consumption). When the default value ofTransmitProb is close to 0, the selfish node uses a larger value
of TransmitProb to decrease the expected time before the next retransmission, since the probability of
a collision is small for this case. This ensures that a Nash Equilibrium strategy exists in between 0 and 1.

Table 1 contains the results for ALOHA with different numberof nodes. It can be seen, that relaxed
NE and symmetric optimal strategies coincide for the case oftwo network nodes, but for the networks
with more nodes relaxed NE is less efficient than symmetricaloptimal strategy.

5.2 Application to IEEE 802.15.4 CSMA/CA Protocol

IEEE 802.15.4 standard [22] specifies the physical layer andmedia access control layer for low-cost and
low-rate wireless personal area networks. Upper layers arenot covered by IEEE 802.15.4 and are left to
be extended in industry and individual applications. One ofsuch extensions is ZigBee [3] that together
with IEEE 802.15.4 completes description of a network stack. Typical applications of ZigBee include
smart home control and wireless sensor networks.

We applied our tool to the analysis of Multiple Access/Collision Avoidance (CSMA/CA) network
contention protocol being a part of IEEE 802.15.4. Unlike Aloha, the IEEE 802.15.4 standard assumes
that a wireless node can’t listen to its own transmission andthus it is not possible to detect a collision as
soon as it occurs and stop transmission. A node will detect a collision later when it does not receive an
acknowledgment within a given time bound. Before each transmission a node performs a Clear Channel
Assessment (CCA), i.e. checks that no other node is transmitting. If CCA was not successful (the
medium was busy), then the node waits for a random time beforeperforming CCA again, and this time is
distributed according to the binary exponential backoff mechanism (that is controlled by the parameters
MinBE, MaxBE andUnitBackoff in our model). If CCA was successful (the medium was clear), then the
node switches to the transmitting mode and starts transmission. However, this switching takes non-zero
time (TurnAround in our model), and another node can start transmitting during this period, that will
lead to a collision.

The standard defines both slotted (with beacon synchronization) and unslotted modes of CSMA/CA;
in our paper we consider only unslotted one.



P. Bulychev, A. David, K.G. Larsen, A. Legay, M. Mikučionis 11
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Figure 4: Model of IEEE 802.15.4 CSMA/CA

The model of a single node operating according to IEEE 802.15.4 CSMA/CA is depicted at Fig. 4.
The values ofMinBE, MaxBE, MaxFrameRetries,TurnAroundwere taken from the IEEE 802.15.4 stan-
dard assuming that the network is operating on baud rate 20kbps and on 868 Mhz band.FrameLength is
considered to be 35 bytes (including 25 bytes for ZigBee header and 10 bytes for the valuable informa-
tion). We assume that the frame size is 35 bytes (25 bytes for ZigBee header and 10 bytes for the actual
data). Energy consumption constraintsTX_Power andRX_Power were taken from the specification of
U-Power 500 chip (54 mA and 26 mA operating on 3.0V respectively).

We assume that a node can change the value ofUnitBackoff parameter. This parameter linearly
scales the binary exponential backoff scheme. If its value is equal to 0, then a node will try to transmit as
soon as it wants to. The large values ofUnitBackoff corresponds to large delays before transmission.
We consider that the possible values ofUnitBackoff are{0,1,2, . . . ,50}. We assume that the goal of a
node for CSMA/CA is similar to the one used in the Aloha case study (i.e. to transmit a frame within the
given time and energy bounds).

Our tool detected a trivial NEUnitBackoff=0, see the plot at Fig. 5 (left) for an illustration. It
means that a selfish node will always try to transmit as soon aspossible by choosingUnitBackoff=0.
This coincides with the results of [9] obtained for IEEE 802.11 CSMA/CA protocol. Intuitively, it is
always profitable to transmit as soon as possible since if a selfish node will retransmit just after the col-
lision, the rest (honest) nodes will probably detect this during the Clear Channel Assessment procedure
and they will not corrupt the retransmission of the selfish node.

In order to illustrate our algorithm we also considered the situation when network nodes (game
players) form coalitions. It can correspond to the situation when several network devices belong to the
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Figure 5:Ũ(p′, p) for CSMA/CA for 5 nodes without(left) and with(right) coalitions

Number of nodes in one coalition 1 2 3 4 5
δ -relaxed NE strategypNE 11 8 15 25 28
Value ofδ 0.900 0.985 0.986 0.990 0.990
Ũ(pNE, pNE) 0.86 0.76 0.81 0.85 0.83
Symmetric optimal strategypopt 13 23 31 34 48
Ũ(popt, popt) 0.87 0.85 0.87 0.87 0.86
Time 1m08s 5m45s 7m62s 32m49s 57m59s

Table 2: Nash equilibrium (NE) and Symmetric optimal (Opt) strategies for CSMA/CA with coalitions

same user and it will not be profitable for the user if these devices compete with each other. The intuition
is that players of the same coalition will not choose “alwaystransmit” strategy because in this case they
will disturb each other. This is confirmed by plot at Fig. 5 (right) and table 2, where we considered the
case of two coalitions of the same size.

6 Related Work

The paper [19] is the first one that applies the concept of NashEquilibrium to the analysis of Medium
Access and power control games inslottedAloha protocol. Later this approach has been applied to
the most of the layers of a network stack: to the Physical [4, 19, 20], Medium Access [21, 9, 11, 15],
Network [14, 25] and Application [8] layers.

Although our approach can be in principle applied to any network layer, it is particularly well suited
for the random access Medium Access layer protocols, since such protocols possess probabilistic behav-
ior (here we can use our Weighted Timed Automata semantics) and work in real-time. In this settings,
our SMC-based approach extends the manual analytical approach, that can be complicated, error-prone
and typically applied to slotted (discrete time) protocolsonly [11, 19]. On the other hand, our approach
extends the simulation-based approach (for instance, [9]), since we formally describe a modeling for-
malism for which we can provide a confidence on the results.

Additionally, in our paper we use the expressive PWCTL logicto express the goals of the network
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nodes, and thus to define their utility functions with respect to time and energy constraints. This allows
us to apply the same framework to the analysis of different protocols, while another approaches does not
allow such a generalization.

Our experimental results extend those proposed in [19] fromtheslottedAloha to the unslotted one.
Up to our knowledge, we are also the first ones, who study coalitions between nodes in the IEEE 802.15.4
CSMA/CA protocol.

7 Conclusions

In this paper we have presented a methodology to apply statistical model checking to search for a Nash
equilibrium on different types of networks. Experiments demonstrate the maturity of our technique and
shows that it can be applied in principle to more complex problems. The technique avoids analytical
analysis of the model and contrary to pure simulation-basedtechniques, ours provides statistical confi-
dence on its results. As future work we will extend the language of our tool to be able to apply it to other
domains such as biological systems.
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