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We present intersection type systems in the style of sequadatilus, modifying the systems that
Valentini introduced to prove normalisation propertieshwut using the reducibility method. Our
systems are more natural than Valentini’'s ones and equitvedethe usual natural deduction style
systems. We prove the characterisation theorems of stmwthgvaak normalisation through the pro-
posed systems, and, moreover, the approximation theoremelys of direct inductive arguments.
This provides in a uniform way proofs of the normalisatior approximation theorems via type
systems in sequent calculus style.

1 Introduction

A traditional way of proving strong normalisation for typddterms is the reducibility method [20],
which uses set-theoretic comprehension. Other methott®wtitising reducibility have also been stud-
ied in the literature (see, e.g. Section 5[0f|[19] for a rev@whose methods). Some of them use an
inductive characterisation of strongly normalisiAgterms given by van Raamsdonk and Severi [18].
In [21]], Valentini introduced, instead of using the indueticharacterisation, an intersection type sys-
tem that is closed under the rules of the original system,poded strong normalisation by a simple
induction on the typing derivation.

In this paper we develop Valentini's approach further pdowj an improvement on his system and its
extensions with an axiom for the type constantThese systems are in the style of sequent calculus and
equivalent to the original intersection type systems inrstdeduction style. Using the new systems, we
prove the characterisation theorems of strong and weakalsation, which are well-known properties
of intersection type systems [17, 8].

Another important point in our approach is that we design sgstems that derive the same sequents
as the original natural deduction style systems do, so tleatam prove various other properties than
normalisation by simple inductions on the typing derivat(of. [15]). In the present paper we illustrate
that by showing the approximation theorem for the type systéth w, which is usually proved using
reducibility predicates over a typing context and a type(seg. [11] 4]).

The difference between the systemdin [21] and ours is thafimlg. First, some rules of the systems
in [21]] have restrictions on types to be type variables. Atke rule for abstraction takes a form that
implies then-rule. On the other hand, our systems do not have the réstiscon types, and our rule
for abstraction is the usual one. In this natural settingsia@v that our system is closed under the rules
of the original natural deduction style system. This parthef proof of strong normalisation is much
shorter than that in_ [21]. Secondly, the system charaatgriweakly normalising -terms in [21] does
not have the type constans, and is not related to the original natural deduction stylemn. In this
paper, we introduce new systems with an axiom for the typsteotw, and prove weak normalisation
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of A-terms that are typable witto-free types in the original system. The closure under thesrof the
original system is shown by almost the same argument asrthia¢ icase of the system withowt

In [21], only normalisation properties are discussed, aheroproperties than normalisation are not
proved using the sequent calculus style systems. Some maipers([18], 1€,19,/1] have studied strong
normalisation for terms typable with intersection typeshwut using reducibility. Each of them uses
an inductive characterisation of strongly normalisingrter but any other properties than normalisation
have not been treated. So the present paper seems to betttoedpply a proof method for normalisation
without reducibility to other properties of intersectigipé systems.

There is also an attempt inl[3] to give uniform proofs of tharelcterisation theorems of normal-
isation and the approximation theorem. The method is thra@igong normalisation for reduction on
typing derivations. However, it uses reducibility predesato prove the strong normalisation, and the
proof seems more complicated than ours.

The organisation of the paper is as follows. In Sedfion 2 weduce two kinds of intersection type
systems. In Sectionl 3 we prove the characterisation theofestrong normalisation through the new
type system. In Sectidd 4 we introduce type systems withnd prove the characterisation theorem of
weak normalisation. In Sectidd 5 we prove the approximatimorem using one of the new systems
with w.

2 Intersection type systems

In this section we introduce two intersection type systeom& is in the ordinary natural deduction style
and the other in sequent calculus style. They prove to bevalguit, and both characterise strongly
normalisingA -terms.

First we introduce some basic notions on thealculus [5]. The sef of A-terms is defined by
the grammarM ::= x| MM | Ax.M wherex ranges over a denumerable set of variables. We use letters
X,Y,z,... for variables andM,N,P,... for A-terms. The notions of free and bound variables are defined
as usual. The set of free variables occurring in-term M is denoted byFV(M). We identify a-
convertibleA-terms, and uses to denote syntactic equality moduto-conversion. [ := | is used for
usual capture-free substitution.

The B-rule is stated agAx.M)N — M[x:= NJ, and3-reduction is the contextual closure of tfe
rule. We use—pg for one-step reduction, and—>2§ for its reflexive transitive closure. A-termM is
said to bestrongly (weakly normalisingif all (some, respectivelyB-reduction sequences starting from
M terminate. The set of strongly (weakly) normalisihgerms is denoted byN? (WNP, respectively).

The set of types is defined by the grammair:= ¢ | 0 — 0 | N o where¢ ranges over a denumer-
able set of type variables. We use letterg, p, ... for arbitrary types. The type assignment systaims

[x:oFM:T [FM:o TEM:T
I . .
F,x:al—x:a(AX) FI—AX.MZG—>T(—>) r-=M:onrt (n1)
wherex ¢ I
[FM:o—-1 TEFN:O r'-M:onrt r’'-M:onrt
FEMN: T =8 Trmoe " Trm.c (B

Figure 1: Natural deduction style systén
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MsM[X:=NJN;...Nq:o T FsN:T
Fx:oksx:o (A%) s (AXM)NN;...N,: 0

(Beta)®

N=sN:o1 ,y:00FsyNi...Ny:T rx.oFsM:t
R
I, x:01— 02FgXNNL...Np: T (L=) FI—SAX.MZU—>T( =)
wherey ¢ FV(Np) U---UFV(Ny) andy ¢ I wherex ¢ I

[ X:01,X:02FsXNp... Ny i T
[ X:01No2FsXNp...Nyi T

r-sM:o I"=sM:t
r-sM:onrt

(LN) (RM)

Figure 2: Sequent calculus style systafn

andA$ are defined by the rules in Figullgs 1 and 2, respectivelypig contexis defined as a finite set
of pairs{xy : 01,...,X, : on} Where the variables are pairwise distinct in the syskemvhile they may
be the same in the systehi. A variable with different types is intended to have the tgpetersection
of all of them. The typing context,x: o denotes the unioh U{x: o}, andx ¢ ' means thax does not
appear in", i.e., for no typeo, x: o € I'. Note thatx: o € I is possible in the typing context,x: o.
In particular, the premisses of the rulle —) may havex: o3 — o> in I". In that casex: 01 — 02 is
introduced by the ruléL —) with implicit contraction.

The system in[21] has the restrictionAf that the typeo in the rules(Ax) and(Beta)® and the type
T in the rules(L —) and(LN) must be type variables. Also, the ryle —) takes the following form:

M x.oFsMx: 1
r-sM:o—rt

wherex ¢ " andx ¢ FV (M), so that the system includes therule and is not equivalent to the system
An. (For examplef-s Ax.x: (0 — 1) — ((pN o) — 1) is derivable in the system df [21], batAx.x:
(0 - 1)— ((pno)— 1) is not derivable imn.)

Example 2.1. Self-application can now be typed naturallyAf, as follows (cf.[[21, pp. 478-479)).

PO FsX: : CThsy:
X:0 .sx q X:0,y r.sy T(L_>)
X:O0,X.:0—=ThHgXX: T (Ln)
X:0N(0—=T)FsxX: T

R
FsAXxx: (oN(o—1))—T

The (Beta)®-free part of the systems types exactly the terms {-normal form, and any-redex in
a typed term must be constructed through the (Bleta)®. So it is immediately seen that the terms that
are not head-normalising (e.@\ x.xxX)(Ax.xx)) can not be typed in the systek§.

Proposition 2.2. I ,x: o1NoxFsM: Tifand only if 7, xX: 01,X: 0o FsM : T.
Proof. By induction on the derivations. O

Henceforth we writd for the typing context in which each variable has the typentdrsection of
all the types that the variable hasfin
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3 Characterisation of strongly normalising A -terms

If one tries to prove strong normalisation for terms typedha systemA directly by induction on
derivations, a difficulty arises in the case of the r(He E). One way of overcoming this difficulty is
to use reducibility predicates [20]. Here we use the seqo&lculus style systems instead. For the
systemA2, we can prove strong normalisation for typed terms dirdaylynduction on derivations.

Theorem 3.1.1f I <M : @ then Me SNE.

Proof. By induction on the derivation af FsM : Tin A3. The only problematic case is where the last
rule applied igBeta)®. In that case, by the induction hypothesis, we Hele:= N|N;...N, € SN and

N € SNP. From the former we havil, Ny, ..., N, € SNP. Then any infinite reduction sequence starting
from (AX-M)NN;... N, must have the form

AXM)NNL. Ny —%5  (AXM)N'N... N
—p  M[x:=N]N;...N]
HB

whereM— 3 M’, N—7 N" andN;—; N/ for i € {1,...,n}. But then there is an infinite reduction
sequence
MX:=NJN1...Nn  —5  M/[x:=NN;... Ny
%B

contradicting the hypothesis. Hengex.M)NN;.... N, € SN”. O

To complete a proof of strong normalisation for terms typedhie systeni~, what remains to be
shown is that ifM is typable inA~ then it is typable im 5. This is proved using several lemmas below.
First we show thad? is closed under the weakening rule.

Lemma3.2.fr FsM: tthenl ,x: oFsM: T.
Proof. By induction on the derivation df -sM : T. O

The next two lemmas are the essential difference from thef @id21]. These are used in the proof
of Lemmd_3.b below. The simply typed counterpart of Lenimé&sSf8und in the second proof of strong
normalisation for the simply typedl-calculus in[12].

Lemma3.3.1f TFsM: o — tand x¢ I thenl" ,x: o FsMx: T.

Proof. By induction on the derivation df -sM : 0 — 1. Here we show a few cases.

* ry:o—-1ksy:0—1 (Ax)
In this case we take two axionf§x: o -gx: 0 andl,x:0,z: THsZ: T, and obtain™ ,x: g,y
0 — T Fsyx: T by an instance of thél —) rule.
FFsMly:=N|N;...Nh:o—1 TksN:p

. (Beta)®

s (AYM)NN;...Ny:0o—T

By the induction hypothesis, we haex: o Fs M[y := N]N;...Npx: 7, and by Lemm&312, we
havel” ,x: 0 s N : p. From these, we obtaifi,x: 0 Fs (AY.M)NN;...Nyx: T by an instance of
the (Beta)® rule.
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ry.oFsM:r
R
* EsAYyM:io—T (R=)
wherey ¢ I'. From[",y: o FsM: 17, we havel ,x: 0 s M[y:= x| : T. From this and the axiom
[,x:0FsX: 0, weobtain,x: o ks (Ay.M)x: T by an instance of théBeta)® rule. O

Lemma34.frsM:ontthenl FsM:oandl FsM : 1.
Proof. By induction on the derivation df FsM : oNT. O

Now we are in a position to prove the following important leenm

Lemma 3.5. A3 is closed under substitution, i.e.[ifX: 01,...,X: OmtsP: T where x¢ ', m> 0 and
o, # gj fori # j, and, for any i€ {1,...,m}, I s N : g;, thenl" FsP[x:=NJ: 1.

Proof. The proof is by main induction on the number e#* and ‘1’ occurring in gy, ..., 0y, and sub-
induction on the length of the derivation b6fx: 01,...,X: omFs P : 1. We proceed by case analysis
according to the last rule used in the derivation ok : 01,...,X: omtsP: 7. Here we consider a few
cases.

e Suppose the last rule in the derivation is

FX:0ksMly:=QIN;...Ny:T IM,X:0FsQ:p
[ X:0Fs(AYM)QN;...Ny: T

(Beta)®

wherex: 0 = X: 0y,...,X: Oyn By the subinduction hypothesis, we obtain both
F'EsMly:=QJX:=N]JNg[X:=NJ...Ny[x:=NJ: 1
and
M=sQ[x:=NJ:p

Sincey is a bound variable, we can assume that it does not ocdur Hence the first judgement
is
s M[x:=N]ly:=Q[x:=N]]Ny[x:=N]...Na[x:=N] : T

From this and”™ s Q[x:= N]: p, we obtain
s (AY.MX:=N])Q[X:=N]Ng[x:=NJ]...Np[x:=NJ: T
by an instance of théBeta)® rule.
e Suppose the last rule in the derivation is

rx:ogbFsM:py F,X:o,¥y:p2FsyNy...Ny: T
[ X:O0,X:p1—> P2FsXMN; ... Ny T

(L—=)

where{X:0,X: p1 — p2} = {X:01,...,X: Om}, Y¢ FV(N1)U---UFV(N,) andy ¢ I ;X : 0. By
the subinduction hypothesis, we obtain both
=sM[x:=NJ]:ps 1)

and
Fy:pobs(YNi...Np)[X:=NJ]: 1 (2
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Now consider the assumptidnts N : p1 — p» and a fresh variable. Then by Lemma_3]3, we
havel” ,z: p1 FsNz: po. From this and[{1), we have s NM[x:= N] : p, by the main induction
hypothesis. Then, again by the main induction hypothesispbtain

s NMX:=N]Ng[x:=NJ]...Np[x:=N]J: 1
from (@) andl" s NM[x:=N] : p,.
e Suppose the last rule in the derivation is

[,X:0,X:p1,X:p2FsXNy...Np: T
[ X:0,X:p1NP2FsXNy...Nyi T

(LN)

where{X:T,x: pyNp2} ={x:01,...,X: om}. Then, applying Propositidn 2.2 to the conclusion,
we havel | (X:T)',x: p1,X: P2 s XNp...Ny: T where(X: @) =x:0\ {x: p1Np2}. Now, from
the assumptiom s N : p1 N P2, we havel” FsN: p; andl™ Fs N : po by Lemmd3.4. Hence, by
the main induction hypothesis, we obtdir-s NNy [x := N]...Ny[x:=N] : 1. O

Now we can show that the systetf is closed under the— E) rule.
Lemma3.6.fsM:0o—tandll FsN: o thenl FsMN: 1.

Proof. By Lemmd 3.8, we havE,x: g s Mx: T for any fresh variable. Hence by the previous lemma,
we obtain/” s (Mx)[x:=N]=MN:T1. O

Now we can prove the announced theorem.
Theorem 3.7.1f T M : o thenl FsM : .

Proof. By induction on the derivation df - M : g in A, using Lemmak 314 and 3.6. O

The converse of this theorem also holds when typing contetsestricted to those af,. To prove
it, we need some lemmas on properties of the sygtem

Lemma38.1f T-M:tand z¢ I thenl,z: oM : 1.
Proof. By induction on the derivation af - M : 1. O

Lemma 3.9. A is closed under substitution, i.e.,if,x: o+ P: 1 where x¢ " andI" - N : o then
=Px:=NJ]:T.

Proof. By induction on the derivation df ,x: o +P: 1. O

Next we prove a Generation Lemma. For its statement we defineceider on types.

Definition 3.10. The relation< on types is defined by the following axioms and rules:

l.o<o o<1, 1<p=0<p
2.0N1<0,0NT<T 4 o<1, 0<p=0<1NP

Lemma3.11.If FrM:ocando < tthenl WM :T.

Proof. By induction on the definition ofr < 1. O
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Lemma 3.12(Generation Lemma)
1. ' - MN: o if and only if there existy,...,0n, T1,..., Ty (n > 1) such thato;N---N o, < 0 and,
forallie{l,....n},TEFM:1;—>cgiandl EFN: 1.
2. ' - AxM: oifand only if there existy, ..., Tn, 1, ..., Pn (N> 1) such that(ty — p1)N---N (Th —
pn) <oand, forallie {1,....,n}, F,xX: ;-M:p.

Proof. The implications from right to left are immediate by the typirules and Lemma 3.111. The
converses are shown by induction on the derivations. O

Now we can prove a crucial lemma about type-checking in tiseesyA.
Lemma 3.13.If ' - M[x:=N]: o0 andl" - N : 7 where x¢ I" then there exists a type such that
Mx:pEFM:oandl =EN:p.
Proof. By induction on the structure &fl, using Lemma 3.12. O

We are now ready to prove the equivalence between the sygiearsdAn.
Theorem 3.14. FsM: gifand only iflr+-M: 0.

Proof. The implication from right to left follows from Theorem 3.1ha Proposition 2J2. The converse
is shown by induction on the derivation bf-¢ M : o. If the last applied rule i$Beta)®, we use Lem-
mad 3.1P and 3.13. O

Finally we show that all strongly normalising terms are tylgan A3.
Theorem 3.15.1f M € SN then there exist a typing conteixtand a typeo such that™ FsM : g.

Proof. The proof is by main induction on the maximal length off&feduction sequences starting from
M and subinduction on the structure f We analyse the possible cases according to the shape of the
termM.

e M = xfor some variable. In this case we just have to take g 5 x: o, which is an axiom.

e M =xN;...N,. By the subinduction hypothesis, for ang {1,...,n}, there exist a typing context
[ and a typeg; such that; s N; : g;. Then consider the following derivation (recall thet is
closed under the weakening rule):

UlhiFsNp:on UMY ThsYn: T
UM, Yn—1: On —> ThsYn—1Np: T

(L—=)

UliFsNy oo ul‘i,yg:03—>m—>ar']—>rksy2N3...Nn:r
Ul FsNp oy Ulhi,y1: 00— -+ = 0n— TFsy1No...Ny: T (L—)
Ulhi,X:0p =+ —> 03— TFsXN...Np i T

(L—=)

e M = Ax.P. By the subinduction hypothesis, there exist a typing odrteand a types such that
[,x:01,...,X:0hFsP:0owherex¢ I' andn> 0. Then we havé FsAX.P:o1N---No,— 0
by the(LN) and(R —) rules. (We use a weakening rule insteadlofi) whenn=0.)

e M= (AxP)NN;...N,. By the main induction hypothesis, there exist a typing exnf; and a
type 01 such that'; s P[x:= N|N;...N, : 01, and, by the subinduction hypothesis, there exist a
typing context’ and a typeo, such that™, s N : g2. Then, by the weakening ari@eta)® rules,
we obtainl, [ s (AX.P)NNy... Ny : 01. O
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It is interesting to note that in the above proof we do not hedRN) rule at all, so it is redundant
for characterising the strongly normalisidgterms. The absence of tfiBN) rule leads to a restriction
on types that is similar to those investigated_ih [2].

The results in this section are summarised as follows.

Corollary 3.16. For anyA-term M, the following are equivalent.
1. Mis typable iMn.
2. Mistypable ims.
3. M is strongly normalising.
4

. M is typable iM$ without using théRN) rule.

Proof. (1=-2) This follows from Theorerm 3]7.

(2= 3) This follows from Theorern 3 1.

(3= 4) This follows from the proof of Theorem 3/15.

(4= 2) This is trivial.

(2=1) This follows from Theorern 3.14. O

4 Characterisation of weakly normalising A -terms

In this section we are concerned with weak normalisationsamde type systems obtained by extending
the systems\ andA3. The main goal of this section is to prove the charactedsatfieorem of weak
normalisation in a similar way to that of strong normalisatin the previous section.

The extended systems are listed in Figlre 3. First we inttedu new rule(Beta)', which is a
general form of the rule considered In[24 s restricted to type variables in [21]). Then the syst&m
is obtained fromAS by replacing theBeta)s rule by the(Beta)' rule. The systemga g, A3, andA!,,
are obtained fromn, A3 andAl, respectively, by adding the type constanand the(w) rule. In order
to distinguish the judgements of the systems, we use thedagmf o, Fso andt,.

For the system\!, we have the following theorem.

Theorem 4.1.1f I - M : o then Me WNP.

Proof. By induction on the derivation df - M : 1. O
F'E=M[x:=NJN;...Ny: 0 Beta)!
FE(AXM)NN,..No:o (B€t2) Fivw (@
Notation
AL = AS—(Beta)’+ (Beta)! Fr’-M:o
Ao = An+(w) r-oM:o
Ay = A3+ (w) [swM:o
Mo = A+ (w) roM:ao

Figure 3: Systems extended wiih
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For characterisation of weak normalisation in terms of bjiitat in the extended systems, it is neces-
sary to clarify the relationship among them. First we shoat the terms typable in the ordinary natural
deduction style systeri, are typable im3,,, in almost the same way as in the previous section.

Theorem 4.2.1f ' =, M : o thenl ¢y, M : 0.

Proof. It is easy to see that LemmBs13.2 throligh 3.6 holdAfy; instead ofA3. Then the theorem
follows by induction on the derivation @f -, M : 0 In Aqg,. O

Next we relate the systemsS,,, Al andA!. This completes one direction of the characterisation
theorem of weak normalisation.
Lemma4.3.T kg, M : gifand only ifl -, M: 0.

Proof. The implication from left to right is immediate by forgettirthe right premiss ofBeta)®. For
the converse, observe that tfReta)' rule is derivable im 3, using the rulegBeta) and(w). O

Lemma 4.4. Supposes and all types in™ are w-free. Then™ ki, M : gifand only if - M : o.

Proof. The implication from right to left is trivial. For the conwa, observe that every type occurring
in the derivation of” +, M : o also occurs irl” or o. O

Corollary 4.5. If I ¢ M : o whereo and all types in™ are w-free, then Me WN?.

Proof. By Theorenmi 4.2, Lemmas 4.3 and}4.4, and Thedrem 4.1. m

Conversely, if aA-term M is weakly normalising, then there exist a typing contexand a typeo,
both w-free, such thaf -, M : g. To prove this, we need the following lemmas on propertiethef
systemAn,. These are shown in similar ways to the proofs of Lemimas 3dith[3.12.

Lemmad.6.1fr-,M:tandz¢ I thenl,z: ok, M T.

Lemma 4.7. An is closed under substitution, i.e.,lifx: o+, P: T where x¢ I andl™ 4, N : o then
[oPX:=N]:T.

Definition 4.8. The relation<,, on types is defined by the axioms and rules in Definifion] 3.46ther
with the axiomo <, w.

Lemma4.9.flr,M:ocando <, t1thenl F,M:T.
Lemma 4.10(Generation Lemma)Let o be any type withw £, 0. Then

1. I F, MN: o if and only if there existq,...,0n, T1,...,T, (N > 1) such thatoy N---N oy <u O
and, forallie {1,....n}, T Fu,M: Ty > gy andl F, N 1.

2. I ¢y AX.M : o if and only if there existy,..., Ty, P1,...,0n (N> 1) such that(ty — p1)N---N
(th— pn) <poand, forallie {1,...,n}, I X: T FuxM:p.

Now we can prove a crucial lemma about type-checking in tiseesyAn,.



K. Kikuchi 19

Lemma 4.11.If I 4, M[x:= N]: 0 where x¢ I" then there exists a type such that” ., x: pF,M: 0
andl Fo N:p.

Proof. By induction on the structure &fl, using Lemma4.10. IM = y(# x) or w <, 0, then we take

p=w. ]
We can now prove that in the systetn,, types are preserved under the invers@-oéduction.

Lemma4.12.1f I =4, N:oand M—:g N thenl" -, M : 0.

Proof. By induction on the structure df1, using Lemmd_4.10. IM is the B-redex then we use

Lemma4.11. O
Now we can prove the announced theorem.

Theorem 4.13.1f M € WNP then there exist a typing conteitand a typeo such that” -, M : o and

bothI" and o are w-free.

Proof. Let M’ be a normal form oM. By Theoreni 3.15, every normal form is typableAf, so there
exist a typing contexf” and a typeo, both w-free, such thaf -, M’ : 0. Hence, by Lemma4.12, we
havel -, M : 0. O
We can also prove the equivalence of the syst@ms A3, and)\'m,.
Theorem 4.14. For any typing contexf , anyA-term M and any typ@, the following are equivalent.
1. TAiFuoM:o.
2. FuyM:O.
3. MHueM:o.
Proof. (1=-2) This follows from Theorermn 412 and Propositlon]2.2 with, instead of-.
(2= 3) This follows from Lemma4]3.
(3= 1) This follows by induction on the length of the derivationfo-, M : o. If the last applied rule
is (Beta)', we use Lemmds 4,110 ahd 4.11. O
The results in this section are summarised as follows.
Corollary 4.15. For anyA-term M, the following are equivalent.
1. I k¢, M : o for some typing context and typeo, both w-free.
I Fsw M : o for some typing contexXt and typead, both w-free.
I Fiw M : o for some typing context and typeo, both w-free.

I+ M : o for some typing conteXt and typeo.

a M b

M is weakly normalising.

Proof. (1=-2) This follows from Theorermn 412.

(2= 3) This follows from Lemma4]3.

(3= 4) This follows from Lemma4l4.

(4 = 5) This follows from Theorern 411.

(5= 1) This follows from Theorern 4.13. O
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5 Application to other properties

The sequent calculus style systems we introduced in theguesections are very useful for proving
properties of intersection type systems. In this sectionllwstrate that by giving a simple proof of the
(logical) approximation theorem, a property that is usualloved using reducibility predicates para-
metrised by typing contexts (see, elg.l[1l, 4]). Proofs ofiesmther properties through the sequent
calculus style systems are found(in[15], which also makeswgparison between general conditions for
applying the reducibility method and our approach.

For the statement of the approximation theorem, we intrecsame preliminary definitions. The
set of A L-terms [5] is obtained by adding the constanto the formation rules ol -terms. The type
systems in the previous section are extended to thosk feterms, where any L -term containingl is
typable by thgw) rule.

Definition 5.1. Theapproximation mapping from A-terms toA L -terms is defined inductively by

O(AX1.. . X0 XNp .. .Nm) := AX1 ... % Xa (N1) ... a (Np)
O(AX1.. . X (AXM)NNg...Np) := AXg.. . X L

where nm> 0.
Lemma 5.2.
1. IfI b a(M):oand M—; N thenl" b, a(N) @ 0.

2. Let M—p5 N, M—p N, I i a(N) : o andl™ ki, a(N') 1 7. Then there exists ‘Nsuch that
M—5 N"andrl" ki, a(N”) :onT.

Proof. The first part is proved by induction on the derivation/of, a(M) : o. For the second part,
we use confluence ¢@-reduction. O

Now the logical approximation theorem can be formulatecoievfis.
Theorem 5.3.T -, M : o if and only if there exists Msuch that M—; M"and[™ ¢, a(M') : 0.

Proof. (=) By Theorem 4.14, it suffices to show thatfifi, M : o then there exist81’ such that
M—>E M’ andrl" t, a(M’) : . The proof is by induction on the derivation bf, M : 0. Here we
consider some cases.

I HiwMX:=NIN;...Ny: 0

|
* TTo AXMINN;. Noro (Bet2)

By the induction hypothesis, there exi$# such thatM|x := N]Nl...Nn—>2§ M’ and ™ g
a(M’): 0. ThisM" also satisfie$AX-M)NN;...No—5 M.

. I tHow N': oo y:.o I—m,le....Nn T (L)
[ X:01— 0o XNNL...Np i T
wherey ¢ FV(Np)U---UFV(Ny) andy ¢ I". By the induction hypothesis, there eXiét N, ..., N}
such thaﬂ\l—>f3 N, Ni—>2§ N/, I Fipa(N):orandlm,y: oz b ya(Ny)...a(Ny) : 7. Hence,
by an instance of théL —) rule, we obtain™,x: g1 — 02 F, xa(N)a(N;)...a(N)) : 7. So we
takexN'N;... N, asM’.
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Fx.okbN:T
R
M AXN:0o—T (R=)
wherex ¢ . By the induction hypothesis, there exi$tssuch thatN—7 N andl,x: ok

a(N’): 1. By an instance of thé€R —) rule, we obtain™ F, Ax.a(N): 0 — 1. Sincea (Ax.N') =
Ax.a(N’), we takeAx.N" asM’.

NoM:o THM:T

¢ r-oM:ont (RM)
By the induction hypothesis, there exidt, M, such tha —>2§ Mq, M—>2§ Mo, I Hipa(M):o
andl” ki, a(My) : 1. Then by Lemma5IP{2), there exid® such thatM—35 M' and ™ 4

B
a(M):ont.

(<) We can show by induction on the derivation thaf'if-,, a(M’) : o thenl" -, M’ : . Hence, by
Lemmd4.IP, we havE F,M : 0. m

Thus our method has been successfully applied to provinggpeoximation theorem for the map-
ping a and the system,. It is work in progress to give similar proofs of the approation theorems
for the n-approximation mappingr,, which mapsAx._L directly to L, and type systems with various
preorders as discussed [in [10] 11, 4].

6 Conclusion

We have presented uniform proofs of the characterisatiearéims of normalisation properties and the
approximation theorem. The proofs have been given viadatdion type systems in sequent calculus
style. As investigated in_[15], our method can be consideéoedave embedded certain conditions for

applying reducibility directly into the typing rules of tlsequent calculus style systems. (See [13] for a
recent survey of general conditions for applying the reliligi method.)

As mentioned in the introduction, there are some prdof$s[163.9,[1] of strong normalisation for
terms typable with intersection types without using redility, but they have not considered any other
properties than normalisation. Other syntactic proofstafrg) normalisation for terms typable with
intersection types are found in_[14, 6], where the problemedsiced to that of weak normalisation with
respect to another calculus or to another notion of redaciitie proofs of [18, 21] and ours are different
from those of [[14] 6] in that strong normalisation is proveckdly rather than inferring it from weak
normalisation. Yet another syntactic proof [7] uses a tetim from terms typable with intersection
types into simply typed -terms.

There are many directions for future work. In addition to tme indicated at the last paragraph of
Sectior b, it would be worth investigating the type infeemand the inhabitation problems for intersec-
tion types by means of our sequent calculus style systems.

Acknowledgements| would like to thank Katsumasa Ishii for drawing my attentto Valentini’s paper
and pointing out that the system includes theule. | also thank the anonymous reviewers of ITRS
2014 workshop for valuable comments. The figures of the dgoins have been produced with Makoto
Tatsuta’'sproof . sty macros.
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