
S. Alves and M. Pagani (Eds.): DCM 2018 and ITRS 2018
EPTCS 293, 2019, pp. 57–72, doi:10.4204/EPTCS.293.5

c© G. Guerrieri
This work is licensed under the
Creative Commons Attribution License.

Towards a Semantic Measure of the Execution Time in
Call-by-Value lambda-Calculus

Giulio Guerrieri
University of Bath, Department of Computer Science, Bath, United Kingdom

g.guerrieri@bath.ac.uk

We investigate the possibility of a semantic account of the execution time (i.e. the number of βv-steps
leading to the normal form, if any) for the shuffling calculus, an extension of Plotkin’s call-by-value
λ -calculus. For this purpose, we use a linear logic based denotational model that can be seen as a non-
idempotent intersection type system: relational semantics. Our investigation is inspired by similar ones
for linear logic proof-nets and untyped call-by-name λ -calculus. We first prove a qualitative result: a
(possibly open) term is normalizable for weak reduction (which does not reduce under abstractions) if
and only if its interpretation is not empty. We then show that the size of type derivations can be used
to measure the execution time. Finally, we show that, differently from the case of linear logic and
call-by-name λ -calculus, the quantitative information enclosed in type derivations does not lift to types
(i.e. to the interpretation of terms). To get a truly semantic measure of execution time in a call-by-value
setting, we conjecture that a refinement of its syntax and operational semantics is needed.

1 Introduction

Type systems enforce properties of programs, such as termination or deadlock-freedom. The guarantee
provided by most type systems for the λ -calculus is termination.

Intersection types have been introduced as a way of extending simple types for the λ -calculus to
“finite polymorphism”, by adding a new type constructor ∩ and new typing rules governing it. Contrary to
simple types, intersection types provide a sound and complete characterization of termination: not only
typed programs terminate, but all terminating programs are typable as well (see [19, 20, 42, 36] where
different intersection type systems characterize different notions of normalization). Intersection types are
idempotent, that is, they verify the equation A∩A = A. This corresponds to an interpretation of a typed
term t : A∩B as “t can be used both as data of type A and as data of type B”.

More recently [24, 35, 38, 15, 16] (a survey can be found in [13]), non-idempotent variants of
intersection types have been introduced: they are obtained by dropping the equation A∩A = A. In a
non-idempotent setting, the meaning of the typed term t : A∩A∩B is refined as “t can be used twice as
data of type A and once as data of type B”. This could give to programmers a way to keep control on the
performance of their code and to count resource consumption. Finite multisets are the natural setting to
interpret the associative, commutative and non-idempotent connective ∩: if A and B are non-idempotent
intersection types, the multiset [A,A,B] represents the non-idempotent intersection type A∩A∩B.

Non-idempotent intersection types have two main features, both enlightened by de Carvalho [15, 16]:
1. Bounds on the execution time: they go beyond simply qualitative characterisations of termination,

as type derivations provide quantitative bounds on the execution time (i.e. on the number of β -steps
to reach the β -normal form). Therefore, non-idempotent intersection types give intensional insights
on programs, and seem to provide a tool to reason about complexity of programs. The approach is
defining a measure for type derivations and showing that the measure gives (a bound to) the length
of the evaluation of typed terms.

http://dx.doi.org/10.4204/EPTCS.293.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
mailto:g.guerrieri@bath.ac.uk

58 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

2. Linear logic interpretation: non-idempotent intersection types are deeply linked to linear logic
(LL) [25]. Relational semantics [26, 11] — the category Rel of sets and relations endowed with
the comonad ! of finite multisets — is a sort of “canonical” denotational model of LL; the Kleisli
category Rel! of the comonad ! is a CCC and then provides a denotational model of the ordinary
(i.e. call-by-name) λ -calculus. Non-idempotent intersection types can be seen as a syntactic
presentation of Rel!: the semantics of a term t is the set of conclusions of all type derivations of t.

These two facts together have a potential, fascinating consequence: denotational semantics may
provide abstract tools for complexity analysis, that are theoretically solid, being grounded on LL.

Starting from [15, 16], research on relational semantics/non-idempotent intersection types has prolifer-
ated: various works in the literature explore their power in bounding the execution time or in characterizing
normalization [17, 12, 10, 33, 9, 18, 40, 34, 13, 37, 3]. All these works study relational semantics/non-
idempotent intersection types either in LL proof-nets (the graphical representation of proofs in LL),
or in some variant of ordinary (i.e. call-by-name) λ -calculus. In the second case, the construction of
the relational model Rel! sketched above essentially relies on Girard’s call-by-name translation (·)n of
intuitionistic logic into LL, which decomposes the intuitionistic arrow as (A⇒ B)n = !An (Bn.

Ehrhard [22] showed that the relational semantics Rel of LL induces also a denotational model for
the call-by-value λ -calculus1 that can still be viewed as a non-idempotent intersection type system.
The syntactic counterpart of this construction is Girard’s (“boring”) call-by-value translation (·)v of
intuitionistic logic into LL [25], which decomposes the intuitionistic arrow as (A⇒ B)v = !(Av (Bv).
Just few works have started the study of relational semantics/non-idempotent intersection types in a
call-by-value setting [22, 21, 14, 23], and no one investigates their bounding power on the execution time
in such a framework. Our paper aims to fill this gap and study the information enclosed in relational
semantics/non-idempotent intersection types concerning the execution time in the call-by-value λ -calculus.

A difficulty arises immediately in the qualitative characterization of call-by-value normalization via
the relational model. One would expect that the semantics of a term t is non-empty if and only if t is
(strongly) normalizable for (some restriction of) the call-by-value evaluation→βv , but it is impossible to
get this result in Plotkin’s original call-by-value λ -calculus λv [41]. Indeed, the terms t and u below are
βv-normal but their semantics in the relational model are empty:

t := (λy.∆)(zI)∆ u := ∆((λy.∆)(zI)) (where ∆ := λx.xx and I := λx.x) (1)

Actually, t and u should behave like the famous divergent term ∆∆, since in λv they are observationally
equivalent to ∆∆ with respect all closing contexts and have the same semantics as ∆∆ in all non-trivial
denotational models of Plotkin’s λv.

The reason of this mismatching is that in λv there are stuck β -redexes such as (λy.∆)(zI) in Eq. (1),
i.e. β -redexes that βv-reduction will never fire because their argument is normal but not a value (nor will
it ever become one). The real problem with stuck β -redexes is that they may prevent the creation of other
βv-redexes, providing “premature” βv-normal forms like t and u in Eq. (1). The issue affects termination
and thus can impact on the study of observational equivalence and other operational properties in λv.

In a call-by-value setting, the issue of stuck β -redexes and then of premature βv-normal forms arises
only with open terms (in particular, when the reduction under abstractions is allowed, since it forces to
deal with “locally open” terms). Even if to model functional programming languages with a call-by-value
parameter passing, such as OCaml, it is usually enough to just consider closed terms and weak evaluation

1In call-by-value evaluation→βv
, function’s arguments are evaluated before being passed to the function, so that β -redexes

can fire only when their arguments are values, i.e. abstractions or variables. The idea is that only values can be erased or
duplicated. Call-by-value evaluation is the most common parameter passing mechanism used by programming languages.

G. Guerrieri 59

(i.e. not reducing under abstractions: function bodies are evaluated only when all parameters are supplied),
the importance to consider open terms in a call-by-value setting can be found, for example, in partial
evaluation (which evaluates a function when not all parameters are supplied, see [32]), in the theory of
proof assistants such as Coq (in particular, for type checking in a system based on dependent types, see
[27]), or to reason about (denotational or operational) equivalences of terms in λv that are congruences, or
about other theoretical properties of λv such as separability or solvability [39, 45, 7, 14].

To overcome the issue of stuck β -redexes, we study relational semantics/non-idempotent intersection
types in the shuffling calculus λsh, a conservative extension of Plotkin’s λv proposed in [14] and further
studied in [28, 30, 4, 31]. It keeps the same term syntax as λv and adds to βv-reduction two commutation
rules, σ1 and σ3, which “shuffle” constructors in order to move stuck β -redexes: they unblock βv-redexes
that are hidden by the “hyper-sequential structure” of terms. These commutation rules (referred also
as σ -reduction rules) are similar to Regnier’s σ -rules for the call-by-name λ -calculus [43, 44] and are
inspired by the aforementioned (·)v translation of the λ -calculus into LL proof-nets.

Following the same approach used in [16] for the call-by-name λ -calculus and in [17] for LL proof-
nets, we prove that in the shuffling calculus λsh:

1. (qualitative result) relational semantics is adequate for λsh, i.e. a possibly open term is normalizable
for weak reduction (not reducing under λ ’s) if and only if its interpretation in relational semantics
is not empty (Thm. 16); this result was already proven in [14] using different techniques;

2. (quantiative result) the size of type derivations can be used to measure the execution time, i.e. the
number of βv-steps (and not σ -steps) to reach the normal form of the weak reduction (Prop. 21).

Finally, we show that, differently from the case of LL and call-by-name λ -calculus, we are not able to
lift the quantitative information enclosed in type derivations to types (i.e. to the interpretation of terms)
following the same technique used in [16, 17], as our Ex. 28 shows. In order to get a genuine semantic
measure of execution time in a call-by-value setting, we conjecture that a refinement of its syntax and
operational semantics is needed.

Even if our main goal has not yet been achieved, this investigation led to new interesting results:
1. all normalizing weak reduction sequences (if any) in λsh from a given term have the same number

of βv-steps (Cor. 22); this is not obvious, as we shall explain in Ex. 23;

2. terms whose weak reduction in λsh ends in a value has an elegant semantic characterization
(Prop. 18), and the number of βv-steps needed to reach their normal form can be computed in a
simple way from a specific type derivation (Thm. 24).

3. all our qualitative and quantitative results for λsh are still valid in Plotkin’s λv restricted to closed
terms (which models functional programming languages), see Thm. 25, Cor. 26 and Thm. 27.

Proofs are omitted. They can be found in [29], the extended version of this paper.

1.1 Preliminaries and notations

The set of λ -terms is denoted by Λ. We set I := λx.x and ∆ := λx.xx. Let→r⊆ Λ×Λ.
• The reflexive-transitive closure of→r is denoted by→∗r . The r-equivalence 'r is the reflexive-

transitive and symmetric closure of→r.

• Let t be a term: t is r-normal if there is no term u such that t→r u; t is r-normalizable if there is
a r-normal term u such that t →∗r u, and we then say that u is a r-normal form of t; t is strongly
r-normalizable if there is no infinite sequence (ti)i∈N of terms such that t = t0 and ti→r ti+1 for all
i ∈ N. Finally,→r is strongly normalizing if every u ∈ Λ is strongly r-normalizable.

60 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

terms: t,u,s ::= v | tu (set: Λ)

values: v ::= x | λx.t (set: Λv)

contexts: C ::= 〈·〉 | λx.C |Ct | tC (set: ΛC)

Balanced contexts: B ::= 〈·〉 | (λx.B)t | Bt | tB (set: ΛB)

Root-steps: (λx.t)v 7→βv t{v/x} (λx.t)us 7→σ1 (λx.ts)u, x /∈ fv(s) v((λx.s)u) 7→σ3 (λx.vs)u, x /∈ fv(v)
7→σ := 7→σ1 ∪ 7→σ3 7→sh := 7→βv ∪ 7→σ

r-reduction: t→r u ⇐⇒ ∃C ∈ ΛC, ∃ t ′,u′∈ Λ : t =C〈t ′〉, u =C〈u′〉, t ′ 7→r u′ r ∈ {βv,σ1,σ3,σ ,sh}
r[-reduction: t→r[u ⇐⇒ ∃B ∈ ΛB, ∃ t ′,u′∈ Λ : t = B〈t ′〉, u = B〈u′〉, t ′ 7→r u′ r ∈ {βv,σ1,σ3,σ ,sh}

Figure 1: The shuffling λ -calculus λsh [14].

• →r is confluent if ∗r← ·→∗r ⊆→∗r · ∗r←. From confluence it follows that: t 'r u iff t→∗r s ∗r← u for
some term s; and any r-normalizable term has a unique r-normal form.

2 The shuffling calculus

In this section we introduce the shuffling calculus λsh, namely the call-by-value λ -calculus defined in [14]
and further studied in [28, 30, 4, 31]: it adds two commutation rules — the σ1- and σ3-reductions — to
Plotkin’s pure (i.e. without constants) call-by-value λ -calculus λv [41]. The syntax for terms of λsh is the
same as Plotkin’s λv and then the same as the ordinary (i.e. call-by-name) λ -calculus, see Fig. 1.

Clearly, Λv (Λ. All terms are considered up to α-conversion (i.e. renaming of bound variables). The
set of free variables of a term t is denoted by fv(t): t is open if fv(t) 6= /0, closed otherwise. Given v ∈ Λv,
t{v/x} denotes the term obtained by the capture-avoiding substitution of v for each free occurrence of x
in the term t. Note that values are closed under substitution: if v,v′ ∈ Λv then v{v′/x} ∈ Λv.

One-hole contexts C are defined as usual, see Fig. 1. We use C〈t〉 for the term obtained by the
capture-allowing substitution of the term t for the hole 〈·〉 in the context C. In Fig. 1 we define also a
special kind of contexts, balanced contexts B.

Reductions in the shuffling calculus are defined in Fig. 1 as follows: given a root-step rule 7→r⊆Λ×Λ,
we define the r-reduction→r (resp. r[-reduction→r[) as the closure of 7→r under contexts (resp. balanced
contexts). The r[-reduction is non-deterministic and — because of balanced contexts — can reduce under
abstractions, but it is “morally” weak: it reduces under a λ only when the λ is applied to an argument.
Clearly,→sh[(→sh since→sh can freely reduce under λ ’s.

The root-steps used in the shuffling calculus are 7→βv (the reduction rule in Plotkin’s λv), the commu-
tation rules 7→σ1 and 7→σ3 , and 7→σ := 7→σ1 ∪ 7→σ3 and 7→sh := 7→βv ∪ 7→σ . The side conditions for 7→σ1

and 7→σ3 in Fig. 1 can be always fulfilled by α-renaming. For any r ∈ {βv,σ1,σ3,σ ,sh}, if t 7→r t ′ then
t is a r-redex and t ′ is its r-contractum. A term of the shape (λx.t)u is a β -redex. Clearly, any βv-redex
is a β -redex but the converse does not hold: (λx.z)(yI) is a β -redex but not a βv-redex. Redexes of
different kind may overlap: for instance, the term ∆I∆ is a σ1-redex and contains the βv-redex ∆I; the
term ∆(I∆)(xI) is a σ1-redex and contains the σ3-redex ∆(I∆), which contains in turn the βv-redex I∆.

From definitions in Fig. 1 it follows that→sh=→βv ∪→σ and→σ =→σ1 ∪→σ3 , as well as→sh[=

→
β [

v
∪→

σ [and→
σ [=→σ [

1
∪→

σ [
3
. The shuffling (resp. balanced shuffling) calculus λsh (resp. λ [

sh) is the
set Λ of terms endowed with the reduction→sh (resp.→sh[). The set Λ endowed with the reduction→βv

is Plotkin’s pure call-by-value λ -calculus λv [41], a sub-calculus of λsh.

G. Guerrieri 61

Proposition 1 (Basic properties of reductions, [41, 14]). The σ - and σ [-reductions are confluent and
strongly normalizing. The βv-, β [

v-, sh- and sh[-reductions are confluent.

Example 2. Recall the terms t and u in Eq. (1): t =(λy.∆)(xI)∆→
σ [

1
(λy.∆∆)(xI)→

β [
v
(λy.∆∆)(xI)→

β [
v
. . .

and u = ∆((λy.∆)(xI))→
σ [

3
(λy.∆∆)(xI)→

β [
v
(λy.∆∆)(xI)→

β [
v
. . . are the only possible sh-reduction paths

from t and u respectively: t and u are not sh-normalizable and t 'sh u. But t and u are βv-normal
((λy.∆)(xI) is a stuck β -redex) and different, so t 6'βv u by confluence of→βv (Prop. 1). Thus, 'βv ('sh.

Example 2 shows how σ -reduction shuffles constructors and moves stuck β -redex in order to unblock
βv-redexes which are hidden by the “hyper-sequential structure” of terms, avoiding “premature” normal
forms. An alternative approach to circumvent the issue of stuck β -redexes is given by λvsub, the call-
by-value λ -calculus with explicit substitutions introduced in [7], where hidden βv-redexes are reduced
using rules acting at a distance. In [4] it has been shown that λvsub and λsh can be embedded in each other
preserving termination and divergence. Interestingly, both calculi are inspired by an analysis of Girard’s
“boring” call-by-value translation of λ -terms into linear logic proof-nets [25, 1] according to the linear
recursive type o = !o (!o, or equivalently o = !(o (o). In this translation, sh-reduction corresponds to
cut-elimination, more precisely βv-steps (resp. σ -steps) correspond to exponential (resp. multiplicative)
cut-elimination steps; sh[-reduction corresponds to cut-elimination at depth 0.

Consider the two subsets of terms defined by mutual induction (notice that Λa (Λn) Λv):

a ::= xv | xa | an (set: Λa) n ::= v | a | (λx.n)a (set: Λn).

Any t ∈ Λa is neither a value nor a β -redex, but an open applicative term with a free “head variable”.

Proposition 3 (Syntactic characterization on sh[-normal forms). Let t be a term:

• t is sh[-normal iff t ∈ Λn;

• t is sh[-normal and is neither a value nor a β -redex iff t ∈ Λa.

Stuck β -redexes correspond to sh[-normal forms of the shape (λx.n)a. As a consequence of Prop. 3,
the behaviour of closed terms with respect to sh[-reduction (resp. β [

v-reduction) is quite simple: either
they diverge or they sh[-normalize (resp. β [

v-normalize) to a closed value. Indeed:

Corollary 4 (Syntactic characterization of closed sh[- and β [
v-normal forms). Let t be a closed term: t is

sh[-normal iff t is β [
v-normal iff t is a value iff t = λx.u for some term u with fv(u)⊆ {x}.

3 A non-idempotent intersection type system

We recall the non-idempotent intersection type system introduced by Ehrhard [22] (nothing but the call-
by-value version of de Carvalho’s system R [15, 16]). We use it to characterize the (strong) normalizable
terms for the reduction→sh[. Types are positive or negative, defined by mutual induction as follows:

Negative Types: M,N ::= P (Q Positive Types: P,Q ::= [N1, . . . ,Nn] (with n ∈ N)

where [N1, . . . ,Nn] is a (possibly empty) finite multiset of negative types; in particular the empty multiset
[] (obtained for n = 0) is the only atomic (positive) type. A positive type [N1, . . . ,Nn] has to be intended
as a conjunction N1∧·· ·∧Nn of negative types N1, . . . ,Nn, for a commutative and associative conjunction
connective ∧ that is not idempotent and whose neutral element is [].

The derivation rules for the non-idempotent intersection type system are in Fig. 2. In this typing system,
judgments have the shape Γ ` t : P where t is a term, P is a positive type and Γ is an environment (i.e. a

62 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

ax
x :P ` x :P

Γ ` t : [P (Q] Γ′ ` u :P
@

Γ]Γ′ ` tu :Q
Γ1,x :P1 ` t :Q1

n∈N. . . Γn,x :Pn ` t :Qn
λ

Γ1]·· ·]Γn ` λx.t : [P1 (Q1, . . . ,Pn (Qn]

Figure 2: Non-idempotent intersection type system for the shuffling calculus.

total function from variables to positive types whose domain dom(Γ) = {x | Γ(x) 6= []} is finite). The sum
of environments Γ]∆ is defined pointwise via multiset sum: (Γ]∆)(x) = Γ(x)]∆(x). An environment
Γ such that dom(Γ) ⊆ {x1, . . . ,xn} with xi 6= x j and Γ(xi) = Pi for all 1 ≤ i 6= j ≤ k is often written as
Γ = x1 : P1, . . . ,xn : Pk. In particular, Γ and Γ,x : [] (where x /∈ dom(Γ)) are the same environment; and
` t : P stands for the judgment Γ ` t : P where Γ is the empty environment, i.e. dom(Γ) = /0 (that is,
Γ(x) = [] for any variable x). Note that the sum of environments] is commutative, associative and its
neutral element is the empty environment: given an environment Γ, one has Γ]∆ = Γ iff dom(∆) = /0.
The notation π B Γ ` t : P means that π is a derivation with conclusion the judgment Γ ` t : P. We write
π B t if π is such that π B Γ ` t : P for some environment Γ and positive type P.

It is worth noticing that the type system in Fig. 2 is syntax oriented: for each type judgment J there is
a unique derivation rule whose conclusion matches the judgment J.

The size |π| of a type derivation π is just the the number of @ rules in π . Note that judgments play no
role in the size of a derivation.

Example 5. Let I = λx.x. The derivations (typing II and I with same type and same environment)

πII =

ax
x : [] ` x : []

λ` I : [[]([]]
λ` I : []
@` II : []

πI =
λ` I : []

are such that |πII|= 1 and |πI|= 0. Note that II→sh[I and |πII|= |πI|+1.

The following lemma (whose proof is quite technical) will play a crucial role to prove the substitution
lemma (Lemma 7) and the subject reduction (Prop. 8) and expansion (Prop. 10).

Lemma 6 (Judgment decomposition for values). Let v ∈ Λv, ∆ be an environment, and P1, . . . ,Pp be
positive types (for some p ∈ N). There is a derivation π B ∆ ` v : P1]·· ·]Pp iff for all 1≤ i≤ p there
are an environment ∆i and a derivation πi B ∆i ` v : Pi such that ∆ =

⊎p
i=1 ∆i. Moreover, |π|= ∑

p
i=1|πi|.

The left-to-right direction of Lemma 6 means that, given π B ∆ ` v : P, for every p ∈ N and every
decomposition of the positive type P into a multiset sum of positive types P1, . . . ,Pp, there are environments
∆1, . . . ,∆p such that ∆i ` v : Pi is derivable for all 1≤ i≤ p.

Lemma 7 (Substitution). Let t ∈ Λ and v ∈ Λv. If π B Γ,x : P ` t : Q and π ′ B ∆ ` v : P, then there exists
π ′′ B Γ]∆ ` t{v/x} : Q such that |π ′′|= |π|+ |π ′|.

We can now prove the subject reduction, with a quantitative flavour about the size of type derivations
in order to extract information about the execution time.

Proposition 8 (Quantitative balanced subject reduction). Let t, t ′ ∈ Λ and π B Γ ` t : Q.

1. Shrinkage under β [
v-step: If t→

β [
v

t ′ then |π|> 0 and there exists a derivation π ′ with conclusion
Γ ` t ′ : Q such that |π ′|= |π|−1.

2. Size invariance under σ [-step: If t→
σ [t ′ then |π|> 0 and there exists a derivation π ′ with conclusion

Γ ` t ′ : Q such that |π ′|= |π|.

G. Guerrieri 63

In Prop. 8, the fact that→sh[does not reduce under λ ’s is crucial to get the quantitative information,
otherwise one can have a term t such that every derivation π B Γ ` t : P is such that |π| = 0 (and then
there is no derivation π ′ with conclusion Γ ` t ′ : P such that |π|= |π ′|−1): this is the case, for example,
for t = λx.δδ →βv t. This shows that the quantitative study for evaluation reducing under λ ’s is subtler.

In order to prove the quantitative subject expansion (Prop. 10), we first need the following technical
lemma stating the commutation of abstraction with abstraction and application.

Lemma 9 (Abstraction commutation).

1. Abstraction vs. abstraction: Let k ∈ N. If π B ∆ ` λy.(λx.t)v :
⊎k

i=1[P
′
i (Pi] and y /∈ fv(v), then

there is π ′ B ∆ ` (λx.λy.t)v :
⊎k

i=1[P
′
i (Pi] such that |π ′|= |π|+1− k.

2. Application vs. abstraction: If π B ∆ ` ((λx.t)v)((λx.u)v) : P then there exists a derivation π ′ B
∆ ` (λx.tu)v : P such that |π ′|= |π|−1.

Proposition 10 (Quantitative balanced subject expansion). Let t, t ′ ∈ Λ and π ′ B Γ ` t ′ : Q.

1. Enlargement under anti-β [
v-step: If t→

β [
v

t ′ then there is π B Γ ` t : Q with |π|= |π ′|+1.

2. Size invariance under anti-σ [-step: If t→
σ [t ′ then |π ′|> 0 and there is π B Γ ` t : Q with |π|= |π ′|.

Actually, subject reduction and expansion hold for the whole sh-reduction →sh, not only for the
balanced sh-reduction→sh[. The drawback for→sh is that the quantitative information about the size of
the derivation is lost in the case of a βv-step, see the comments just after Prop. 8 and Lemma 12.

Lemma 11 (Subject reduction). Let t, t ′ ∈ Λ and π B Γ ` t : Q.

1. Shrinkage under βv-step: If t→βv t ′ then there is π ′ B Γ ` t ′ : Q with |π| ≥ |π ′|.

2. Size invariance under σ -step: If t→σ t ′ then there is π ′ B Γ ` t ′ : Q such that |π|= |π ′|.

Lemma 12 (Subject expansion). Let t, t ′ ∈ Λ and π ′ B Γ ` t ′ : Q.

1. Enlargement under anti-βv-step: If t→βv t ′ then there is π B Γ ` t : Q with |π| ≥ |π ′|.

2. Size invariance under anti-σ -step: If t→σ t ′ then there is π B Γ ` t : Q such that |π|= |π ′|.

In Lemmas 11.1 and 12.1 it is impossible to estimate more precisely the relationship between |π| and
|π ′|. Indeed, Ex. 5 has shown that there are πI B y : [] ` I : [] and πII B y : [] ` II : [] such that |πI|= 0 and
|πII|= 1 (where I = λx.x). So, given k ∈ N, consider the derivations πk B` λy.II : [[]([], k. . . , []([]]
and π ′k B` λy.I : [[]([], k. . . , []([]] below:

πn =

...πII

y : [] ` II : [] k. . .

...πII

y : [] ` II : []
λ

` λy.II : [[]([], k. . . , []([]]

π
′
n =

...πI

y : [] ` I : [] k. . .

...πI

y : [] ` I : []
λ

` λy.I :
[
[]([], k. . . , []([]

]
Clearly, λy.II →sh λy.I (but λy.II 6→sh[λy.I) and the π ′k (resp. πk) is the only derivation typing λy.I
(resp. λy.II) with the same type and environment as πk (resp. π ′k). One has |πk| = k · |πII| = k and
|π ′k|= k · |πI|= 0, thus the difference of size of the derivations πk and π ′k can be arbitrarely large (since
k ∈ N); in particular |π0|= |π ′0|, so for k = 0 the size of derivations does not even strictly decrease.

64 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

4 Relational semantics: qualitative results

Lemmas 11 and 12 have an important consequence: the non-idempotent intersection type system of Fig. 2
defines a denotational model for the shuffling calculus λsh (Thm. 14 below).

Definition 13 (Suitable list of variables for a term, semantics of a term). Let t ∈ Λ and let x1, . . . ,xk be
pairwise distinct variables, for some k ∈ N.

If fv(t)⊆ {x1, . . . ,xk}, then we say that the list~x = (x1, . . . ,xk) is suitable for t.
If~x = (x1, . . . ,xk) is suitable for t, the (relational) semantics, or interpretation, of t for~x is

JtK~x = {((P1, . . . ,Pk),Q) | ∃π B x1 : P1, . . . ,xk : Pk ` t : Q} .

Essentially, the semantics of a term t for a suitable list~x of variables is the set of judgments for~x and t
that can be derived in the non-idempotent intersection type system of Fig. 2.

If we identify the negative type P (Q with the pair (P,Q) and if we set U :=
⋃

k∈N Uk where:

U0 := /0 Uk+1 := Mf(Uk)×Mf(Uk) (Mf(X) is the set of finite multisets over the set X)

then, for any t ∈ Λ and any suitable list~x = (x1, . . . ,xk) for t, one has JtK~x ⊆Mf(U)k×Mf(U); in partic-
ular, if t is closed and~x = (), then JtK = {Q | ∃π B ` t : Q} ⊆Mf(U) (up to an obvious isomorphism).
Note that U =Mf(U)×Mf(U): [22, 14] proved that the latter identity is enough to have a denotational
model for λsh. We can also prove it explicitly using Lemmas 11 and 12.

Theorem 14 (Invariance under sh-equivalence). Let t,u∈Λ, let k∈N and let~x= (x1, . . . ,xk) be a suitable
list of variables for t and u. If t 'sh u then JtK~x = JuK~x.

An interesting property of relational semantics is that all sh[-normal forms have a non-empty inter-
pretation (Lemma 15). To prove that we use the syntactic characterization of sh[-normal forms (Prop. 3).
Note that a stronger statement (Lemma 15.1) is required for sh[-normal forms belonging to Λa, in order to
handle the case where the sh[-normal form is a β -redex.

Lemma 15 (Semantics and typability of sh[-normal forms). Let t be a term, let k ∈ N and let ~x =
(x1, . . . ,xk) be a list of variables suitable for t.

1. If t ∈ Λa then for every positive type Q there exist positive types P1, . . . ,Pk and a derivation
π B x1 : P1, . . . ,xk : Pk ` t : Q.

2. If t ∈ Λn then there are positive types Q,P1, . . . ,Pk and a derivation π B x1 : P1, . . . ,xk : Pk ` t : Q.

3. If t is sh[-normal then JtK~x 6= /0.

A consequence of Prop. 8 (and Thm. 14 and Lemma 15) is a qualitative result: a semantic and logical
(if we consider our non-idempotent type system as a logical framework) characterization of (strong)
sh[-normalizable terms (Thm. 16). In this theorem, the main equivalences are between Points 1, 3 and 5,
already proven in [14] using different techniques. Points 2 and 4 can be seen as “intermediate stages” in
the proof of the main equivalences, which are informative enough to deserve to be explicitely stated.

Theorem 16 (Semantic and logical characterization of sh[-normalization). Let t ∈Λ and let~x=(x1, . . . ,xk)
be a suitable list of variables for t. The following are equivalent:

1. Normalizability: t is sh[-normalizable;

2. Completeness: t 'sh u for some sh[-normal u ∈ Λ;

3. Adequacy: JtK~x 6= /0;

G. Guerrieri 65

4. Derivability: there is a derivation π B x1 : P1, . . . ,xk : Pk ` t : Q for some positive types P1, . . . ,Pk,Q;

5. Strong normalizabilty: t is strongly sh[-normalizable.
As implication (5)⇒(1) is trivial, the proof of Thm. 16 follows the structure (1)⇒(2)⇒(3)⇒(4)⇒(5):

essentially, non-idempotent intersection types are used to prove that normalization implies strong normal-
ization for sh[-reduction. Equivalence (5)⇔(1) means that normalization and strong normalization are
equivalent for sh[-reduction, thus in studying the termination of sh[-reduction no intricacy arises from
its non-determinism. Although→sh[does not evaluate under λ ’s, this result is not trivial because→sh[

does not enjoy any form of (quasi-)diamond property, as we show in Ex. 23 below. Equivalence (1)⇔(2)
says that sh[-reduction is complete with respect to sh-equivalence to get sh[-normal forms; in particular,
this entails that every sh-normalizable term is sh[-normalizable. Equivalence (1)⇔(2) is the analogue of a
well-known theorem [8, Thm. 8.3.11] for ordinary (i.e. call-by-name) λ -calculus relating head β -reduction
and β -equivalence: this corroborates the idea that sh[-reduction is the “head reduction” in a call-by-value
setting, despite its non-determinism. The equivalence (3)⇔(4) holds by definition of relational semantics.

Implication (1)⇒(3) (or equivalently (1)⇒(4), i.e. “normalizable ⇒ typable”) does not hold in
Plotkin’s λv: indeed, the (open) terms t and u in Eq. (1) (see also Ex. 2) are βv-normal (because of a
stuck β -redex) but JtKx = /0 = JuKx. Equivalences such as the ones in Thm. 16 hold in a call-by-value
setting provided that βv-reduction is extended, e.g. by adding σ -reduction. In [4], λsh is proved to be
termination equivalent to other extensions of λv (in the framework Open Call-by-Value, where evaluation
is call-by-value and weak, on possibly open terms) such as the fireball calculus [45, 27, 2] and the value
substitution calculus [7], so Thm. 16 is a general result characterizing termination in those calculi as well.
Lemma 17 (Uniqueness of the derivation with empty types; Semantic and logical characterization of
values). Let t ∈ Λ be sh[-normal.

1. If π B` t : [] and π ′ B Γ ` t : [], then t ∈ Λv, |π|= 0, dom(Γ) = /0 and π = π ′. More precisely, π

consists of a rule ax if t is a variable, otherwise t is an abstraction and π consists of a 0-ary rule λ .

2. Given a list~x = (x1, . . . ,xk) of variables suitable for t, the following are equivalent:

(a) t is a value;
(b) (([], k. . . , []), []) ∈ JtK~x ;

(c) there exists π B` t : [] ;
(d) there exists π B t such that |π|= 0.

Qualitatively, Lemma 17 allows us to refine the semantic and logical characterization given by Thm. 16
for a specific class of terms: the valuable ones, i.e. the terms that sh[-normalize to a value. Valuable terms
are all and only the terms whose semantics contains a specific element: the point with only empty types.
Proposition 18 (Logical and semantic characterization of valuability). Let t be a term and~x = (x1, . . . ,xk)
be a suitable list of variables for t. The following are equivalent:

1. Valuability: t is sh[-normalizable and the sh[-normal form of t is a value;

2. Empty point in the semantics: (([], k. . . , []), []) ∈ JtK~x;

3. Derivability with empty types: there exists a derivation π B` t : [].

5 The quantitative side of type derivations

By the quantitative subject reduction (Prop. 8), the size of any derivation typing a (sh[-normalizable) term
t is an upper bound on the number leng

β [
v
(d) of β [

v-steps in any sh[-normalizing reduction sequence d
from t, since the size of a type derivation decreases by 1 after each β [

v-step, and does not change after
each σ [-step.

66 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

Corollary 19 (Upper bound on the number of β [
v-steps). Let t be a sh[-normalizable term and t0 be its

sh[-normal form. For any reduction sequence d : t→∗
sh[t0 and any π B t, leng

β [
v
(d)≤ |π|.

In order to extract from a type derivation the exact number of β [
v-steps to reach the sh[-normal form,

we have to take into account also the size of derivations of sh[-normal forms. Indeed, by Lemma 17.2,
sh[-normal forms that are not values admit only derivations with sizes greater than 0. The sizes of type
derivations of a sh[-normal form t are related to a special kind of size of t that we now define.

The balanced size of a term t, denoted by |t|[, is defined by induction on t as follows (v ∈ Λv):

|v|[= 0 |tu|[=

{
|s|[+ |u|[+1 if t = λx.s
|t|[+ |u|[+1 otherwise.

So, the balanced size of a term t is the number of applications occurring in t under a balanced context, i.e.
the number of pairs (u,s) such that t = B〈us〉 for some balanced context B. For instance, |(λx.yy)(zz)|[= 3
and |(λx.λx′.yy)(zz)|[= 2. The following lemma can be seen as a quantitative version of Lemma 15.

Lemma 20 (Relationship between sizes of normal forms and derivations). Let t ∈ Λ.

1. If t is sh[-normal then |t|[= min{|π| | π B t}.

2. If t is a value then |t|[= min{|π| | π B t}= 0.

Thus, the balanced size of a sh[-normal form n equals the minimal size of the type derivation of n.

Proposition 21 (Exact number of β [
v-steps). Let t be a sh[-normalizable term and t0 be its sh[-normal form.

For every reduction sequence d : t→∗
sh[t0 and every π B t and π0 B t0 such that |π|= min{|π ′| | π ′ B t}

and |π0|= min{|π ′0| | π ′0 B t0}, one has

leng
β [

v
(d) = |π|− |t0|[= |π|− |π0| . (2)

If moreover t0 is a value, then leng
β [

v
(d) = |π|.

In particular, Eq. (2) implies that for any reduction sequence d : t→∗
sh[t0 and any π B t and π0 B t0 such

that |π0|= min{|π ′0| | π ′0 B t0}, one has leng
β [

v
(d)≤ |π|− |t0|[= |π|− |π0| , since |π| ≥min{|π ′| | π ′ B t}.

Prop. 21 could seem slightly disappointinig: it allows us to know the exact number of β [
v-steps of a

sh[-normalizing reduction sequence from t only if we already know the sh[-normal form t0 of t (or the
minimal derivation of t0), which essentially means that we have to perform the reduction sequence in order
to know the exact number of its β [

v-steps. However, Prop. 21 says also that this limitation is circumvented
in the case t sh[-reduces to a value. Moreover, a notable and immediate consequence of Prop. 21 is:

Corollary 22 (Same number of β [
v-steps). Let t be a sh[-normalizable term and t0 be its sh[-normal form.

For all reduction sequences d : t→∗
sh[t0 and d′ : t→∗

sh[t0, one has leng
β [

v
(d) = leng

β [
v
(d′).

Even if sh[-reduction is weak, in the sense that it does not reduce under λ ’s, Cor. 22 is not obvious at
all, since the rewriting theory of sh[-reduction is not quite elegant, in particular it does not enjoy any form
of (quasi-)diamond property because of σ -reduction, as shown by the following example.

Example 23. Let t := (λy.y′)(∆(xI))I: one has u := (λy.y′)(∆(xI))
σ [

1
← t→

σ [
3
(λ z.(λy.y′)(zz))(xI)I =: s

and the only way to join this critical pair is by performing one σ [
3-step from u and two σ [

1-steps from s, so
that u→

σ [
3
(λ z.(λy.y′I)(zz))(xI)

σ [
1
← (λ z.(λy.y′)(zz)I)(xI)

σ [
1
← s. Since each σ [-step can create a new

βv-redex in a balanced context (as shown in Ex. 2), a priori there is no evidence that Cor. 22 should hold.

G. Guerrieri 67

Cor. 22 allows us to define the following function lengβv
: Λ→ N∪{∞}

leng
β [

v
(t) =

{
leng

β [
v
(d) if there is a sh[-normalizing reduction sequence d from t;

∞ otherwise.

In other words, in λsh we can univocally associate with every term the number of β [
v-steps needed to

reach its sh[-normal form, if any (the infinity ∞ is associated with non-sh[-normalizable terms). The
characterization of sh[-normalization given in Thm. 16 allows us to determine through semantic or logical
means if the value of leng

β [
v
(t) is a finite number or not.

Quantitatively, via Lemma 17 we can simplify the way to compute the number of β [
v-steps to reach the

sh[-normal form of a valuable (i.e. that reduces to a value) term t, using only a specific type derivation of t.

Theorem 24 (Exact number of β [
v-steps for valuables). If t→∗

sh[v∈Λv then leng
β [

v
(t) = |π| for π B` t : [].

Prop. 18 and Thm. 24 provide a procedure to determine if a term t sh[-normalizes to a value and, in
case, how many β [

v-steps are needed to reach its sh[-normal form (this number does not depend on the
reduction strategy according to Cor. 22), considering only the term t and without performing any sh[-step:

1. check if there is a derivation π with empty types, i.e. π B` t : [];

2. if it is so (i.e. if t sh[-normalize to a value, according to Prop. 18), compute the size |π|.
Remind that, according to Cor. 4, any closed term either is not sh[-normalizable, or it sh[-normalizes to

a (closed) value. So, this procedure completely determines (qualitatively and quantitatively) the behavior
of closed terms with respect to sh[-reduction (and to β [

v-reduction, as we will see in Sect. 6).

6 Conclusions

Back to Plotkin’s λv. The shuffling calculus λsh can be used to prove some properties of Plotkin’s
call-by-value λ -calculus λv (whose only reduction rule is →βv) restricted to closed terms. This is an
example of how the study of some properties of a framework (in this case, λv) can be naturally done
in a more general framework (in this case, λsh). It is worth noting that λv with only closed terms is an
interesting fragment: it represents the core of many functional programming languages, such as OCaml.

The starting point is Cor. 4, which says that, in the closed setting with weak reduction, normal forms
for λsh and λv coincide: they are all and only closed values. We can then reformulate Thm. 16 and Prop. 18
as a semantic and logical characterization of β [

v-normalization in Plotkin’s λv restricted to closed terms.

Theorem 25 (Semantic and logical characterization of β [
v-normalization in the closed case). Let t be a

closed term. The following are equivalent:

1. Normalizability: t is β [
v-normalizable;

2. Valuability: t→∗
β [

v
v for some closed value v;

3. Completeness: t 'βv v for some closed value v;

4. Adequacy: JtK~x 6= /0 for any list~x = (x1, . . . ,xk) (with k ∈ N) of pairwise distinct variables;

5. Empty point: (([], k. . . , []), [])∈ JtK~x for any list~x= (x1, . . . ,xk) (k∈N) of pairwise distinct variables;

6. Derivability with empty types: there exists a derivation π B` t : [];

7. Derivability: there exists a derivation π B` t : Q for some positive type Q;

68 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

8. Strong normalizabilty: t is strongly β [
v-normalizable.

We have already seen on pp. 64–65 that Thm. 25 does not hold in λv with open terms: closure is
crucial.

Thm. 25 entails that a closed term is sh[-normalizable iff it is β [
v-normalizable iff it β [

v-reduces to a
closed value. Thus, Cor. 22 and Thm. 24 can be reformulated for λv restricted to closed terms as follows.

Corollary 26 (Same number of β [
v-steps). Let t be a closed β [

v-normalizable term and t0 be its β [
v-normal

form. For all reduction sequences d : t→∗
β [

v
t0 and d′ : t→∗

β [
v

t0, one has leng
β [

v
(d) = leng

β [
v
(d′).

Theorem 27 (Number of β [
v-steps). If t is closed and β [

v-normalizable, then leng
β [

v
(t) = |π| for π B` t : [].

Clearly, the procedure sketched on p. 67, when applied to a closed term t, determines if t β [
v-normalizes

and, in case, how many β [
v-steps are needed to reach its β [

v-normal form.

Towards a semantic measure. In order to get a truly semantic measure of the execution time in the
shuffling calculus λsh, we should first be able to give an upper bound to the number of β [

v-steps in a
sh[-reduction looking only at the semantics of terms. Therefore, we need to define a notion of size for the
elements of the semantics of terms. The most natural approach is the following. For any positive type P =
[P1 (Q1, . . . ,Pk (Qk]∈Mf(U) (with k ∈N), the size of P is |P|= k+∑

k
i=1(|Pi|+ |Qi|). So, the size of

a positive type P is the number of occurrences of (in P; in particular, |[]|= 0. For any ((P1, . . . ,Pn),Q)∈
Mf(U)k×Mf(U) (with k ∈ N), the size of ((P1, . . . ,Pk),Q) is |((P1, . . . ,Pk),Q)|= |Q|+∑

k
i=1|Pi|.

The approach of [16, 17] relies on a crucial lemma to find an upper bound (and hence the exact
length) of the execution time: it relates the size of a type derivation to the size of its conclusion,
for a normal term/proof-net. In λsh this lemma should claim that “For every sh-normal form t, if
π B x1 : P1, . . . ,xk : Pk ` t : Q then |π| ≤ |((P1, . . . ,Pk),Q)|”. Unfortunately, in λsh this property is false!
Example 28. Let t := (λx.x)(yy), which is a sh-normal form. Consider the derivation

π :=

ax
x : [] ` x : []

λ` λx.x : [[]([]]

ax
x : [[]([]] ` x : [[]([]]

ax
x : [] ` x : []

@
y : [[]([]] ` yy : []

@
y : [[]([]] ` (λx.x)(yy) : []

.

Then, |π|= 2 > 1 = |([[]([]], [])|, which provides a counterexample to the property demanded above.

We conjecture that in order to overcome this counterexample (and to successfully follow the method
of [16, 17] to get a purely semantic measure of the execution time) we should change the syntax and the
operational semantics of our calculus, always remaining in a call-by-value setting equivalent (from the
termination point of view) to λsh and the other calculi studied in [4]. Intuitively, in Ex. 28 t contains
one application — (λx.x)(yy)— that is a stuck β -redex and is the source of one “useless” instance of the
rule @ in π . The idea for the new calculus is to “fire” a stuck β -redex (λx.t)u without performing the
substitution t{u/x} (as u might not be a value), but just creating an explicit substitution t[u/x] that removes
the application but “stores” the stuck β -redex. Such a calculus has been recently introduced in [5].

Related work. This work has been presented at the workshop ITRS 2018. Later, the author further
investigated this topic with Beniamino Accattoli in [5], where we applied the same type system (and
hence the same relational semantics) to a different call-by-value calculus with weak evaluation, λfire. The
techniques used in both papers are similar (but not identical), some differences are due to the distinct
calculi the type system is applied to. Some results are analogous: semantic and logical characterization of
termination, extraction of quantitative information from type derivations. In [5] we focused on an abstract

G. Guerrieri 69

characterization of the type derivations that provide an exact bound on the number of steps to reach the
normal form. Here, the semantic and logical characterization of termination is more informative than in
[5] because the reduction in λsh is not deterministic, contrary to λfire (the proof that normalization and
strong normalization coincide makes sense only for λsh). Moreover here, unlike [5], we investigate in
detail the case of terms reducing to values and how the general results for λsh can be applied to analyze
qualitative and quantitative properties of Plotkin’s λv restricted to closed terms (see above).

Recently, Mazza, Pellissier and Vial [37] introduced a general, elegant and abstract framework for
building intersection (idempotent and non-idempotent) type systems characterizing normalization in
different calculi. However, such a work contains a wrong claim in one of its applications to concrete
calculi and type systems, confirmed by a personal communication with the authors: they affirm that the
same type system as the one used here characterizes normalization in Plotkin’s λv (endowed with the
reduction→

β [
v
), but we have shown on pp. 64–65 that this is false for open terms. Indeed, the property

called full expansiveness in [37] (which entails that “normalizable⇒ typable”) actually does not hold in
λv. It is still true that their approach can be applied to characterize termination in Plotkin’s λv restricted to
closed terms and in the shuffling calculus λsh. Proving that the abstract properties described in [37] to
characterize normalization hold in closed λv or in λsh amounts essentially to show that subject reduction
(our Prop. 8), subject expansion (our Prop. 10) and typability of normal forms (our Lemma 15) hold.

The shuffling calculus λsh is compatible with Girard’s call-by-value translation of λ -terms into linear
logic (LL) proof-nets: according to that, λ -values (which are the only duplicable and erasable λ -terms) are
the only λ -terms translated as boxes; also, sh-reduction corresponds to cut-elimination and sh[-reduction
corresponds to cut-elimination at depth 0 (i.e. outside exponential boxes). The exact correspondence
has many technical intricacies, which are outside the scope of this paper, anyway it can be recovered
by composing the translation of the value substitution calculus (another extension of Plotkin’s λv) into
LL proof-nets (see [1]), and the encoding (studied in [4]) of λsh into the value substitution calculus.
The relational semantics studied here is nothing but the relational semantics for LL (see [17]) restricted
to fragment of LL that is the image of Girard’s call-by-value translation. The notion of “experiment”
in [17] corresponds to our type derivation, and the “result” of an experiment there corresponds to the
conclusion of a type derivation here. The main results of de Carvalho, Pagani and Tortora de Falco [17] are
similar to ours: characterization of normalization for LL proof-nets, extraction of quantitative information
from (results of) experiments. Nonetheless, the properties shown here for λsh cannot be derived by
simply analyzing the analogous results for LL proof-nets (proven in [17]) within its call-by-value fragment.
Indeed, Ex. 28 shows that some property, which holds in the — apparently — more general case of untyped
LL proof-nets (as proven in [17]), does not hold in the — apparently — special case of terms in λsh. It
could seem surprising but, actually, there is no contradiction because LL proof-nets in [17] always require
an explicit constructor for dereliction, whereas λsh is outside of this fragment since variables correspond
in LL proof-nets to exponential axioms (which keep implicit the dereliction).

All the papers cited in this section are (more or less explicitly) inspired by de Carvalho’s seminal work
[15, 16], which first used relational semantics and non-idempotent intersection types to count the number
of β -steps to reach the normal form in the call-by-name λ -calculus. Our results, although analogous and
proven following an approach similar to [15, 16], cannot be derived directly from [15, 16]: indeed, the
call-by-name λ -calculus corresponds to a different fragment of LL than call-by-value (as said in Sect. 1,
call-by-name and call-by-value λ -calculi are translated into LL via two distinct embeddings). There is also
another difference: de Carvalho [15, 16] counts the number of β -steps in linear call-by-name evaluation,
which substitutes the argument of a β -redex for one variable occurrence at a time; here we compute the
number of β -steps in non-linear call-by-value evaluation, which substitutes the argument of a βv-redex for
all the free occurrences of the redex-variable in just one step. A comprehensive study of the quantitative

70 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

information given by non-idempotent intersection type systems for several (linear and non-linear) variants
of call-by-name evaluation is provided in [3]. In [6] it has been introduced a non-idempotent intersection
type system that combines some features of both call-by-name and call-by-value systems, providing
quantitative information about the number of β -steps to reach the normal form by call-by-need evaluation.

References
[1] Beniamino Accattoli (2015): Proof nets and the call-by-value λ -calculus. Theor. Comput. Sci. 606, pp. 2–24,

doi:10.1016/j.tcs.2015.08.006.
[2] Beniamino Accattoli & Claudio Sacerdoti Coen (2015): On the Relative Usefulness of Fireballs. In: 30th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015), IEEE Computer Society, pp.
141–155, doi:10.1109/LICS.2015.23.

[3] Beniamino Accattoli, Stéphane Graham-Lengrand & Delia Kesner (2018): Tight typings and split bounds.
PACMPL 2(ICFP), pp. 94:1–94:30, doi:10.1145/3236789.

[4] Beniamino Accattoli & Giulio Guerrieri (2016): Open Call-by-Value. In Atsushi Igarashi, editor: Programming
Languages and Systems - 14th Asian Symposium (APLAS 2016), Lecture Notes in Computer Science 10017,
Springer, pp. 206–226, doi:10.1007/978-3-319-47958-3 12.

[5] Beniamino Accattoli & Giulio Guerrieri (2018): Types of Fireballs. In Sukyoung Ryu, editor: Programming
Languages and Systems - 16th Asian Symposium (APLAS 2018), 11275, Springer, pp. 45–66, doi:10.1007/978-
3-030-02768-1 3.

[6] Beniamino Accattoli, Giulio Guerrieri & Maico Leberle (2019): Types by Need. In Luı́s Caires, editor:
Programming Languages and Systems - 28th European Symposium on Programming (ESOP 2019), Lecture
Notes in Computer Science 11423, Springer, pp. 410–439, doi:10.1007/978-3-030-17184-1 15.

[7] Beniamino Accattoli & Luca Paolini (2012): Call-by-Value Solvability, Revisited. In Tom Schrijvers & Peter
Thiemann, editors: Functional and Logic Programming - 11th International Symposium (FLOPS 2012),
Lecture Notes in Computer Science 7294, Springer, pp. 4–16, doi:10.1007/978-3-642-29822-6 4.

[8] Hendrik Pieter Barendregt (1984): The Lambda Calculus – Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics 103, North Holland, Amsterdam, doi:10.1016/B978-0-444-87508-2.50006-X.

[9] Erika De Benedetti & Simona Ronchi Della Rocca (2016): A type assignment for λ -calculus complete both
for FPTIME and strong normalization. Inf. Comput. 248, pp. 195–214, doi:10.1016/j.ic.2015.12.012.

[10] Alexis Bernadet & Stéphane Lengrand (2013): Non-idempotent intersection types and strong normalisation.
Logical Methods in Computer Science 9(4), doi:10.2168/LMCS-9(4:3)2013.

[11] Antonio Bucciarelli & Thomas Ehrhard (2001): On phase semantics and denotational semantics: the
exponentials. Ann. Pure Appl. Logic 109(3), pp. 205–241, doi:10.1016/S0168-0072(00)00056-7.

[12] Antonio Bucciarelli, Thomas Ehrhard & Giulio Manzonetto (2012): A relational semantics for par-
allelism and non-determinism in a functional setting. Ann. Pure Appl. Logic 163(7), pp. 918–934,
doi:10.1016/j.apal.2011.09.008.

[13] Antonio Bucciarelli, Delia Kesner & Daniel Ventura (2017): Non-idempotent intersection types for the
Lambda-Calculus. Logic Journal of the IGPL 25(4), pp. 431–464, doi:10.1093/jigpal/jzx018.

[14] Alberto Carraro & Giulio Guerrieri (2014): A Semantical and Operational Account of Call-by-Value Solv-
ability. In Anca Muscholl, editor: Foundations of Software Science and Computation Structures - 17th
International Conference (FOSSACS 2014), Lecture Notes in Computer Science 8412, Springer, pp. 103–118,
doi:10.1007/978-3-642-54830-7 7.

[15] Daniel de Carvalho (2007): Sémantiques de la logique linéaire et temps de calcul. Thèse de doctorat, Université
Aix-Marseille II.

[16] Daniel de Carvalho (2018): Execution time of λ -terms via denotational semantics and intersection types.
Mathematical Structures in Computer Science 28(7), pp. 1169–1203, doi:10.1017/S0960129516000396.

http://dx.doi.org/10.1016/j.tcs.2015.08.006
http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.1145/3236789
http://dx.doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1007/978-3-030-02768-1_3
http://dx.doi.org/10.1007/978-3-030-02768-1_3
http://dx.doi.org/10.1007/978-3-030-17184-1_15
http://dx.doi.org/10.1007/978-3-642-29822-6_4
http://dx.doi.org/10.1016/B978-0-444-87508-2.50006-X
http://dx.doi.org/10.1016/j.ic.2015.12.012
http://dx.doi.org/10.2168/LMCS-9(4:3)2013
http://dx.doi.org/10.1016/S0168-0072(00)00056-7
http://dx.doi.org/10.1016/j.apal.2011.09.008
http://dx.doi.org/10.1093/jigpal/jzx018
http://dx.doi.org/10.1007/978-3-642-54830-7_7
http://dx.doi.org/10.1017/S0960129516000396

G. Guerrieri 71

[17] Daniel de Carvalho, Michele Pagani & Lorenzo Tortora de Falco (2011): A semantic measure of the execution
time in linear logic. Theor. Comput. Sci. 412(20), pp. 1884–1902, doi:10.1016/j.tcs.2010.12.017.

[18] Daniel de Carvalho & Lorenzo Tortora de Falco (2016): A semantic account of strong normalization in linear
logic. Inf. Comput. 248, pp. 104–129, doi:10.1016/j.ic.2015.12.010.

[19] Mario Coppo & Mariangiola Dezani-Ciancaglini (1978): A new type assignment for λ -terms. Arch. Math.
Log. 19(1), pp. 139–156, doi:10.1007/BF02011875.

[20] Mario Coppo & Mariangiola Dezani-Ciancaglini (1980): An extension of the basic functionality theory for the
λ -calculus. Notre Dame Journal of Formal Logic 21(4), pp. 685–693, doi:10.1305/ndjfl/1093883253.

[21] Alejandro Dı́az-Caro, Giulio Manzonetto & Michele Pagani (2013): Call-by-Value Non-determinism in a
Linear Logic Type Discipline. In Sergei N. Artëmov & Anil Nerode, editors: Logical Foundations of Computer
Science, International Symposium (LFCS 2013), Lecture Notes in Computer Science 7734, Springer, pp.
164–178, doi:10.1007/978-3-642-35722-0 12.

[22] Thomas Ehrhard (2012): Collapsing non-idempotent intersection types. In Patrick Cégielski & Arnaud Durand,
editors: Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference, LIPIcs 16,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 259–273, doi:10.4230/LIPIcs.CSL.2012.259.

[23] Thomas Ehrhard & Giulio Guerrieri (2016): The Bang Calculus: an untyped lambda-calculus generalizing
call-by-name and call-by-value. In James Cheney & Germán Vidal, editors: Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Programming (PPDP 2016), ACM, pp.
174–187, doi:10.1145/2967973.2968608.

[24] Philippa Gardner (1994): Discovering Needed Reductions Using Type Theory. In: Theoretical Aspects of Com-
puter Software (TACS ’94), Lecture Notes in Computer Science 789, Springer, pp. 555–574, doi:10.1007/3-
540-57887-0 115.

[25] Jean-Yves Girard (1987): Linear Logic. Theor. Comput. Sci. 50, pp. 1–102, doi:10.1016/0304-3975(87)90045-
4.

[26] Jean-Yves Girard (1988): Normal functors, power series and λ -calculus. Ann. Pure Appl. Logic 37(2), pp.
129–177, doi:10.1016/0168-0072(88)90025-5.

[27] Benjamin Grégoire & Xavier Leroy (2002): A compiled implementation of strong reduction. In Mitchell
Wand & Simon L. Peyton Jones, editors: Proceedings of the Seventh International Conference on Functional
Programming (ICFP ’02), ACM, pp. 235–246, doi:10.1145/581478.581501.

[28] Giulio Guerrieri (2015): Head reduction and normalization in a call-by-value lambda-calculus. In Yuki
Chiba, Santiago Escobar, Naoki Nishida, David Sabel & Manfred Schmidt-Schauß, editors: 2nd International
Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE 2015), OASICS 46,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 3–17, doi:10.4230/OASIcs.WPTE.2015.3.

[29] Giulio Guerrieri (2018): Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus
(Long Version). CoRR abs/1812.10799. Available at http://arxiv.org/abs/1812.10799.

[30] Giulio Guerrieri, Luca Paolini & Simona Ronchi Della Rocca (2015): Standardization of a Call-By-Value
Lambda-Calculus. In Thorsten Altenkirch, editor: 13th International Conference on Typed Lambda Calculi
and Applications (TLCA 2015), LIPIcs 38, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 211–225,
doi:10.4230/LIPIcs.TLCA.2015.211.

[31] Giulio Guerrieri, Luca Paolini & Simona Ronchi Della Rocca (2017): Standardization and Conservativity of a
Refined Call-by-Value lambda-Calculus. Logical Methods in Computer Science 13(4), doi:10.23638/LMCS-
13(4:29)2017.

[32] Neil D. Jones, Carsten K. Gomard & Peter Sestoft (1993): Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[33] Delia Kesner & Daniel Ventura (2015): A Resource Aware Computational Interpretation for Herbelin’s Syntax.
In Martin Leucker, Camilo Rueda & Frank D. Valencia, editors: Theoretical Aspects of Computing - ICTAC
2015 - 12th International Colloquium, Lecture Notes in Computer Science 9399, Springer, pp. 388–403,
doi:10.1007/978-3-319-25150-9 23.

http://dx.doi.org/10.1016/j.tcs.2010.12.017
http://dx.doi.org/10.1016/j.ic.2015.12.010
http://dx.doi.org/10.1007/BF02011875
http://dx.doi.org/10.1305/ndjfl/1093883253
http://dx.doi.org/10.1007/978-3-642-35722-0_12
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.259
http://dx.doi.org/10.1145/2967973.2968608
http://dx.doi.org/10.1007/3-540-57887-0_115
http://dx.doi.org/10.1007/3-540-57887-0_115
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0168-0072(88)90025-5
http://dx.doi.org/10.1145/581478.581501
http://dx.doi.org/10.4230/OASIcs.WPTE.2015.3
http://arxiv.org/abs/1812.10799
http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.211
http://dx.doi.org/10.23638/LMCS-13(4:29)2017
http://dx.doi.org/10.23638/LMCS-13(4:29)2017
http://dx.doi.org/10.1007/978-3-319-25150-9_23

72 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

[34] Delia Kesner & Pierre Vial (2017): Types as Resources for Classical Natural Deduction. In Dale Miller, editor:
2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017), LIPIcs 84,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 24:1–24:17, doi:10.4230/LIPIcs.FSCD.2017.24.

[35] Assaf J. Kfoury (2000): A linearization of the Lambda-calculus and consequences. J. Log. Comput. 10(3), pp.
411–436, doi:10.1093/logcom/10.3.411.

[36] Jean-Louis Krivine (1993): Lambda-calculus, types and models. Ellis Horwood series, Ellis Horwood, Upper
Saddle River, NJ, USA.

[37] Damiano Mazza, Luc Pellissier & Pierre Vial (2018): Polyadic approximations, fibrations and intersection
types. PACMPL 2(POPL), pp. 6:1–6:28, doi:10.1145/3158094.

[38] Peter Møller Neergaard & Harry G. Mairson (2004): Types, potency, and idempotency: why nonlinear-
ity and amnesia make a type system work. In Chris Okasaki & Kathleen Fisher, editors: Proceedings
of the Ninth International Conference on Functional Programming (ICFP 2004), ACM, pp. 138–149,
doi:10.1145/1016850.1016871.

[39] Luca Paolini (2001): Call-by-Value Separability and Computability. In Antonio Restivo, Simona Ronchi Della
Rocca & Luca Roversi, editors: Theoretical Computer Science, 7th Italian Conference (ICTCS 2001), Lecture
Notes in Computer Science 2202, Springer, pp. 74–89, doi:10.1007/3-540-45446-2 5.

[40] Luca Paolini, Mauro Piccolo & Simona Ronchi Della Rocca (2017): Essential and relational models. Mathe-
matical Structures in Computer Science 27(5), pp. 626–650, doi:10.1017/S0960129515000316.

[41] Gordon D. Plotkin (1975): Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1(2),
pp. 125–159, doi:10.1016/0304-3975(75)90017-1.

[42] Garrel Pottinger (1980): A type assignment for the strongly normalizable λ -terms. In J.R. Hindley J.P. Seldin,
editor: To HB Curry: essays on combinatory logic, λ -calculus and formalism, Academic Press, pp. 561–577.

[43] Laurent Regnier (1992): Lambda-calcul et réseaux. PhD thesis, Univ. Paris VII.
[44] Laurent Regnier (1994): Une équivalence sur les lambda-termes. Theor. Comput. Sci. 126(2), pp. 281–292,

doi:10.1016/0304-3975(94)90012-4.
[45] Simona Ronchi Della Rocca & Luca Paolini (2004): The Parametric Lambda Calculus - A Metamodel for

Computation. Texts in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/978-3-662-
10394-4.

http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.24
http://dx.doi.org/10.1093/logcom/10.3.411
http://dx.doi.org/10.1145/3158094
http://dx.doi.org/10.1145/1016850.1016871
http://dx.doi.org/10.1007/3-540-45446-2_5
http://dx.doi.org/10.1017/S0960129515000316
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1016/0304-3975(94)90012-4
http://dx.doi.org/10.1007/978-3-662-10394-4
http://dx.doi.org/10.1007/978-3-662-10394-4

	1 Introduction
	1.1 Preliminaries and notations

	2 The shuffling calculus
	3 A non-idempotent intersection type system
	4 Relational semantics: qualitative results
	5 The quantitative side of type derivations
	6 Conclusions
	References

