
Jakob Rehof (Ed.): Intersection Types and Related Systems (ITRS)
EPTCS 177, 2015, pp. 24–42, doi:10.4204/EPTCS.177.3

Liquid Intersection Types

Mário Pereira Sandra Alves Mário Florido
University of Porto, Department of Computer Science & LIACC

{mariopereira,sandra,amf}@dcc.fc.up.pt

We present a new type system combining refinement types and the expressiveness of intersection
type discipline. The use of such features makes it possible to derive more precise types than in the
original refinement system. We have been able to prove several interesting properties for our system
(including subject reduction) and developed an inference algorithm, which we proved to be sound.

1 Introduction

Refinement types [11] state complex program invariants, by augmenting type systems with logical pred-
icates. A refinement type of the form{ν : B |φ} stands for the set of values from basic typeB restricted
to the filtering predicate (refinement)φ . A subtyping relation exists for refinement types, which will
generate implication conditions:

Γ;ν : B⊢ φ ⇒ ψ
Γ ⊢ {ν : B |φ}<: {ν : B |ψ}

One idea behind the use of such type systems is to perform type-checking using SMTs (Satisfability
Modulo Theories) solvers [16], discharging conditions as the aboveφ ⇒ψ . However, the use of arbitrary
boolean terms as refinement expressions leads to undecidable type systems, both for type checking and
inference.

Liquid Types [15, 17] present a system capable of automatically inferring refinement types, by means
of two main restrictions to a general refinement type system:refinement predicates of some terms are
conjunctions of expressions exclusively taken from a global, user-supplied set (denotedQ) of logical
qualifiers (simple predicates over program variables, the value variableν and the variable placeholder
⋆); and a conservative (hence decidable) notion of subtyping.

Despite the interest of Liquid Types, some situations arisewhere the inference procedure infers
poorly accurate types. For example, consideringQ= {ν ≥ 0,ν ≤ 0} and the termneg≡ λx.−x, Liquid
Types infer forneg the typex : {0 ≤ ν ∧ 0 ≥ ν} → {0 ≤ ν ∧ 0 ≥ ν} (throughout this paper we write
{φ} instead of{ν : B |φ} wheneverB is clear from the context). This type cannot be taken as a precise
description of theneg function’s behavior, since it is not expressed that for a positive (resp. negative)
argument the function returns a negative (resp. positive) value. With our system we will have fornegthe
type(x : {ν ≥ 0} → {ν ≤ 0})∩ (x : {ν ≤ 0} → {ν ≥ 0}).

We introduceLiquid Intersection Types, a refinement type system with the addition of intersection
types [2, 3]. Our use of intersections in conjunction with refinement types is motivated by a problem
clearly identified for Liquid Types: the absence of most-general types, as in the ML tradition. Our use of
intersections for refinement types draws inspiration from [8], since this offers a way to use jointly detailed
types and intersections. Though, integrating this expressiveness with refinement types and keeping the
qualifiers fromQ simple (which must be provided by the programmer) implies the design of a new type
system.

http://dx.doi.org/10.4204/EPTCS.177.3

M. Pereira, S. Alves & M. Florido 25

M,N ::= Terms:
| x variable
| c constant
| λx.M abstraction
| MN application
| let x= M in N let-binding
| [Λα]M type abstraction
| [τ]M type instantiation

φ ::= Liquid refinements:
| q qualifier fromQ

| ⊤ true (empty refinement)
B ::= Base types:

| int integers
| bool booleans

∼
τ(R) ::= Pretype skeleton

| {ν : B |R} base refined type

| x :
∼
τ(R)→

∼
τ(R) function

|
∼
τ(R)∩

∼
τ(R) intersection

| α type variable
∼
σ(R) ::= Pretype scheme skeleton:

|
∼
τ(R) mono pretype

| ∀α.
∼
σ(R) pretype scheme

T ::= Simple types:
| B basic type
| α type variable
| T1 → T2 functional type

.
τ(R),

.
σ(R) ::=

∼
τ(R) :: T,

∼
σ(R) :: T Well-founded pretype, scheme

τ,σ ::=
.
τ(E),

.
σ (E) Refinement Intersection Type, Scheme

τ̂ , σ̂ ::=
.
τ(φ),

.
σ (φ) Liquid Intersection Type, Scheme

Γ ::= Environment:
| /0 empty
| Γ;x : σ new binding

Figure 1: Syntax

Besides the new type system, another contribution of this work is a new inference algorithm for
Liquid Intersection Types.

This paper is organized as follows. Section 2 presents the designed type system, with a focus on the
language syntax, semantics and typing rules, as well as a soundness result. The type inference algorithm
is introduced in section 3. Finally, in section 4 we concludewith final remarks and explain some possible
future work.

2 Type system

2.1 Syntax and semantics
Our target language is theλ -calculus extended with constants and, as in the Damas-Milner type system,
local bindings via thelet constructor. We assume the Barendregt convention regarding names of free

26 Liquid Intersection Types

and bound variables [1], and identify terms moduloα-equivalence. The syntax of expressions and types
is presented in Figure 1. We will useFV(M) andBV(M) to denote the set of free and bound variables of
termM, respectively. These notions can be lifted to type environments, asFV(Γ), resp.BV(Γ), denoting
the free variables, resp. the bound variables, of refinementexpressions for every typed bound withinΓ.

The set of constants of our language is a countable alphabet of constantsc, including literals and
primitive functions. We assume for primitive functions theexistence of at least arithmetic operators, a
fixpoint combinatorfix and an identifier representingif-then-else expressions. The type of constants
is established using a mappingty(c), assigning a refined type that captures the semantic of each constant.
For instance, to an integer literaln it would be assigned the type{ν : int |ν = n}. Note that refinements
may come from the user defined setQ or from the constants and sub-derivations. In the latter case the
refinement expressions are arbitrary expressions fromE.

We use
∼
τ(R) and

∼
σ(R) to denote pretypes and pretype schemes, respectively (thisnotion of pretypes

goes back to [13]), which stand for type variables, basic andfunctional refined types, intersection of
pretypes and polymorphic pretypes. The notationx : τ1 → τ2 will be preferred over the usualΠ(x : τ1).τ2

for functional dependent types, meaning that variablex may occur in the refinement expressions present
in τ2. An intersection in pretypes (denoted by∩) indicates that a term with type

∼
τ1(R)∩

∼
τ2(R) has both

type
∼
τ1(R) and

∼
τ2(R), respecting the possible refinement predicates figuring in these types. We assume

the ′∩′ operator to be commutative, associative and idempotent.
A well-founded pretype(resp. well-founded type scheme) is a pretype

∼
τ(R) (resp.

∼
σ(R)) for such

that
∼
τ(R) :: T (resp.

∼
σ(R) :: T), for someT (T stands for simple types for the rest of this document).

Thewell-foundedrelation
∼
σ(R) :: T is inductively defined by:

::-VAR

α :: α

::-FUN
∼
τ x(R) :: Tx

∼
τ(R) :: T

(x :
∼
τ x(R)→

∼
τ(R)) :: Tx → T

::-REF

{ν : B |R} :: B

::-∀
∼
σ(R) :: T

∀α.
∼
σ (R) :: T

::-∩
∼
τ1(R) :: T

∼
τ 2(R) :: T

∼
τ 1(R)∩

∼
τ2(R) :: T

Using this relation guarantees that intersection of types are at the refinement expressions only, i.e. for
∼
σ1(R)∩

∼
σ2(R) both

∼
σ1(R) and

∼
σ2(R) are of the same form, solely differing in the refinement predi-

cates.
To describe the execution behavior of our language we use a small-step contextual operational se-

mantics, whose rules are shown in Figure 2. The relationM N describes a single evaluation step from
term M to N. The rules[E −β], [E −Let] and [E −Compat] are standard for a call-by-value ML-like
language. The rule[E -Constant] evaluates an application with a constant in the function position. This
rule relies on the embeddingJ·K of terms into a decidable logic [12] (the definition of this embedding, as
well as the details of the used logic, will be made clear in next section).

2.2 Typing rules

We present our typing rules via the collection of derivationrules shown in Figure 3. We present three
different judgments:type judgment, of the formΓ ⊢∩

Q M : σ meaning that termM has typeσ under en-
vironmentΓ, restricted to the qualifiers contained inQ, i.e., only expressions from the setQ can be used
as refinement predicates for the following terms: let bindings, λ -abstractions and type instantiations;
subtype judgmentΓ ⊢∩ σ1 ≺ σ2, stating thatσ1 is a subtype ofσ2 under the conditions of environment
Γ; and thewell-formedness judgmentΓ ⊢∩ σ indicating that variables referred by the refinements of
σ are in the scope of corresponding expressions. The well-formedness judgment can be lifted to well-
formedness of environments, by stating that an environmentis well-formed if for every binding, types

M. Pereira, S. Alves & M. Florido 27

V ::= Values:
| c constant
| λx.M abstraction

Contexts C
C ::= Contexts:

| [] hole
| C M left application
| V C right application
| let x=C in M let-context

Evaluation M N
cV JcK(V) [E −Constant]

(λx.M)V [V/x]M [E −β]
let x=V in M [V/x]M [E −Let]

C[M] C[N] i f M N [E −Compat]

Figure 2: Small-step operational semantics.

are well-formed with respect to the prefix environment. Thiswell-formedness restriction implies the
absence of the structural property of exchange in our system, since by permuting the bindings inΓ one
could generate an inconsistent environment

The rule [APP] conforms to the dependent types discipline, since the typeof an applicationMN is
the return type ofM but with every occurrence ofx in the refinements substituted byN.

Another point worth mentioning is the distinction made whenthe type of a variable is to be retrieved,
rules [VAR-B] and [VAR]. Whenever the type of the variablez is an intersection of refined basic type we
ignore these refinements and assignz the type{ν : B |ν = z}, for some basic typeB. This is inspired on
the system of Liquid Types [15], since this assigned refined type is very useful when it comes to use in
subtyping, especially with the rule [≺-Base]. When this is not the case, the type of a variable is theone
stored inΓ.

One novel aspect of this system is the presence of the [INTERSECT] rule, which allows to intersect
two types that have been derived for the same term. The use of this rule increases the expressiveness of
the types language itself, since more detailed types can be derived for a program.

The subtyping relation presents some typical rules for a system with intersection types. These allow
to capture the relations at the level of intersections in types, with no concern for the refinements of the
two types being compared. On the other side, comparing two refined base types reduces to the check of
an implication formula between the refinement expressions.Our system uses a decidable notion of im-
plication in the rule [≺-Base], by embedding environments and refinement expressions into a decidable
logic. This logic contains at least equality, uninterpreted functions and linear arithmetic. This is the core
logical setting of most state-of-the-art SMT solvers. The embeddingJMK translates the termM to the
correspondent one in the logic (if it is the caseM is a constant or an arithmetic operator), or ifM is a
λ -abstraction or an application encodes it via uninterpreted functions. The embedding of environments
is defined as

JΓK,
∧

{(JE1K∧ . . .∧ JEnK)[x/ν] |x : {ν : B |E1}∩ . . .∩{ν : B |En} ∈ Γ}

Given that every implication expression generated in rule [≺-Base] is decidable, it is then suitable
to be discharged by some automatic theorem prover. So, type-checking in our system can be seen as a
typing-and-proofprocess.

28 Liquid Intersection Types

Liquid Intersection Type checking Γ ⊢∩
Q M : σ

SUB

Γ ⊢∩
Q M : σ1 Γ ⊢∩ σ1 ≺ σ2 Γ ⊢∩ σ2

Γ ⊢∩
Q M : σ2

INTERSECT

Γ ⊢∩
Q M : τ1 Γ ⊢∩

Q M : τ2 τ1∩ τ2 :: T

Γ ⊢∩
Q M : τ1∩ τ2

VAR-B
Γ(x) = τ1∩ . . .∩ τn τi :: B(∀i : 1≤ i ≤ n)

Γ ⊢∩
Q x : {v : B|v= x}

VAR

Γ(x)not a base type Γ(x) :: T

Γ ⊢∩
Q x : Γ(x)

APP

Γ ⊢∩
Q M : (x : τx → τ) Γ ⊢∩

Q N : τx

Γ ⊢∩
Q MN : [N/x]τ

FUN

Γ;x : τ̂x ⊢
∩
Q M : τ̂ Γ ⊢∩ τ̂x → τ̂ τ̂ :: T

Γ ⊢∩
Q λx.M : (x : τ̂x → τ̂)

CONST

Γ ⊢∩
Q c : ty(c)

LET

Γ ⊢∩
Q M : σ Γ;x : σ ⊢∩

Q N : τ̂ Γ ⊢∩ τ̂
Γ ⊢∩

Q let x= M in N : τ̂

GEN

Γ ⊢∩
Q M : σ α 6∈ Γ

Γ ⊢∩
Q [Λα]M : ∀α.σ

INST

Γ ⊢∩
Q M : ∀α.σ Γ ⊢∩ τ̂ Shape(τ̂) = T

Γ ⊢∩
Q [T]M : [τ̂/α]σ

Subtyping Γ ⊢∩ σ1 ≺ σ2

≺-BASE

Valid(JΓK∧ (JE1K∧ . . .∧ JEnK)⇒ (
q
E′

1

y
∧ . . .∧

q
E′

m

y
))

Γ ⊢∩ {v : B |E1}∩ . . .∩{v : B |En} ≺
{

v : B |E′
1

}

∩ . . .∩
{

v : B |E′
m

}

≺-INTERSECT-FUN

Γ ⊢∩ (x : τx → τ1)∩ (x : τx → τ2)≺ (x : τx → τ1∩ τ2)

≺-ELIM

Γ ⊢∩ τ1∩ τ2 ≺ τi
i ∈ {1,2}

≺-FUN

Γ ⊢∩ τ ′x ≺ τx Γ;x : τ ′x ⊢
∩ τ ≺ τ ′

Γ ⊢∩ x : τx → τ ≺ x : τ ′x → τ ′
≺-VAR

Γ ⊢∩ α ≺ α

≺-INTERSECT

Γ ⊢∩ τ ≺ τ1 Γ ⊢∩ τ ≺ τ2

Γ ⊢∩ τ ≺ τ1∩ τ2

≺-POLY

Γ ⊢∩ σ1 ≺ σ2

Γ ⊢∩ ∀α.σ1 ≺ ∀α.σ2

Well formed types Γ ⊢∩ σ

WF-B
Γ;ν : B⊢∩ E : bool

Γ ⊢∩ {ν : B |E}

WF-VAR

Γ ⊢∩ α

WF-FUN

Γ;x : τx ⊢
∩ τ

Γ ⊢∩ x : τx → τ

WF-POLY

Γ ⊢∩ σ
Γ ⊢∩ ∀α.σ

WF-INTERSECT

Γ ⊢∩ τ1 Γ ⊢∩ τ2

Γ ⊢∩ τ1∩ τ2

Figure 3: Typing rules for Liquid Intersection Types.

M. Pereira, S. Alves & M. Florido 29

We show an example of a derivation for the termλx.− x, assumingQ = {ν ≥ 0,ν ≤ 0}. With
Γ = x : {ν ≥ 0}, consider:

D ′
1 :

CONST
Γ ⊢∩

Q − : (y : int →{ν =−y})

VAR-B
Γ(x) = {ν ≥ 0}

Γ ⊢∩
Q x : {ν = x}

Valid(x≥ 0∧ν = x⇒⊤)

Γ ⊢∩ {ν = x} ≺ int
≺-BASE

Γ ⊢∩
Q x : int

SUB

Γ ⊢∩
Q −x : {ν =−x}

and:
D1 :

D
′
1

Valid(x≥ 0∧ν =−x⇒ ν ≤ 0)

Γ ⊢∩ {ν =−x} ≺ {ν ≤ 0}
≺-BASE

Γ ⊢∩
Q −x : {ν ≤ 0}

SUB

⊢∩
Q λx.− x : (x : {ν ≥ 0}→ {ν ≤ 0})

FUN

We can also derive⊢∩
Q λx.−x : (x : {ν ≤ 0} → {ν ≥ 0}) (similarly to the previous derivation, with

the corresponding≤ and≥ symbols changed). Naming that derivationD2, we finally have:

D1 D2

⊢∩
Q λx.− x : (x : {ν ≥ 0}→ {ν ≤ 0})∩ (x : {ν ≤ 0}→ {ν ≥ 0})

INTERSECT

We omit the well-formedness and well-founded sub-derivations, since they are trivially constructed and
useint to denote the type{ν : int |⊤}, that is, the common type for integer values.

2.3 Properties

In order to prove soundness properties for our system we follow the approach of [15, 17]. The decidable
notion of implication checking employed by the subtyping rules is a problem when it comes to prove a
substitution lemma. So, instead we prove subject reductionfor a version of the system with undecidable
subtyping and unrestricted expressions in refinement predicates. The typing judgment in this system will
be denoted byΓ ⊢∩ M : σ , and the inference rules are presented in Figures 4 and 5. Then, we show
that any derivation in the decidable system has a counter-part in the undecidable one. We present in this
section the more interesting steps employed during the proof of subject reduction for our type system.
The detailed proofs can be found in [14].

Definition 1 (Constants) Each constant c has a type ty(c) such that:

1. /0⊢∩ ty(c);

2. if c is a primitive function then it cannot get stuck, thus if Γ ⊢∩ cv thenJcK(v) is defined and if
Γ ⊢∩ cM : σ andJcK(M) is defined thenΓ ⊢∩ JcK (M) : σ ;

3. if ty(c) is {ν : B |φ} thenφ ≡ ν = c.

Definition 2 (Embedding) The embeddingJ·K is defined as a map from terms and environments to for-
mulas in the decidable logic such that for allΓ,E,E′ if Γ ⊢∩ E : bool,Γ ⊢∩ E′ : bool,Valid(JΓK∧ JEK⇒
E′), thenΓ ⊢∩ E ⇒ E′.

30 Liquid Intersection Types

Refinement Intersection type checking Γ ⊢∩ M : σ

SUB

Γ ⊢∩ M : σ1 Γ ⊢∩ σ1 ≺ σ2 Γ ⊢∩ σ2

Γ ⊢∩ M : σ2

INTERSECT

Γ ⊢∩ M : τ1 Γ ⊢∩ M : τ2 τ1∩ τ2 :: T

Γ ⊢∩ M : τ1∩ τ2

VAR-B
Γ(x) = τ1∩ . . .∩ τn τi :: B(∀i : 1≤ i ≤ n)

Γ ⊢∩ x : {ν : B |ν = x}

VAR

Γ(x)not a base type Γ(x) :: T

Γ ⊢∩ x : Γ(x)

APP

Γ ⊢∩ M : (x : τx → τ) Γ ⊢∩ N : τx

Γ ⊢∩ MN : [N/x]τ

FUN

Γ;x : τx ⊢
∩ M : τ Γ ⊢∩ τx → τ τ :: T

Γ ⊢∩ λx.M : (x : τx → τ)

CONST

Γ ⊢∩ c : ty(c)

LET

Γ ⊢∩ M : σ Γ;x : σ ⊢∩ N : τ Γ ⊢∩ τ
Γ ⊢∩ let x= M in N : τ

GEN

Γ ⊢∩ M : σ α 6∈ Γ
Γ ⊢∩ [Λα]M : ∀α.σ

INST

Γ ⊢∩ M : ∀α.σ Γ ⊢∩ τ Shape(τ) = T

Γ ⊢∩ [T]M : [τ/α]σ

Implication Γ ⊢∩ E ⇒ E′

IMP

Γ ⊢∩ E : bool Γ ⊢∩ E′ : bool ∀ρ .(Γ |= ρ andρ(E) ∗
 ⊤ impliesρ(E′)

∗
 ⊤)

Γ ⊢∩ E ⇒ E′

Subtyping Γ ⊢∩ σ1 ≺ σ2

≺-BASE

Γ;ν : B⊢∩ E1∧ . . .∧En ⇒ E′
1∧ . . .∧E′

m

Γ ⊢∩ {ν : B |E1}∩ . . .∩{ν : B |En} ≺
{

ν : B |E′
1

}

∩ . . .∩
{

ν : B |E′
m

}

≺-INTERSECT-FUN

Γ ⊢∩ (x : τx → τ1)∩ (x : τx → τ2)≺ (x : τx → τ1∩ τ2)

≺-ELIM

Γ ⊢∩ τ1∩ τ2 ≺ τi
i ∈ {1,2}

≺-FUN

Γ ⊢∩ τ ′x ≺ τx Γ;x : τ ′x ⊢
∩ τ ≺ τ ′

Γ ⊢∩ (x : τx → τ)≺ (x : τ ′x → τ ′)
≺-VAR

Γ ⊢∩ α ≺ α

≺-INTERSECT

Γ ⊢∩ τ ≺ τ1 Γ ⊢∩ τ ≺ τ2

Γ ⊢∩ τ ≺ τ1∩ τ2

≺-POLY

Γ ⊢∩ σ1 ≺ σ2

Γ ⊢∩ ∀α.σ1 ≺ ∀α.σ2

Figure 4: Refinement Intersection typing rules

M. Pereira, S. Alves & M. Florido 31

Well formed types Γ ⊢∩ σ

WF-B
Γ;ν : B⊢∩ φ : bool

Γ ⊢∩ {ν : B |φ}
WF-VAR

Γ ⊢∩ α

WF-FUN

Γ;x : τx ⊢
∩ τ

Γ ⊢∩ (x : τx → τ)

WF-POLY

Γ ⊢∩ σ
Γ ⊢∩ ∀α.σ

WF-INTERSECT

Γ ⊢∩ τ1 Γ ⊢∩ τ2

Γ ⊢∩ τ1∩ τ2

Consistent substitutions Γ |= ρ

CS-EMPTY

/0 |= /0

CS-EXT

Γ |= ρ /0⊢∩ V : ρ(σ)

Γ;x : σ |= ρ ; [V/x]

Figure 5: Rules for well formed Refinement Intersection Types and consistent substitutions.

Definition 3 (Substitution) We define substitution on types,ρ(σ), as follows:

ρ(α) = α
ρ({ν : B |E}) = {ν : B |ρ(E)}
ρ(x : τx → τ) = x : ρ(τx)→ ρ(τ)

ρ(∀α .σ) = ∀α .ρ(σ)
ρ(τ1∩ τ2) = ρ(τ1)∩ρ(τ2)

A substitution can be lifted to typing contexts as expected:

ρ(/0) = /0
ρ(Γ;x : σ) = ρ(Γ);x : ρ(σ)

Definition 4 (Domain of a substitution) The domain of a substitution,Dom(ρ), is defined as follows:

Dom(/0) = {}
Dom(ρ ; [V/x]) = Dom(ρ)∪{x}

Lemma 1 (Substitution permutation) If Γ |= ρ1;ρ2 then

1. Dom(ρ1)∩Dom(ρ2) = /0;

2. for all Liquid Intersection Typeσ , ρ1;ρ2(σ) = ρ2;ρ1(σ).

Proof. 1. By induction on the derivationΓ |= ρ1;ρ2, splitting cases on which rule was used at the
bottom.

2. By induction on the structure ofσ . �

32 Liquid Intersection Types

Lemma 2 (Well-formed substitutions)

1. If Γ |= ρ1;ρ2 then there areΓ1,Γ2 such thatΓ = Γ1;Γ2, Dom(ρ1) = Dom(Γ1), Dom(ρ2) =
Dom(Γ2);

2. Γ1;Γ2 |= ρ1;ρ2,Dom(ρ1) = Dom(Γ1),Dom(ρ2) = Dom(Γ2) iff Γ1 |= ρ1, ρ1Γ2 |= ρ2.

Proof. 1. By induction on the structure ofΓ.

2. By induction on the structure ofΓ2. �

Corollary 1 (Well-formed substitutions)
Γ1;x : σx;Γ2 |= ρ1; [Vx/x];ρ2 ⇐⇒ Γ1 |= ρ1, /0⊢Vx : ρ1(σx), ρ1; [Vx/x](Γ2) |= ρ2.

Proof. Corollary of Lemma 2. �

Lemma 3 (Weakening) Let
Γ = Γ1;Γ2

Γ′ = Γ1;x : σx;Γ2

x 6∈ FV(Γ2)

then:

1. if Γ′ |= ρ1; [V/x];ρ2, thenΓ |= ρ1;ρ2;

2. if Γ ⊢∩ E ⇒ E′, thenΓ′ ⊢∩ E ⇒ E′;

3. if Γ ⊢∩ σ1 ≺ σ2, thenΓ′ ⊢∩ σ1 ≺ σ2;

4. if Γ ⊢∩ σ , thenΓ′ ⊢∩ σ ;

5. if Γ ⊢∩ M : σ , thenΓ′ ⊢∩ M : σ .

Proof. By simultaneous induction on the derivations of the antecedent judgments. �

Lemma 4 (Substitution) If
Γ1 ⊢

∩ V : σ ′

Γ = Γ1;x : σ ′;Γ2

Γ′ = Γ1; [V/x]Γ2

then:

1. if Γ |= ρ1; [V/x]ρ2, thenΓ′ |= ρ1;ρ2;

2. if Γ ⊢∩ E ⇒ E′, thenΓ′ ⊢∩ [V/x]E ⇒ [V/x]E′;

3. if Γ ⊢∩ σ1 ≺ σ2, thenΓ′ ⊢∩ [V/x]σ1 ≺ [V/x]σ2;

4. if Γ ⊢∩ σ , thenΓ′ ⊢∩ [V/x]σ ;

5. if σ :: T, then[V/x]σ :: T;

6. if Γ ⊢∩ M : σ , thenΓ′ ⊢∩ M : σ .

Proof. By simultaneous induction on the derivations of the antecedent judgments. �

Theorem 1 (Subject reduction) If Γ ⊢∩ M : σ and M N, thenΓ ⊢∩ N : σ .

Proof. By induction on the derivationΓ ⊢∩ M : σ , splitting cases on which rule was used at the bottom.
We give here the cases for [INTERSECT] and [APP].

M. Pereira, S. Alves & M. Florido 33

• case [INTERSECT]: By inversion
Γ ⊢∩ M : τ1

Γ ⊢∩ M : τ2

τ1∩ τ2 :: T

By IH
Γ ⊢∩ N : τ1

Γ ⊢∩ N : τ2

So, the following derivation is then valid

INTERSECT
Γ ⊢∩ N : τ1 Γ ⊢∩ N : τ2 τ1∩ τ2 :: T

Γ ⊢∩ N : τ1∩ τ2

• case [APP]: By inversion
Γ ⊢∩ M : (x : τx → τ)
Γ ⊢∩ N : τx

– sub-case in whichM is a context: For this case considerM M′.
By IH

Γ ⊢∩ M′ : (x : τx → τ)

Given thatM M′, thenMN M′N.
The following derivation is then valid

APP
Γ ⊢∩ M′ : (x : τx → τ) Γ ⊢∩ N : τx

Γ ⊢∩ M′N : [N/x]τ

– sub-case in whichN is a context: Similar to the previous one.

– sub-case in which application is of the form cV: By pushing applications of rule [SUB] down,
we can ensure rule [CONST] was used at the bottom of the derivation of the type for c.
For this case, cV JcK(V).
By inversion

Γ ⊢∩ c : (x : τx → τ)
Γ ⊢∩ V : τx

By Definition 1, we have
Γ ⊢∩ JcK(V) : [V/x]τ

which is the desired conclusion.

– case in which application is of the form(λx.M)V: For this case

(λx.M)V [V/x]M

By pushing applications of the rule [SUB] down, we can ensure rule [FUN] is used at the
bottom of the derivation of the type forλx.M.
By inversion

Γ ⊢∩ λx.M : (x : τx → τ)
Γ ⊢∩ V : τx

34 Liquid Intersection Types

By inversion on rule [FUN]
x : τx ⊢

∩ M : τ

By Lemma 4
Γ ⊢∩ [V/x]M : [V/x]τ

which is the desired conclusion.

�

Theorem 2 (Over approximation) If Γ ⊢∩
Q M : σ , thenΓ ⊢∩ M : σ .

Proof. The proof follows by straightforward induction on the typing derivation. At each case the key
observation is that each Liquid Intersection Type is also a Dependent Intersection Type and for each rule
in the decidable system there is a matching rule in the undecidable side. For the case of [≺-BASE] we
use Definition 1.

Combining Theorems 1 and 2 guarantees that at run-time, for every well-typed term, taking an eval-
uation step preserves types.

3 Type inference

In this section we present our algorithm1 for inferring Liquid Intersection Types, Figure 6. Before exe-
cuting this algorithm we bind every sub expression using thelet-in constructor. This transformation is
closely related withA-Normal Forms [7] and is performed to force types of intermediate expressions to
be pushed into the typing context. The algorithm we propose is built upon three main phases:(i) we use
the ML inference engine to get appropriate types, serving astype shapesfor Liquid Intersection Types;
(ii) for some particular sub-terms a set of constraints is generated, ensuring the well-formedness of types
and that subtyping relations hold, in order to infer sound types;(iii) taking qualifiers fromQ we solve
the generated constraintson-the-fly, much like as in classical inference algorithms.

3.1 Using Damas-Milner type inference

One key aspect of our inference algorithm is the use of the inference algorithmW [4] to infer ML
types. Given the fact that a Liquid Intersection Type for a term is a refinement and intersections of
the corresponding ML type, the types inferred byW act asshapesfor our Liquid Intersection Types.
Indeed, the functionShape(·) (figuring in the typing rules and in the inference algorithm)maps a Liquid
Intersection Type to its corresponding ML type. For example, Shape((x : {ν = 0} → {ν = 0})∩ (x :
{ν ≥ 0} → {ν ≥ 0})) = int → int.

In the inference algorithm, wheneverW is called, we need to feed it with an environment containing
exclusively ML types. This is done by liftingShape(·) to environments,Shape(Γ), by applying it to
every binding inΓ.

The functionFresh(·, ·) takes an ML type and the setQ as input and generates a new Liquid Inter-
section Type that contains all the combinations of refinement expressions fromQ. Taking for instance
the ML typeT = x : int → int (we assume we can annotate types with the corresponding abstraction

1For some cases of the algorithm we use atemporary type, denoted byA . The only purpose of temporary types is to ease
the notation as we explain in section 3.3.

M. Pereira, S. Alves & M. Florido 35

Infer(Γ,x,Q) = if W (Shape(Γ),x) = B then{v : B |v= x}
elseΓ(x)

Infer(Γ,c,Q) = ty(c)
Infer(Γ,λx.M,Q) = let (x : τ̂1 → τ̂ ′1)∩ . . .∩ (x : τ̂n → τ̂ ′n) = Fresh(W (Shape(Γ),λx.M),Q) in

let τ ′′i = Infer(Γ;x : τ̂i ,M,Q) in

let A =
⋂

{

(x : τ̂ j → τ̂ ′j) |Γ ⊢∩ (x : τ̂1 → τ̂ ′1)∩ . . .∩ (x : τ̂n → τ̂ ′n)
}

in
⋂

{

(x : τ̂k → τ̂ ′k) |x : τ̂k → τ̂ ′k ∈ A ,Γ;x : τ̂k ⊢
∩
Q τ ′′k ≺ τ̂ ′k

}

Infer(Γ,MN,Q) = let (x : τ1 → τ ′1)∩ . . .∩ (x : τn → τ ′n) = Infer(Γ,M,Q) in
let τ = Infer(Γ,N,Q) in
⋂

[N/x]
{

τ ′i |Γ ⊢∩
Q τ ≺ τi

}

Infer(Γ, let x= M in N,Q) = let τ̂ = Fresh(W (Shape(Γ), let x= M in N),Q) in
let τ1 = Infer(Γ,M,Q) in
let τ2 = Infer(Γ;x : τ1,N,Q) in
let A =

⋂

{τ̂i |Γ ⊢∩ τ̂} in
⋂

{

τ̂ j | τ̂ j ∈ A ,Γ;x : τ1 ⊢
∩
Q τ2 ≺ τ̂ j

}

Infer(Γ, [Λα]M,Q) = let σ = Infer(Γ,M,Q) in
∀α.σ

Infer(Γ, [T]M,Q) = let τ ′ = Fresh(T,Q) in
let∀α.σ = Infer(Γ,M,Q) in
letA =

⋂

{τ ′i |Γ ⊢∩ τ ′} in
σ [A /α]

Figure 6: Type inference algorithm

variable, so it is easier to use with refinements) andQ = {ν ≥ 0,ν ≤ 0}, Fresh(T,Q) would generate
the Liquid Intersection Type

(x : {ν ≥ 0} → {ν ≥ 0})∩
(x : {ν ≥ 0} → {ν ≤ 0})∩
(x : {ν ≤ 0} → {ν ≥ 0})∩
(x : {ν ≤ 0} → {ν ≤ 0})

3.2 Constraint generation

The constraints generated during inference serve as a meansto ensure that the subtyping and well-
formedness requirements are respected. In the presentation of the algorithm we borrow the notations
from the typing rules, withΓ ⊢∩ σ standing for a well-formedness restriction overσ andΓ ⊢∩ σ ≺ σ ′

constraining typeσ to be a subtype ofσ ′.
The well-formedness constraints are generated for terms where a fresh Liquid Intersection Type is

generated (λ -abstractions, let-bindings and type application). For a fresh generated Liquid Intersection
Type, solving this kind of constraints will result in a type where the free variables of every refinement
are in scope of the corresponding expression.

The second class of constraints are the subtyping ones, capturing relations between two Liquid Inter-
section Types. A constraintΓ ⊢∩ σ ≺ σ ′ is valid if the typeσ ′ is a super-type ofσ , meaning that there is
a type derivation using the subsumption rule to relate the two types.

The well-formedness and subtyping rules (Figure 3) can be used to simplify constraints prior to their

36 Liquid Intersection Types

solving. For instance, the constraintΓ ⊢∩ τ1∩ . . .∩τn can be simplified to the set{Γ ⊢∩ τ1, . . . ,Γ ⊢∩ τn}.
On the other hand, the constraintΓ ⊢∩ (x : τ1 → τ2)≺ (x : τ ′

1 → τ ′
2) can be further reduced toΓ ⊢∩ τ ′

1 ≺ τ1

andΓ;x : τ ′
1 ⊢

∩ τ2 ≺ τ ′
2.

3.3 Constraint solving

We now describe the process of solving the collected constraints throughout the inference algorithm.
This process will reduce to two different validity tests: a well-formedness constraint will, ultimately,
reduce to the constraint of the formΓ ⊢∩ {ν : B |E} and so it will amount to check if the typebool can
be derived forE underΓ; for the subtyping case, the simplification of constraints will result in a series
of restrictions of the formΓ ⊢∩ {ν : B |E1}∩ . . .∩{ν : B |En} ≺ {ν : B |E′

1}∩ . . .∩{ν : B |E′
m}, leading

to check ifJΓK∧ JE1K∧ . . .∧ JEnK ⇒ JE′
1K∧ . . .∧ JE′

mK holds.
Whenever well-formedness constraints are generated, these are solved before the subtyping ones.

This step ensures only well-formed types are involved in subtyping relations. Well-formedness con-
straints arise when afreshLiquid Intersection Type is generated, since that is when refinement expres-
sions are plugged into a type. Such fresh types will be of the form τ1 ∩ . . .∩ τn, so the solution for a
constraint of the formΓ ⊢∩ τ1∩ . . .∩ τn is the type

⋂

{τi}, the intersection of allτi (with 1≤ i ≤ n) such
thatΓ ⊢∩ τi . We assign this solution to atemporarytype, denoted byA , which will be used during the
solving of subtyping constraints.

The subtyping constraints will ensure that inferred types only present refinement expressions cap-
turing the functional behavior of terms. These will be used with λ -abstractions, applications and let-
bindings. Except for applications, subtyping constraintsare preceded by the resolution of well-formedness
restrictions, and so it is the case that subtyping relationswill be checked using the temporary typeA .

For the case ofλ -abstractions, after generating the fresh Liquid Intersection Type(x : τ̂1 → τ̂ ′
1)∩ . . .∩

(x : τ̂n→ τ̂ ′
n), a series of calls toInfer are triggered, which we present via the syntax letτ ′′

i = Infer(Γ;x :
τ̂i ,M,Q), with 1≤ i ≤ n. These calls differ only on the typêτi of x pushed into the environment, implying
that different types forM can be inferred. After solving the well-formedness constraints, we must remove
from typeA the refinement expressions that would cause the type to be unsound. We use the notation
x : τk → τ ′

k ∈ A to indicate that
⋂

{

x : τk → τ ′
k

}

should be a supertype ofA , in the sense that it can be
obtained fromA using exclusively the rule [≺-ELIM] (taking an analogy with set theory,

⋂

{

x : τk → τ ′
k

}

would be a sub set of the intersections ofA). Then, the inferred type will be
⋂

{

x : τ̂k → τ̂ ′
k

}

, such that
x : τ̂k → τ̂ ′

k ∈ A and the constraintΓ;x : τ̂k ⊢
∩ τ ′′

k ≺ τ̂ ′
k is valid, that is, the type inferred forM under the

environmentΓ;x : τ̂k is a subtype of̂τ ′
k. As an example, considerQ = {ν ≥ 0,ν ≤ 0,y= 5}, the term

λx.−x andΓ = /0. The inference procedure will start by generating the type:

(x : {ν ≥ 0} → {ν ≥ 0})∩
(x : {ν ≥ 0} → {ν ≤ 0})∩
(x : {ν ≤ 0} → {ν ≥ 0})∩
(x : {ν ≤ 0} → {ν ≤ 0})∩
(x : {ν ≥ 0} → {y= 5})∩
(x : {ν ≤ 0} → {y= 5})∩
(x : {y= 5} → {ν ≥ 0})∩
(x : {y= 5} → {ν ≤ 0})∩
(x : {y= 5} → {y= 5})

Then, with well-formedness constraints, and since no variable y is in scope, we are left with:

M. Pereira, S. Alves & M. Florido 37

(x : {ν ≥ 0} → {ν ≥ 0})∩
(x : {ν ≥ 0} → {ν ≤ 0})∩
(x : {ν ≤ 0} → {ν ≥ 0})∩
(x : {ν ≤ 0} → {ν ≤ 0})

Finally, because of subtyping relations, the inferred typewill be:

(x : {ν ≥ 0} → {ν ≤ 0})∩
(x : {ν ≤ 0} → {ν ≥ 0})

For application and let-bindings, solving subtyping constraints works in a similar manner as forλ -
abstractions. The type of an application is inferred similarly as in [8]: for the functionM with type
x : τ1 → τ ′

1∩ . . .∩ τn → τ ′
n and the argumentN with typeτ , the type ofMN is

⋂

{τ ′
i }, such that 1≤ i ≤ n

andΓ ⊢∩ τ ≺ τi is checked valid.

3.4 Properties of inference

We were able to prove that our inference algorithm is sound with respect to the typing rules.

Lemma 5 (Relation with derivation and well-founded types) If Γ ⊢∩
Q M : σ thenσ :: Shape(σ).

Proof. By straightforward induction overΓ ⊢∩
Q M : σ .

Theorem 3 (Soundness of inference)If Infer(Γ,M,Q) = σ , thenΓ ⊢∩
Q M : σ .

Proof. By structural induction overM.

• caseM ≡ x:

– subcase in whichM has a basic type in this caseW (Shape(Γ),x) = B and sox has type
{ν : B |φ1}∩ . . .∩{ν : B |φn}, which we abbreviate toτ1∩ ·· ·∩ τn.
The following derivation is then valid

Γ(x) = τ1∩ ·· ·∩ τn τi :: B(∀i.1≤ i ≤ n)

Γ ⊢∩
Q x : {ν : B |ν = x}

B-VAR

– subcase in whichx has not a basic type: in this caseσ = Γ(x).
So, the following derivation is valid

Γ(x) = σ Γ(x) :: Shape(σ)

Γ ⊢∩
Q x : σ

VAR

• CaseM ≡ c: Easy, by application of the rule [CONST].

• CaseM ≡ λx.N: In this case the algorithm computes

– (x : τ̂1 → τ̂ ′
1)∩ . . .∩ (x : τ̂n → τ̂ ′

n) = Fresh(W (Shape(Γ),λx.M),Q)

By IH

Γ;x : τ̂i ⊢
∩
Q N : τ ′′

i , ∀i : 1≤ i ≤ n (a)

By Lemma 5
τ ′′

i :: Shape(τ ′′
i),∀i : 1≤ i ≤ n

38 Liquid Intersection Types

The typeA restricts the inferred type only to the well formed intersections: Γ ⊢∩ (x : τ̂1 → τ̂ ′
1)∩

. . .∩ (x : τ̂n → τ̂ ′
n) reduces to:

{

Γ ⊢∩ (x : τ̂1 → τ̂ ′
1), . . . ,Γ ⊢∩ (x : τ̂n → τ̂ ′

n)
}

Consider the sub-set of derivations in (a) such thatΓ;x : τ̂ j ⊢
∩ τ ′′

j ≺ τ̂ ′
j and that respects the type

A . We can conclude that̂τ j :: Shape(τ ′′
j) as the subtyping relation can be only applied to types

refining the same ML type. We shall useT to denoteShape(τ ′′
j).

We have then a set of derivations of the form

FUN

SUB
Γ;x : τ̂ j ⊢

∩
Q N : τ ′′j Γ;x : τ̂ j ⊢

∩ τ ′′j ≺ τ̂ ′j Γ;x : τ̂ j ⊢
∩ τ̂ ′j

Γ;x : τ̂ ′j ⊢
∩
Q N : τ̂ ′j Γ ⊢∩ x : τ̂ j → τ̂ ′j τ̂ ′j :: T

Γ ⊢∩
Q λx.N : (x : τ̂ j → τ̂ ′j)

By Lemma 5
x : τ̂ j → τ̂ ′

j :: Shape(τ̂ j)→ Shape(τ̂ ′
j)

Moreover,Shape(τ̂ ′
j) = T and we shall we useT ′ to denoteShape(τ̂ j).

By repeated application of the rule [INTERSECT]

INTERSECT

(x : τ̂ j → τ̂ ′
j)∩ . . .∩ (x : τ̂ j+k → τ̂ ′

j+k) :: T ′ → T
Γ ⊢∩

Q λx.N : (x : τ̂ j → τ̂ ′
j) . . . Γ ⊢∩

Q λx.N : (x : τ̂ j+k → τ̂ ′
j+k)

Γ ⊢∩
Q λx.N : (x : τ̂ j → τ̂ ′

j)∩ . . .∩ (x : τ̂ j+k → τ̂ ′
j+k)

• caseM ≡ M′N: By IH

– Γ ⊢∩
Q M′ : (x : τ1 → τ ′

1)∩ . . .∩ (x : τn → τ ′
n)

– Γ ⊢∩
Q N : τ

ConsiderD the following derivation

Γ ⊢∩
Q N : τ Γ ⊢∩ τ ≺ τi Γ ⊢∩ τi

Γ ⊢∩
Q N : τi

SUB

For all theτi such thatτ ≺ τi we have a derivation of the form

SUB

Γ ⊢∩
Q M′ : (x : τ1 → τ ′1)∩ . . .∩ (x : τn → τ ′n)

Γ ⊢∩ (x : τ1 → τ ′1)∩ . . .∩ (x : τn → τ ′n)≺ (x : τi → τ ′i) Γ ⊢ (x : τi → τ ′i)
Γ ⊢∩

Q M′ : (x : τi → τ ′i) D

Γ ⊢∩
Q M′N : τ ′i [N/x]

APP

Let D1 be the previous derivation. For eachτi that satisfyτ ≺ τi we have a derivation of the
previous form.

By Lemma 5
τ ′

i [N/x] :: Shape(τ ′
i [N/x])

and we shall useT to denoteShape(τ ′
i [N/x]). So, by repeated application of the rule [INTERSECT]

the following derivation is valid

Di . . . Di+ j τ ′
i [N/x]∩ . . .∩ τ ′

i+ j [N/x] :: T

Γ ⊢∩
Q M′N : τ ′

i [N/x]∩ . . .∩ τ ′
i+ j [N/x]

INTERSECT

By the definition of substitution we haveτ ′
i [N/x]∩ . . .∩ τ ′

i+ j [N/x] = (τ ′
i ∩ . . .∩ τ ′

i+ j)[N/x], which
is precisely the inferred type.

M. Pereira, S. Alves & M. Florido 39

• caseM ≡ letx= M′ inN: σ is of the formτ̂ ′′
1 ∩ . . .∩ τ̂ ′′

n . By IH

– Γ ⊢∩
Q M′ : τ1

– Γ;x : τ1 ⊢
∩
Q N : τ2

The typeA stands for the set of̂τi such thatΓ ⊢∩ τ̂i, which by the definition of well formed type
we have

WF-INTERSECT
Γ ⊢∩ τ̂i1 . . . Γ ⊢∩ τ̂ ′

in

Γ ⊢∩ τ̂ ′
i1 ∩ . . .∩ τ̂ ′

in (b)

Now we consider all̂τ j in A such thatΓ;x : τ1 ⊢
∩ τ2 ≺ τ̂ j . We have thatΓ ⊢∩ τ̂ j as this is a type

taken fromA . We then have a series of derivations of the form

SUB
Γ;x : τ1 ⊢

∩
Q N : τ2 Γ;x : τ1 ⊢

∩ τ2 ≺ τ̂ j Γ ⊢ a∩τ̂ j

Γ;x : τ1 ⊢
∩
Q N : τ̂ j

By Lemma 5
τ̂ j :: Shape(τ̂ j)

and we will useT for Shape(τ̂ j). By repeated application of the rule [INTERSECT]

INTERSECT
Γ;x : τ1 ⊢

∩
Q N : τ̂ j1 . . . Γ;x : τ1 ⊢

∩
Q N : τ̂ jk τ̂ j1 ∩ . . .∩ τ̂ jk :: T

Γ;x : τ1 ⊢
∩
Q N : τ̂ j1 ∩ . . .∩ τ̂ jk

The following derivation is then valid

LET
Γ ⊢∩

Q M′ : τ1 Γ;x : τ1 ⊢
∩
Q N : τ̂ j1 ∩ . . .∩ τ̂ jk

. ..

Γ ⊢∩
Q τ̂ j1 ∩ . . .∩ τ̂ jk

(C)

Γ ⊢∩
Q let x= M′ in N : τ̂ j1 ∩ . . .∩ τ̂ jk

The derivation (c) follows by (b), since it is the exact same derivations but now we only consider
the τ̂ j such thatΓ;x : τ1 ⊢

∩
Q τ2 ≺ τ̂ j , i.e. we intersect a sub-set of the types in (b).

• caseM ≡ [Λα]M′: By IH
Γ ⊢∩

Q M′ : σ

The following derivation is valid

Γ ⊢∩
Q M′ : σ α 6∈ Γ
Γ ⊢∩

Q M′ : ∀α .σ
GEN

• caseM ≡ [τ]M′: By IH
Γ ⊢∩

Q M′ : ∀α .σ

Sinceτ ′ = Fresh(T,Q), thenT = Shape(τ ′).

τ ′ is of the formτ ′
1∩ . . .∩ τ ′

n. The typeA stands for the set of allτ ′
i such thatΓ ⊢∩ τ ′

i , so it is a
sub-type ofτ ′

1∩ . . .∩ τ ′
n. Then, the following derivation is valid

INST
Γ ⊢∩

Q M′ : ∀α.σ

WF-INTERSECT

Γ ⊢∩ τ ′i . . . Γ ⊢∩ τ ′i+ j

Γ ⊢∩ τ ′i ∩ . . .∩ τ ′i+ j Shape(τ ′i ∩ . . .∩ τ ′i+ j) = T

Γ ⊢∩
Q [τ]M′ : σ [τ ′i ∩ . . .∩ τ ′i+ j/α]

�

40 Liquid Intersection Types

Qualifiers

{

v >= 0,

v <= 0

}

val mul = \x . * x x

val neg = \x. - x

Figure 7: File accepted by thelisette tool: a set of logical qualifiers and a program written in tiny-ML.

3.5 Thelisette tool

In order to automate all theproof-and-typingprocess required for Liquid Intersection Types inference,
we implemented a prototype tool that we baptizedlisette (LIquid interSEction TypEs)2.

The purpose oflisette is to parse a program written in a ML-like language (which we shall desig-
natetiny-ML) plus a set of logical qualifiers and infer an appropriate Liquid Intersection Type for that
program, requiring no further assistance from the user. This tool works as follows:

1. lisette parses the tiny-ML file (program plus qualifiers) and produces its A-normal form version;

2. using Damas-Milner inference engine, an ML type is computed for each sub-term in the program;

3. using theFresh(·, ·) function, the Liquid Intersection Type containing all possible combinations of
qualifiers is generated and assigned to each sub-term;

4. then, depending on which term is being processed, a set of well-formedness constraints are gener-
ated, solved by testing if for all refinement expressions thetypebool can be derived;

5. to respect the relations between types, a set of subtypingconstraints is computed and translated to
an equivalent logical formula;

6. using the logic of the Why3 platform [6, 5] as a back-end, weuse several automatic theorem
provers to test the validity of the generated subtyping constraints;

7. finally, combining the results of solving well-formedness and subtyping constraints, the final Liq-
uid Intersection Type is assigned to the corresponding sub-term.

Our use of the Why3 platform API is motivated by the fact that its internal logic can target multiple
provers. This allows the user oflisette to experiment with different provers, comparing how well they
perform in solving the generated constraints. If the user does not specify a particular prover to be used,
thenlisette tries to solve a constraint by using all the available provers, stopping with the first one that is
able to prove the validity of the constraint. If none returnsa positive answer, that constraint is marked as
false. Another advantage of using Why3 is that when designing the tool there is no need to worry about
the different input languages of each different prover, being enough to implement a single translation
function from the language of Liquid Intersection Types to Why3 terms.

As mentioned, this tool accepts a file containing a set of logical qualifiers and a program written
in tiny-ML, such as the one in Figure 7. For this example we have Q = {ν ≥ 0,ν ≤ 0} and the terms
composing the program areneg≡ λx.−x andmul≡ λx.∗x x. Using the supplied set,lisettewill produce
the following output:

2http://www.dcc.fc.up.pt/~mariopereira/lisette.tar.gz

http://www.dcc.fc.up.pt/~mariopereira/lisette.tar.gz

M. Pereira, S. Alves & M. Florido 41

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Inference result :

mul : (x: {v : int | (v>=0)} −> {v : int | (v>=0)}) /\
(x: {v : int | (v<=0)} −> {v : int | (v>=0)})

neg : (x: {v : int | (v<=0)}−> {v : int | (v>=0)}) /\
(x: {v : int | (v>=0)} −> {v : int | (v<=0)})

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

At the end,lisette is able to infer sound and expressive Liquid Intersection Types for the termsmul and
neg.

4 Conclusion and future work

We presented a new type system supporting functional descriptions, via refinement types, and offering
the expressiveness of intersection types. We believe our type system can be used to derive more precise
types than previous refinement type systems, whilst maintaining type-checking and inference decidable.
Liquid Types [15] tend to infer poorly accurate and even meaningless refinement types for some terms
(leading to the absence of principal types), which we preclude due to the precision of intersection in
types. Refinement types for algebraic data-types [8] are precise and present desirable properties such as
principality and decidable inference, though it is our believe that logical predicates are a more natural
way to specify functional behavior of programs. General refinement types [11] use a very expressive
annotations language, allowing to assign very precise types to programs, yet with the serious drawback
of undecidable type-checking and inference. With Liquid Intersection Types we maintain our predicates
language simple, while being able to automatically infer very accurate and meaningful refinement types.

To design a decidable system we adopted a style closely related to Liquid Types: the refinement
expressions presented in types are exclusively collected fromQ, a global set of logical qualifiers, and the
subtyping is decidable. We also impose that the type of an expression must the intersection of refinements
to its ML type, intersecting only types of the same form.

We also proposed an inference algorithm for Liquid Intersection Types. This algorithm takes as input
an environmentΓ, a termM and the set of qualifiersQ, producing the correspondent Liquid Intersection
Type. Our inference algorithm uses theW algorithm to infer the shape of a Liquid Intersection Type,
which is the ML type for that term. To determine which refinement expressions can be plugged into a
type, the algorithm produces a series of well-formedness and subtyping constraints, solving them imme-
diately after their generation. We have been able to prove that our algorithm is sound with respect to the
conceived typing rules.

Current and future work includes the study of completeness of type inference for our system and to
extend decidable intersection type systems (of finite ranks[9, 10]) with type refinement predicates.

References

[1] H. P. Barendregt (1984):The Lambda Calculus, its Syntax and Semantics, Revised second edition. North-
Holland.

[2] Henk Barendregt, Mario Coppo & Mariangiola Dezani-Ciancaglini (1983):A filter lambda model and the
completeness of type assignment. The journal of symbolic logic48(4), pp. 931–940, doi:10.2307/2273659.

http://dx.doi.org/10.2307/2273659

42 Liquid Intersection Types

[3] M. Coppo & M. Dezani-Ciancaglini (1980):An extension of the basic functionality theory for theλ -calculus.
Notre Dame Journal of Formal Logic21(4), pp. 685–693, doi:10.1305/ndjfl/1093883253.

[4] Luis Damas & Robin Milner (1982):Principal Type-schemes for Functional Programs. In: Proceedings of
the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’82, ACM,
pp. 207–212, doi:10.1145/582153.582176.

[5] Jean-Christophe Filliâtre (2013):One Logic To Use Them All. In: 24th International Conference on Auto-
mated Deduction (CADE-24), Lecture Notes in Artificial Intelligence7898, Springer, Lake Placid, USA, pp.
1–20, doi:10.1007/978-3-642-38574-2_1.

[6] Jean-Christophe Filliâtre & Andrei Paskevich (2013):Why3 — Where Programs Meet Provers. In Matthias
Felleisen & Philippa Gardner, editors:Proceedings of the 22nd European Symposium on Programming,
Lecture Notes in Computer Science7792, Springer, pp. 125–128, doi:10.1007/978-3-642-37036-6_8.

[7] Cormac Flanagan, Amr Sabry, Bruce F. Duba & Matthias Felleisen (1993):The Essence of Compiling with
Continuations. In: Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design
and Implementation, PLDI ’93, ACM, pp. 237–247, doi:10.1145/155090.155113.

[8] Tim Freeman & Frank Pfenning (1991):Refinement Types for ML. In: Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Implementation, PLDI ’91, ACM, pp. 268–277,
doi:10.1145/113445.113468.

[9] Trevor Jim (1995):Rank 2 type systems and recursive definitions. Massachusetts Institute of Technology,
Cambridge, MA.

[10] A. J. Kfoury & J. B. Wells (1999):Principality and Decidable Type Inference for Finite-rankIntersection
Types. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’99, ACM, pp. 161–174, doi:10.1145/292540.292556.

[11] Kenneth Knowles & Cormac Flanagan (2010):Hybrid Type Checking. ACM Trans. Program. Lang. Syst.
32(2), pp. 6:1–6:34, doi:10.1145/1667048.1667051.

[12] Charles Gregory Nelson (1980):Techniques for Program Verification. Ph.D. thesis, Stanford, CA, USA.
AAI8011683.

[13] C.-H. Luke Ong & Takeshi Tsukada (2012):Two-level Game Semantics, Intersection Types, and
Recursion Schemes. In: Proceedings of the 39th International Colloquium Conference on Au-
tomata, Languages, and Programming - Volume Part II, ICALP’12, Springer-Verlag, pp. 325–336,
doi:10.1007/978-3-642-31585-5_31.

[14] Mário Pereira (2014):Liquid Intersection Types. Master’s thesis, Faculdade de Ciências da Universidade do
Porto.http://www.dcc.fc.up.pt/~mariopereira/msc_thesis.pdf.

[15] Patrick M. Rondon, Ming Kawaguci & Ranjit Jhala (2008):Liquid Types. In: Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08, ACM, pp.
159–169, doi:10.1145/1375581.1375602.

[16] Robert E. Shostak (1984): Deciding Combinations of Theories. J. ACM 31(1), pp. 1–12,
doi:10.1145/2422.322411.

[17] Niki Vazou, Patrick M. Rondon & Ranjit Jhala (2013):Abstract Refinement Types. In: Proceedings of the
22Nd European Conference on Programming Languages and Systems, ESOP’13, Springer-Verlag, pp. 209–
228, doi:10.1007/978-3-642-37036-6_13.

http://dx.doi.org/10.1305/ndjfl/1093883253
http://dx.doi.org/10.1145/582153.582176
http://dx.doi.org/10.1007/978-3-642-38574-2_1
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1145/155090.155113
http://dx.doi.org/10.1145/113445.113468
http://dx.doi.org/10.1145/292540.292556
http://dx.doi.org/10.1145/1667048.1667051
http://dx.doi.org/10.1007/978-3-642-31585-5_31
http://www.dcc.fc.up.pt/~mariopereira/msc_thesis.pdf
http://dx.doi.org/10.1145/1375581.1375602
http://dx.doi.org/10.1145/2422.322411
http://dx.doi.org/10.1007/978-3-642-37036-6_13

	1 Introduction
	2 Type system
	2.1 Syntax and semantics
	2.2 Typing rules
	2.3 Properties

	3 Type inference
	3.1 Using Damas-Milner type inference
	3.2 Constraint generation
	3.3 Constraint solving
	3.4 Properties of inference
	3.5 The lisette tool

	4 Conclusion and future work

