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This paper studies the problem of computing Nash equilibrin wireless networks modeled by
Weighted Timed Automata. Such formalism comes togethdr avlbgic that can be used to describe
complex features such as timed energy constraints. Ourilbotibn is a method for solving this
problem using Statistical Model Checking. The method hanbmplemented in BPAAL model
checker and has been applied to the analysis of Aloha CSMAIGIIEEE 802.15.4 CSMA/CA
protocols.

1 Introduction

One of the important aspects in designing wireless ad-hbeanks is to make sure that a network is
robust to the selfish behavior of its participants. This fobcan be formulated in terms of a game
considering that network nodes behave in a rational way aamt W maximize their utility. A wireless
network is robust iff its configuration satisfies Nash edpiilim (NE), i.e. it is not profitable for a node
to alter its behavior to the detriment of other nodes.

In this paper we propose a new methodology to compute NE ieledgs ad-hoc networks. Our
approach is based on Statistical Model Checking (SMC) [8%,dn approach used in the formal verifi-
cation area. SMC has a wide range of applications in the agzsas systems biology or automotive.
The core idea of SMC is to monitor a number of simulations oystesn and then use the results of
statistics (e.g. sequential analysis) to get an overdtnhaste of the probability that the system will be-
have in some manner. Thus SMC can help to overcome the umdddylissues, that arise in the formal
analysis of wireless ad-hoc networks [1]. While the ideaeesbles the one of classical Monte Carlo
simulation, it is based on a formal semantics of systemsatl@at’s us to reason on very complex behav-
ioral properties of systems (hence the terminology). Tituides classical reachability property such as
“can i reach such a state?”, but also non trivial propertiehsas “can i reach this state x times in less
than y units of time?”.

Here we use a semantics for systems that is based on timeshatato We assume that elements
of a network are modeled using Weighted Timed Automata (W14t is a model for timed system
together with a stochastic semantics. The model permitex@ample, to describe stochastically how the
behaviors of a system involve with respect to time. As an @anprobability can be used to say that
the system is more likely to move to the next state in five uwfitime rather than in ten. Our approach
permits to describe arbitrary distributions when comhanimdividual components. In addition, WTA
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are equiped with nice communication primitives between poments, including e.g. message passing.
The fact that we rely on WTA allows us to describe utility ftinos with cost constraint temporal logic
called PWCTL. PWCTL is a logic that allows to temporally qtignon behaviors of components as
well as on their individual features (cost, energy consummpt By the existing results, we know that one
can always define a probability measure on sets of run of a \Miadatisfy a given property written in
cost constraint temporal logic. The latter clearly arisesitnportance of defining a formal semantics for
system’s models.

Going back to modeling wireless ad-hoc network, we will assuhat each node can work according
to one out of finitely many configurations that we call strageda strategy being a choice of a config-
uraiton). We also assume that each network node has a goa aade’s utility function is equal to
the probability that this goal will be reached on a randomesysrun. Each node will be represented
with a WTA and a goal will be described with PWCTL. Our algbnit for computing NE consists of
two phases. First, we apply simulation-based algorithnotofute a strategy that most likely (heuristic)
satisfies NE. This is done by monitoring several runs of tretesgs with respect to a property and then
use classical Monte Carlo ratio to estimate the probalitat this strategy is indeed the good one. In
the second phase we apply statistics to test the hypothedithis strategy actually satisfies NE. Indeed,
it is well-known that such a NE may not exist [16], so our stital algorithm goes for the best estimate
out of it that corresponds to a relaxed NE for the system.

We implemented a distributed version of this algorithm teds UWPAAL statistical model checker
as a simulation enging[13]. ThePBAAL toolset offers a nice user interface that makes it one of th&m
widely used formal verification based tool in academia. Ksan the independent simulations that the
algorithm generates, this problem can easily be paratiglend distributed on, e.g., PC clusters.

Finally, we apply our tool to the analysis of two probabiiSESMA (Carrier Sense Multiple Access)
protocols: k-persistent Aloha CSMA/CD protocol and IEER8%.4 CSMA/CA protocol. The two
case studies we present in this paper serve mainly demtiostraurposes. However, we are the first
who study Nash Equilibrium imnslottedAloha (the slotted version of Aloha was previously studied
in [19] and [23]). Our result that there exists only “alwayansmit” Nash Equilibrium strategy in IEEE
802.15.4 CSMA/CA reproduces the analogous result for tiEIB02.11 CSMA/CA protocol [9].

The problem of computing Nash Equilibrium in wireless aa-hetworks was first considered n [19]
and surveid in[[23]. Most of existing works are based on ayéinal solution which does not scale well
with complex models [15, 19]. Similarly to us, some other k&o[9] are based on a simulation-based
approach. However, contrary to us, they do not assign atigtgtal confidence to the results, and they
do not take advantage of temporal logic to express arbithjgctives.

2 Weighted Timed Automata

In this section, we briefly recap the concept of Weighted Timatomata (WTA), see [12] for more
details. We denote&(X) to be a finite conjunction of bounds of the fosm- n wherex € X, n € N, and
~e{<, <>, >

Definition 1 A Weighted Timed Automat@ﬂ(WTA) is a tuplees = (L, 4o, X,E,R,I) where: (i) L is a
finite set of locations, (iifp € L is the initial location, (iii) X is a finite set of real-valdevariables called

1in the classical notion of priced timed automdta[[6, 5] amsiables (e.g. clocks where the rate may differ from 1) may
not be referenced in guards, invariants or in resets, thiksnma.g. optimal reachability decidable. This is in costr our
notion of WTA, which is as expressive as linear hybrid syst¢bd].
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clocks, (iv) EC L x #(X) x 2¥ x L is a finite set of edgesy) R: L — Z~( assigns a rate vector to each
location, and (vi) I: L — #(X) assigns an invariant to each location.

A state of a WTA is a paitl,Vv) that consists of a locationand a valuation of clocks : X — Rxo.
From a statdl,v) € L x R, a WTA can either let time progress or do a discrete transiiod reach
a new location. During time delay clocks are growing with thtes defined byR(l), and the resulting
clock valuation should satisfy invariahfl ). A discrete transition fronfl,v) to (I’,V) is possible if there
is (1,9,Y,l") € E such thatv satisfiesg andV is obtained fromv by resetting clocks from the s¥tto 0.

A run of WTA is a sequence of alternating time and discretesitions. Several WTA, My, ... My,
can communicate via inputs and outputs to generate NetvedRETAs (NWTAS) M1 |M2]|... || My.

In our early works[[12], the stochastic semantics of WTA comgnts associates probability distri-
butions on both the delays one can spend in a given state hasnvah the transition between states. In
UprpPAAL uniform distributions are applied for bounded delays anmbeential distributions for the case
where a component can remain indefinitely in a state. In agr&taf WTAs the components repeatedly
race against each other, i.e. they independently and stticélly decide on their own how much to delay
before outputting, with the “winner” being the componeradttbhooses the minimum delay. As observed
in [12], the stochastic semantics of each WTA is rather sinfput quite realistic), arbitrarily complex
stochastic behavior can be obtained by their compositioenwhixing individual distributions through
message passing. The beauty of our model is that thesebdigiris are naturally and automatically
defined by the network of WTAs.

Our implementation supports extension of WTA, coming frdra kanguage of the kbPAAL model
checker[[17]. Such models can contain integer variableésdrabe present in transition guards, and they
can be updated only when a discrete transition is taken. tibddily, we support other features of the
UPPAAL model checker’s input language such as data structuressandlafined functions.

A parametrized WTAM(p) is a WTA in which some integer constant (transition weightanstant
in variable assignment/clock invariant) is replaced by rapeeterp.

For defining properties we use cost-constraint temporat IB§VCTL, which contains formulas of
the form{.<c@®. Herec is an observer clock (that is never reset and grows to infomtgny infinite run
of a WTA),C € R is a constant ang is a state-predicate. We say that a rusatisfiesO.<c@ if there
exists a statél,v) € mrin this run such that it satisfiggandv(c) < C. We definePr[M = /] to be equal
to the probability that a random run bf satisfies.

3 Modeling Formalism and problem statement

We consider that each node operates according to one ouiteffimany configurations. Thus a network
of N nodes can be modelled by:

S(p1, P2, .-+, Pn) = M(p1)[[M(p2)]|... [M(pn)[IC 1)

whereM is a parametrized model of a nods,< P (i.e, the behavior of a node relies on some value -
strategy - assigned to the parametelrss a finite set of configurations aftlis a model of a medium.

Consider a parameterized NWTpy, pz, ..., pn) that models a wireless network Wfnodes. Here
eachp; defines a configuration of a nodend ranges over a finite domd Since the players (nodes)
are symmetric, we can analyze the game from the point of viethefirst node only. Thus we will
consider the goal of the first node only, and this goal is ddftmea PWCTL formulap.
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We can view a system as a gaf@e= (N,P,U), whereN is a number of players (node$) s a set of
strategies (parameters) add PN — [0,1] is an utility function of the first player defined as

U(p17p2>"'7pN)EPr[s(p1>p27"'>pN)):w] (2)

We consider that there is a master node that knows the newenrfiguration (here the number of
nodes) and broadcasts the strategy (parameter) that albttess should use.

If all the nodes are honest, they will play according to thratsgy proposed by the master node.
Thus in this case the master node should use a symmetricaigirategy, i.e. a strategysuch that for
all other strategieg’ we havel (p, p,...,p) > U(p,p,...,p).

However, if there are selfish nodes, they might deviate frleensymmetric optimal strategy to in-
crease the value of their utility functions (and the resthef hodes can possibly suffer from that). Thus
we will consider a Nash Equilibrium strategy that is stabléhwespect to the behavior of such selfish
nodes (but possibly this strategy is less efficient thanyhasetric optimal one). More formally, a strat-
egy p is said to be a Nash Equilibrium (NE), iff for alf € P we havelU (p,p,...,p) >U(p,p,...,P).

However, a Nash Equilibrium may not exist [fiffhus in this paper we will consider relaxed
definition of Nash Equilibrium.

Definition 2 A strategy p satisfies symmetderelaxed NE iff for all p € P we have Up,p,...,p) >
5'U(p/a p77p)

The value ofd measures the quality of a strategy If & > 1, thend-relaxed NE satisfies the
traditional definition of the (non-relaxed) NE. Otherwigfe]l — & is small, then we can conclude that
a node’s gain of switching is negligible and it'll stick withe d-relaxed NE strategy. &-relaxed NE
strategy can be also used when a set of possible strategiémite. In this case we can discritize this
set (approximate it by finite set of strategies) and search fodaelaxed NE strategy in this finite set.
If an utility function is smooth, then this strategy can becad approximation for a NE in the original
(infinite) set of strategies.

In this paper, we will solve the problem of searching for atetyy that satisfied-relaxed NE for as
larged as it is possible.

For readability, in the rest of the paper we will writg p’, p) andS(p/, p) instead oU (p/, p,...,p)
andS(p/, p,...,p), respectively.

4  Algorithm for Computing Nash Equilibrium

One may suggest that in order to compute NE we can computathesvofU (p/, p) for all pairs(p/, p)
and then use definitionl 2 to compute the maximal valué.oHowever, we can't do that because the
problem of evaluating PWCTL formula on a model (i.e. compyr[S|= () is undecidable in general
for WTA [[7].

In this paper, we will use Statistical Model Checking (SMQ3] based approach to overcome this
undecidability problem. The main idea of this approach igadorm a large number of simulations and
then apply the results of statistics to estimate the prdibabiat a system satisfies a given property.

Our method of computing NE consists of two phases. Durinditeephase (presented in Section
4.1) we apply a simulation-based algorithm to search forbibst candidate for a Nash Equilibrium.
Then, in the second phase (presented in Section 4.2), wg afgistics to evaluate, i.e. to find the

2Note, that we assume only non-mixed (pure) strategies.
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Algorithm 1 Computation Of The Best Candidate For Nash Equilibrium
Input: P = {p;} — finite set of parameters) (p;, px) — utility function,d € [0, 1] — threshold
Algorithm:
for every p; € P compute estimatioﬁ(ph pi)
waiting:=P
candidates= 0
while len(waiting) > 1:
pick some unexplored paiip;i, pk) € P x waiting
computeestimatior (p;, px)
if U (px, px) < d-U(pi, pr):
remove py from waiting
else ifYp U(p/, px) is already computed
10. remove py from waiting
11. add pg to candidates

12. return argma)i)ecandidatesminp’eP(U(p7 p)/U(p/7 p))

© 0 N O O W N -

maximum¢ such that with a given significance level we can accept thesstal hypothesis thap is a
o-relaxed Nash Equilibrium.

In the rest of the paper, we use straightforward simulatiased Monte Carlo method for computing
estimations of utility function’s values. In this method werformn random simulations o8(p’, p)
for a given pair(p/, p) and count the numbesof how many simulations satisfiegl. Then we use the
following estimation:U (p/, p) = k/n.

4.1 Finding a Candidate for a Nash Equilibrium

As a first step, the algorithm computes estimatiﬁms’, p) for variousp’ andp and search for a param-
eter p that maximizes the value of mirp(U (p, p)/U (P, p))-

Additionally, we speedup the search by introducing a h&arisresholdd (that is a parameter of our
algorithm) and pruning parametepssuch that) (p, p) /U (p/, p) < d.

Our algorithm (see Algorithrill 1) starts with the computatifrestimationsU (pi, pk) at diagonal
points (i.e. when = k). After that we iteratively pick a random pair of strategigs, p<) and compute
U (pi, px)- If U(pk, pe)/U(pi, px) < d, then we remove strategy from the further consideration and
will never consider again pairs of the forf® py).

We iterate the while-loop until we split all the parameteit® ithosep for which we already computed
the value of mincp(U (p, p)/U (P, p)), and those, for which we know thak(p, p)/U (p',p) < d for
somep'. Then at line 12 we choose a stratggshat maximizes migcp(U (p, p)/U (P, p))

It should be noted, that if a threshottlis large, then our algorithm can possibly return no result
(because all the candidates will be filtered out). In thigease can retry with a smallerand reuse the
already computed estimations.dfis equal to zero, then the algorithm is guaranteed to retuesat.

4.2 Evaluation of a Relevance of the Candidate

Consider that after the first phase we selected a straiegt H,, 5 be a statistical hypothesis thats a
o-relaxed NE. Now we want to find the maximalsuch that we can accept the hypothdsjss with a
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given significance leval (that is a parameter of the algorittﬁn)

To do that we firstly reestimaﬁ(p’, p) for everyp’ € P (possibly using the number of simulations
that is different from the one that was used in the first phigewill be discussed below).

Then we apply the following theorem:

Theorem 1 Suppose that for all’ge S we estimateﬁ(p’, p) using n random simulations, andd) < a,
where

f(6)= 5 5(1-erf (viO(p.p) - 5-0(n.p)) ©

and erf(x) = %T fg‘e‘tzdt is Gauss error function. Then we can accept the statistigaothesis K 5
with the significance level af.

Proof: Letqg =U(pi, px) andq = U(pi, pk). Thenpy satisfiesd-relaxed Nash Equilibrium iff/i - gx >
0q; Consider that we hawve Bernoulli random variable§s, {»,...,{, wherePr[{; = 1] = g;. Consider
that random variablég; is a mean oh independent observations §f i.e. { =3 ;-1 ¢i/n Then each
G is an independent observation &fand for largen we haveé; ~ .4°(q;,qi(1— qi)/n). Probability of
making type Il error éccept H, 5 when itis false) is less or equal to

Pri& =01, & =02....&n=0nll \/ k<3-qj] (4)
i=1.N

, that in turn is less or equal to
Z Pr[ElquaEZZGZP"aEn:qNqu<6'qi] (5)
i=T.N

, that in turn is less or equal to

Z Pr& = Gi, & = Px/ak < 0 qj] (6)
i=T.N
, that in turn is less or equal to
Z Pri(ék—0-&)=(k—9-G)llak— -G <O @)
i=T'N
For each we have:
(Sk—0-&i) ~ A (O — 3G, (A (1 — 0) + Gi(1—a))/n) (8)
The truth of the theorem follows from the fact thopt1 — gx) + qi(1—q;) < 0.5. [ |

We apply this theorem in the following way. We first searchdoiinteger-valuet such thatf (b) <
0. Then we use bisection numerical method to find a root of aatén f(d) = a on the interval0, b].
It can be easily seen that the functiérdecreases anéi(0) > 0 and it implies that thi® satisfies the
condition of the theorem.

Our method provides only a lower bound faérand the theorernl 1 does not state how many simu-
lations are needed to compute a good estimatiod. dhdeed, we can compute statistically vafidor

3The significance level is a statistical parameter that define probability of accepting a hypothesis although it isialty
false.
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Figure 1. The experimental evaluation of the applicatiortheforeniIL. In the upper plots theaxis
denotes the number of simulationsandy axis denotes an average estimated valu® amputed using
theorenti L for these numbers of simulations and the signde&éevel ofa = 0.05. N is the total number
of strategies. The bottom plots demonstrate the frequeistsitaition for the computed values éffor
100000 simulations and 100 possible strategies. The leftright plots correspond to the cases when
the real value ob is equal to 10 and 11.

any number of simulations. And if the estimated valué o small, it can be a result of the fact that the
number of simulations is insufficient or the real valuedaé small (or both).

Thus we performed an experiment to see how accurate is odochelepending on the number of
simulations. We developed a simple model of our method, aticis model we assume that there Bre
strategies{ p1, Pz, - .- Pn}, and we want to check thah is a Nash Equilibrium. The value of the utility
functionU (p1, p) is equal to 6 for p # py, and it is equal to &- & whenp = p; (thusp; is ad-relaxed
NE). The experimental data for the cases when 1.0 andd = 1.1 is presented at Fig] 1. A reader can
see that the results for these two cases are similar, andlmerexperiments (witld ranging from 05 to
2.0) also demonstrate this similarity. The accuracy of outhoétincreases as the number of simulation
n increases or the number of possible stratebiatecreases. One can also see, that for this experiment
100000 simulations seem to be enough to compute a good am@ation for & that is both statistically
valid (this is ensured by the theoréin 1) and close to the aakvofd.

4.3 Implementation Details

We developed a tool written in Python programming languagé implements the proposed algorithm.
This tool uses BrPAAL model checker as a simulation and monitoring engine for PW@®perties.

Our algorithm is based on Monte Carlo simulations and this @mbarrassingly parallisable. In
our implementation we exploit this parallelisability byraputing the estimations for different pairs of
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INITIAL nt==0

nt:=nt+1,
x:=0
busy!

x<=1&&
time’==0 &&
energy’' == 0

x<=1 &&
energy'==1 &&
time’==1
TRANSMIT

x==1
ns:=ns + 1,
nt>0
busy!
busy?
x:=0,
nt:=nt-1

TransmitProb

WAIT
lgOfTrarwsnitEr'ob é;:rlgc)%ézo &&
x:=0 time'==1

Figure 2: Model of Aloha in BPAAL

strategies on different nodes. The tool can be run on a cluStge node acts as a master and picks the
parameterg;, p; that the slave nodes use to compute the estimaﬁcmps pj). The master node does not
use any external job scheduler and submits jobs on its owrgy &$H connection to the computational
nodes. Currently we rely on the fact that the nodes shareathe sdlistributed file system, but in principle
the master node can deploy all executables and models Hy itse

5 Results of Application

In this paper we report on results of application of our t@oiwo contention resolution protocols. The
first one is Aloha CSMA/CD protocol that we model on a very edudtlevel and we’ll describe our
model in details. The second one is IEEE 802.15.4 CSMA/CAweamodel with a high precision and
we’'ll just briefly sketch its structure.

For both case studies we used the following parameters. Oinder of simulations for estimation of
utility function’s values is equal to 10000 for the first phas our algorithm (searching for the best can-
didate for NE) and 100000 for the second phase (evaluatithiss€andidate). The value dfparameter
is equal to 0, and the value of significance lewelis equal to (05.

All the experiments were performed on the 8 node clusterreveach node has an IrfeiCore®2
Quad CPU.

5.1 Application to Aloha CSMA/CD protocol

Aloha protocol [2] is a simple Carrier Sense Multiple Accegth Collision Detection (CSMA/CD)
protocol that was used in the first known wireless data nétweveloped at the University of Hawaii in
1971.

In this protocol it is assumed that there are several noddsttare the same wireless medium. Each
node is listening to its own signal during its transmissiod ahecks that the signal is not corrupted by
another node’s transmission. In case of collision both sad# stop transmitting immediately and wait
for a random time before they'll try to transmit again.
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Figure S:U(p’, p) (left) and its diagonal slice (right) for Aloha with 5 nodes

Number of nodes 2 3 4 5 6 7 8
O-relaxed NE strategpne 0.37 0.40 0.35 0.35 0.41 0.42 0.41
Value of & 0.992  0.980 0.992 0.990 0.993 0.992 0.987
U (PnE; PNE) 0.99 0.98 0.95 0.89 0.75 0.61 0.50
Symmetric optimal strateggo 0.30 0.30 0.26 0.22 0.19 0.15 0.14
U(popt, Popt) 0.99 0.98 0.96 0.90 0.87 0.98 0.76
Computation time 2mbs 3md4s 7m62s 15m45s 26mlls 37mb5s 559ml

Table 1: Nash equilibrium (NE) and Symmetric optimal (Optategies for Aloha

In our paper we consider unslotted Aloha in which the nodeshat necessary synchronized. Ad-
ditionally, we study k-persistent variant of Aloha, i.e. @focol implementation in which a random
delay before retransmission is distributed according teargtric distribution. This means that for each
next time slot a node will transmit with probabilifiransmitProb and will wait for one more slot (and
then decide again) with probability-I'ransmitProb. We assume that a node can change the value
of TransmitProb, thus a strategy of a node consists of choosing a vallrafismitProb. We also
assume that a node can use one out of 100 of discretized @u4s0.02, ... ,1} of TransmitProb.

The UppAAL model of a single node is presented at Flg. 2. Wireless msdieodeled using a broad-
cast channebusy (in which a signal is sent each time a new transmission }tang integer variable
nt (that stores the number of stations that are currently tnéting). Variablens stores the number of
successful transmissions. Time can pass only in locafi®B@$IAL, TRANSMIT andWAIT, two other loca-
tions areurgent A node uses clocks, time (that stores a time passed since the beginningaedgy
(that stores the amount of energy consumed, i.e. the ambtint@spent in the locatioMRANSMIT).

We assume that there is a random uniformly distributed btfetween the initial states of the
nodes (it is modeled by delay in locatiaNITIAL). This may correspond to the situation, when there
is a wireless sensor network and all sensors are aimed tevlaedsame event. As soon as this event
happens, all the node will start transmission, but they matlbe necessarily synchronized.

In our experiments we assumed that the goal of a node is teniaa single frame within 50 time
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units and to limit energy consumption by 3. This goal can hgressed using the following PWCTL
formula:

<>Node(0) .timeg5O(N°de(O) .ns > 1 ANode(0) .energy < 3) 9)

It should be noted, that even our (unslotted) Aloha moddddmdmple, we can’'t propose an analytical
way of computindJ (p/, p) for a given values off and p. The problem is that our model works in real-
time and we can't decompose its behavior into rounds (stéotd)computé) (p', p) recursively based on
the nodes’ actions in the current round and valued g/, p) in the next possible rounds (like it was
done in[19] forslottedAloha).

Fig.[3 depicts the plot of the utility function estimatiﬁt( P, p) for the first player for the network of
5 nodes (remind, that is a strategy of the first player, apds common strategy of all the other players).
It also shows Nash Equilibrium (NE) and symmetric optimap{(Cstrategies. It should be noted, that
due to the usage af parameter our algorithm didn’t compufb( P, p) for all possiblep andp’ (in fact,
only 3742 out of 10000 values were computed).

Intuitively, a Nash Equilibrium for Aloha exists, becauseale has to satisfy both time and energy
constraints. When the honest nodes use the vallieaafsmitProb that is close to 1, it forces the selfish
node to use a smaller value DfansmitProb to bound the number of collisions (and hence the energy
consumption). When the default valueTafansmitProbis close to 0, the selfish node uses a larger value
of TransmitProb to decrease the expected time before the next retransmissitce the probability of
a collision is small for this case. This ensures that a NashliBqum strategy exists in between 0 and 1.

Table[1 contains the results for ALOHA with different numioénodes. It can be seen, that relaxed
NE and symmetric optimal strategies coincide for the cagavofnetwork nodes, but for the networks
with more nodes relaxed NE is less efficient than symmetdp@imal strategy.

5.2 Application to IEEE 802.15.4 CSMA/CA Protocol

IEEE 802.15.4 standard [22] specifies the physical layemaedia access control layer for low-cost and
low-rate wireless personal area networks. Upper layera@ireovered by IEEE 802.15.4 and are left to
be extended in industry and individual applications. Onsuwh extensions is ZigBeel [3] that together
with IEEE 802.15.4 completes description of a network stabjpical applications of ZigBee include
smart home control and wireless sensor networks.

We applied our tool to the analysis of Multiple Access/Gidin Avoidance (CSMA/CA) network
contention protocol being a part of IEEE 802.15.4. Unlikeld, the IEEE 802.15.4 standard assumes
that a wireless node can't listen to its own transmissionthod it is not possible to detect a collision as
soon as it occurs and stop transmission. A node will deteotligion later when it does not receive an
acknowledgment within a given time bound. Before each trassion a node performs a Clear Channel
Assessment (CCA), i.e. checks that no other node is tratisquit If CCA was not successful (the
medium was busy), then the node waits for a random time befnferming CCA again, and this time is
distributed according to the binary exponential backofthamism (that is controlled by the parameters
MinBE, MaxBE andUnitBackoff in our model). If CCA was successful (the medium was clebenthe
node switches to the transmitting mode and starts trangmisklowever, this switching takes non-zero
time (TurnAround in our model), and another node can start transmitting duttiis period, that will
lead to a collision.

The standard defines both slotted (with beacon synchrémigeand unslotted modes of CSMA/CA;
in our paper we consider only unslotted one.
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busy?
cca_passed:=false

(x==backoff*UnitBackoff)
cca_passed:=(nt==0) iju:‘CCA) && (cca_passed)
WAIT_BACKOFFO x:=0 CCA x-:by VULNERABLE —_ energy’ == TX_Power
v = '

x<=TurnAround
x<=backoff*UnitBackoff O

)
energy’ == RX_Power

X<=CCA xi:OTlJrnArnund
backoff := random(0..pow(2,be)) x == CCA_duration) && !cca_passed )éb_lliswon occured:=(nt>0)
x:=0 nb := nb+1 nt:=nt+1 )

nb < MaxNB
be:= (be+1 > MaxBE ? MaxBE: be+1) TRﬁNSMIT*DATA busy?
Y e x<=FrameLength 7 _
(UJ \LD collision_occured:=true
x<=waking_delay be:=macMinBE, nb:=0 nb == MaxNB
x==FrameLength
) x:=0
nt:=nt-1
nretries f (MaxFrameRetries—1) x<=aTurnaroundTime )
nretries = nretries + 1 Icollision_occured
® =) = ©
H nretries == (MaxFrameRetries—1) S
__ FAILURE A
X==MIinLIFS x==TurnAround collision_occured
collision_occured:=(nt>0)
SUCCESS nt:=nt+1
x:=0
busy!
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X<=MinLIFS - x==ACK x<=ACK_time
x:=0 o -
(\ O nt:=nt=1
_/ &
collision_occured busy?
ollision_occured:=true
energy’ == RX_Power
o x<=ACK_Time X == TurnAround x<=TurnAround
L x==ACK_Time ™ =0

N

Figure 4: Model of IEEE 802.15.4 CSMA/CA

The model of a single node operating according to IEEE 802.C5MA/CA is depicted at Fid.] 4.
The values oflinBE, MaxBE, MaxFrameRetries, TurnAround were taken from the IEEE 802.15.4 stan-
dard assuming that the network is operating on baud ratega0ihd on 868 Mhz ban@ramelLength is
considered to be 35 bytes (including 25 bytes for ZigBee @eadd 10 bytes for the valuable informa-
tion). We assume that the frame size is 35 bytes (25 bytesifide header and 10 bytes for the actual
data). Energy consumption constraiffts Power andRX_Power were taken from the specification of
U-Power 500 chip (54 mA and 26 mA operating on 3.0V respelgive

We assume that a node can change the valumbtBackoff parameter. This parameter linearly
scales the binary exponential backoff scheme. If its vadwegual to 0, then a node will try to transmit as
soon as it wants to. The large valuesiafitBackoff corresponds to large delays before transmission.
We consider that the possible valuegiat tBackoff are{0,1,2,...,50}. We assume that the goal of a
node for CSMA/CA is similar to the one used in the Aloha caséds(i.e. to transmit a frame within the
given time and energy bounds).

Our tool detected a trivial NEnitBackoff=0, see the plot at Fig.]5 (left) for an illustration. It
means that a selfish node will always try to transmit as sogossible by choosingnitBackoff=0.
This coincides with the results dfi[9] obtained for IEEE 802 CSMA/CA protocol. Intuitively, it is
always profitable to transmit as soon as possible since iffials@ode will retransmit just after the col-
lision, the rest (honest) nodes will probably detect thigrduthe Clear Channel Assessment procedure
and they will not corrupt the retransmission of the selfistieno

In order to illustrate our algorithm we also considered thieation when network nodes (game
players) form coalitions. It can correspond to the situatihen several network devices belong to the
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Figure 5:U(p’, p) for CSMA/CA for 5 nodes without(left) and with(right) coatins

Number of nodes in one coalition 1 2 3 4 5
o-relaxed NE strategpne 11 8 15 25 28
Value ofd 0.900 0.985 0.986 0.990 0.990
U(pNE,pNE) 0.86 0.76 0.81 0.85 0.83
Symmetric optimal strateggo 13 23 31 34 48

U (Popt; Popt) 0.87 0.85 0.87 0.87 0.86
Time 1Im08s 5m4b5s 7m62s 32m49s 57mb59s

Table 2: Nash equilibrium (NE) and Symmetric optimal (Opiategies for CSMA/CA with coalitions

same user and it will not be profitable for the user if theseadsvcompete with each other. The intuition
is that players of the same coalition will not choose “alwagssmit” strategy because in this case they
will disturb each other. This is confirmed by plot at Hig. ®ft) and tablé2, where we considered the
case of two coalitions of the same size.

6 Related Work

The paper[[19] is the first one that applies the concept of NEghlibrium to the analysis of Medium
Access and power control gamessdiotted Aloha protocol. Later this approach has been applied to
the most of the layers of a network stack: to the Physidel 94.20], Medium Access [21,/9, 11, [15],
Network [14]25] and Applicatiori [8] layers.

Although our approach can be in principle applied to any oetdayer, it is particularly well suited
for the random access Medium Access layer protocols, sintegrotocols possess probabilistic behav-
ior (here we can use our Weighted Timed Automata semanticsark in real-time. In this settings,
our SMC-based approach extends the manual analytical agprthat can be complicated, error-prone
and typically applied to slotted (discrete time) protoamdy [11,[19]. On the other hand, our approach
extends the simulation-based approach (for instance, $8j¢te we formally describe a modeling for-
malism for which we can provide a confidence on the results.

Additionally, in our paper we use the expressive PWCTL ldgiexpress the goals of the network
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nodes, and thus to define their utility functions with resgedime and energy constraints. This allows
us to apply the same framework to the analysis of differeotqmols, while another approaches does not
allow such a generalization.

Our experimental results extend those proposed ih [19] ftwslotted Aloha to the unslotted one.

Up to our knowledge, we are also the first ones, who studytamadi between nodes in the IEEE 802.15.4
CSMA/CA protocol.

v

Conclusions

In this paper we have presented a methodology to applytitatisnodel checking to search for a Nash
equilibrium on different types of networks. Experimentsmmstrate the maturity of our technique and
shows that it can be applied in principle to more complex |enols. The technique avoids analytical
analysis of the model and contrary to pure simulation-baselniques, ours provides statistical confi-
dence on its results. As future work we will extend the lamgguaf our tool to be able to apply it to other
domains such as biological systems.
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