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We present intersection type systems in the style of sequentcalculus, modifying the systems that
Valentini introduced to prove normalisation properties without using the reducibility method. Our
systems are more natural than Valentini’s ones and equivalent to the usual natural deduction style
systems. We prove the characterisation theorems of strong and weak normalisation through the pro-
posed systems, and, moreover, the approximation theorem bymeans of direct inductive arguments.
This provides in a uniform way proofs of the normalisation and approximation theorems via type
systems in sequent calculus style.

1 Introduction

A traditional way of proving strong normalisation for typedλ -terms is the reducibility method [20],
which uses set-theoretic comprehension. Other methods without using reducibility have also been stud-
ied in the literature (see, e.g. Section 5 of [19] for a reviewof those methods). Some of them use an
inductive characterisation of strongly normalisingλ -terms given by van Raamsdonk and Severi [18].
In [21], Valentini introduced, instead of using the inductive characterisation, an intersection type sys-
tem that is closed under the rules of the original system, andproved strong normalisation by a simple
induction on the typing derivation.

In this paper we develop Valentini’s approach further providing an improvement on his system and its
extensions with an axiom for the type constantω . These systems are in the style of sequent calculus and
equivalent to the original intersection type systems in natural deduction style. Using the new systems, we
prove the characterisation theorems of strong and weak normalisation, which are well-known properties
of intersection type systems [17, 8].

Another important point in our approach is that we design newsystems that derive the same sequents
as the original natural deduction style systems do, so that we can prove various other properties than
normalisation by simple inductions on the typing derivation (cf. [15]). In the present paper we illustrate
that by showing the approximation theorem for the type system with ω , which is usually proved using
reducibility predicates over a typing context and a type (see, e.g. [11, 4]).

The difference between the systems in [21] and ours is the following. First, some rules of the systems
in [21] have restrictions on types to be type variables. Also, the rule for abstraction takes a form that
implies theη-rule. On the other hand, our systems do not have the restrictions on types, and our rule
for abstraction is the usual one. In this natural setting, weshow that our system is closed under the rules
of the original natural deduction style system. This part ofthe proof of strong normalisation is much
shorter than that in [21]. Secondly, the system characterising weakly normalisingλ -terms in [21] does
not have the type constantω , and is not related to the original natural deduction style system. In this
paper, we introduce new systems with an axiom for the type constantω , and prove weak normalisation
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of λ -terms that are typable withω-free types in the original system. The closure under the rules of the
original system is shown by almost the same argument as that in the case of the system withoutω .

In [21], only normalisation properties are discussed, and other properties than normalisation are not
proved using the sequent calculus style systems. Some otherpapers [18, 16, 9, 1] have studied strong
normalisation for terms typable with intersection types without using reducibility. Each of them uses
an inductive characterisation of strongly normalising terms, but any other properties than normalisation
have not been treated. So the present paper seems to be the first to apply a proof method for normalisation
without reducibility to other properties of intersection type systems.

There is also an attempt in [3] to give uniform proofs of the characterisation theorems of normal-
isation and the approximation theorem. The method is through strong normalisation for reduction on
typing derivations. However, it uses reducibility predicates to prove the strong normalisation, and the
proof seems more complicated than ours.

The organisation of the paper is as follows. In Section 2 we introduce two kinds of intersection type
systems. In Section 3 we prove the characterisation theoremof strong normalisation through the new
type system. In Section 4 we introduce type systems withω , and prove the characterisation theorem of
weak normalisation. In Section 5 we prove the approximationtheorem using one of the new systems
with ω .

2 Intersection type systems

In this section we introduce two intersection type systems:one is in the ordinary natural deduction style
and the other in sequent calculus style. They prove to be equivalent, and both characterise strongly
normalisingλ -terms.

First we introduce some basic notions on theλ -calculus [5]. The setΛ of λ -terms is defined by
the grammar:M ::= x | MM | λx.M wherex ranges over a denumerable set of variables. We use letters
x,y,z, . . . for variables andM,N,P, . . . for λ -terms. The notions of free and bound variables are defined
as usual. The set of free variables occurring in aλ -term M is denoted byFV(M). We identify α-
convertibleλ -terms, and use≡ to denote syntactic equality moduloα-conversion. [ := ] is used for
usual capture-free substitution.

The β -rule is stated as(λx.M)N → M[x := N], andβ -reduction is the contextual closure of theβ -
rule. We use−→β for one-step reduction, and−→∗

β for its reflexive transitive closure. Aλ -termM is
said to bestrongly(weakly) normalisingif all (some, respectively)β -reduction sequences starting from
M terminate. The set of strongly (weakly) normalisingλ -terms is denoted bySNβ (WN

β , respectively).
The set of types is defined by the grammar:σ ::= ϕ | σ → σ | σ ∩σ whereϕ ranges over a denumer-

able set of type variables. We use lettersσ ,τ ,ρ , . . . for arbitrary types. The type assignment systemsλ∩

Γ ,x : σ ⊢ x : σ (Ax)
Γ ,x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ
(→ I) Γ ⊢ M : σ Γ ⊢ M : τ

Γ ⊢ M : σ ∩ τ (∩ I)

wherex /∈ Γ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
Γ ⊢ MN : τ (→ E) Γ ⊢ M : σ ∩ τ

Γ ⊢ M : σ (∩E) Γ ⊢ M : σ ∩ τ
Γ ⊢ M : τ (∩E)

Figure 1: Natural deduction style systemλ∩
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Γ ,x : σ ⊢s x : σ (Ax)
Γ ⊢s M[x := N]N1 . . .Nn : σ Γ ⊢s N : τ

Γ ⊢s (λx.M)NN1 . . .Nn : σ
(Beta)s

Γ ⊢s N : σ1 Γ ,y : σ2 ⊢s yN1 . . .Nn : τ
Γ ,x : σ1 → σ2 ⊢s xNN1 . . .Nn : τ (L→)

Γ ,x : σ ⊢s M : τ
Γ ⊢s λx.M : σ → τ

(R→)

wherey /∈ FV(N1)∪ ·· ·∪FV(Nn) andy /∈ Γ wherex /∈ Γ

Γ ,x : σ1,x : σ2 ⊢s xN1 . . .Nn : τ
Γ ,x : σ1∩σ2 ⊢s xN1 . . .Nn : τ (L∩)

Γ ⊢s M : σ Γ ⊢s M : τ
Γ ⊢s M : σ ∩ τ (R∩)

Figure 2: Sequent calculus style systemλ s
∩

andλ s
∩ are defined by the rules in Figures 1 and 2, respectively. Atyping contextis defined as a finite set

of pairs{x1 : σ1, . . . ,xn : σn} where the variables are pairwise distinct in the systemλ∩ while they may
be the same in the systemλ s

∩. A variable with different types is intended to have the typeof intersection
of all of them. The typing contextΓ ,x : σ denotes the unionΓ ∪{x : σ}, andx /∈Γ means thatx does not
appear inΓ , i.e., for no typeσ , x : σ ∈ Γ . Note thatx : σ ∈ Γ is possible in the typing contextΓ ,x : σ .
In particular, the premisses of the rule(L →) may havex : σ1 → σ2 in Γ . In that case,x : σ1 → σ2 is
introduced by the rule(L→) with implicit contraction.

The system in [21] has the restriction inλ s
∩ that the typeσ in the rules(Ax) and(Beta)s and the type

τ in the rules(L→) and(L∩) must be type variables. Also, the rule(R→) takes the following form:

Γ ,x : σ ⊢s Mx : τ
Γ ⊢s M : σ → τ

wherex /∈ Γ andx /∈ FV(M), so that the system includes theη-rule and is not equivalent to the system
λ∩. (For example,⊢s λx.x : (σ → τ) → ((ρ ∩σ)→ τ) is derivable in the system of [21], but⊢ λx.x :
(σ → τ)→ ((ρ ∩σ)→ τ) is not derivable inλ∩.)

Example 2.1. Self-application can now be typed naturally inλ s
∩, as follows (cf. [21, pp. 478–479]).

x : σ ⊢s x : σ x : σ ,y : τ ⊢s y : τ
x : σ ,x : σ → τ ⊢s xx : τ (L→)

x : σ ∩ (σ → τ) ⊢s xx : τ
(L∩)

⊢s λx.xx : (σ ∩ (σ → τ))→ τ
(R→)

The(Beta)s-free part of the systemλ s
∩ types exactly the terms inβ -normal form, and anyβ -redex in

a typed term must be constructed through the rule(Beta)s. So it is immediately seen that the terms that
are not head-normalising (e.g.(λx.xx)(λx.xx)) can not be typed in the systemλ s

∩.

Proposition 2.2. Γ ,x : σ1∩σ2 ⊢s M : τ if and only ifΓ ,x : σ1,x : σ2 ⊢s M : τ .

Proof. By induction on the derivations.

Henceforth we writeΓ∩ for the typing context in which each variable has the type of intersection of
all the types that the variable has inΓ .
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3 Characterisation of strongly normalising λλλ -terms

If one tries to prove strong normalisation for terms typed inthe systemλ∩ directly by induction on
derivations, a difficulty arises in the case of the rule(→ E). One way of overcoming this difficulty is
to use reducibility predicates [20]. Here we use the sequentcalculus style systemλ s

∩ instead. For the
systemλ s

∩, we can prove strong normalisation for typed terms directlyby induction on derivations.

Theorem 3.1. If Γ ⊢s M : σ then M∈ SN
β .

Proof. By induction on the derivation ofΓ ⊢s M : τ in λ s
∩. The only problematic case is where the last

rule applied is(Beta)s. In that case, by the induction hypothesis, we haveM[x := N]N1 . . .Nn ∈ SN
β and

N ∈ SN
β . From the former we haveM,N1, . . . ,Nn ∈ SN

β . Then any infinite reduction sequence starting
from (λx.M)NN1 . . .Nn must have the form

(λx.M)NN1 . . .Nn −→∗
β (λx.M′)N′N′

1 . . .N
′
n

−→β M′[x := N′]N′
1 . . .N

′
n

−→β . . .

whereM−→∗
β M′, N−→∗

β N′ andNi−→
∗
β N′

i for i ∈ {1, . . . ,n}. But then there is an infinite reduction
sequence

M[x := N]N1 . . .Nn −→∗
β M′[x := N′]N′

1 . . .N
′
n

−→β . . .

contradicting the hypothesis. Hence(λx.M)NN1 . . .Nn ∈ SN
β .

To complete a proof of strong normalisation for terms typed in the systemλ∩, what remains to be
shown is that ifM is typable inλ∩ then it is typable inλ s

∩. This is proved using several lemmas below.
First we show thatλ s

∩ is closed under the weakening rule.

Lemma 3.2. If Γ ⊢s M : τ thenΓ ,x : σ ⊢s M : τ .

Proof. By induction on the derivation ofΓ ⊢s M : τ .

The next two lemmas are the essential difference from the proof of [21]. These are used in the proof
of Lemma 3.5 below. The simply typed counterpart of Lemma 3.3is found in the second proof of strong
normalisation for the simply typedλ -calculus in [12].

Lemma 3.3. If Γ ⊢s M : σ → τ and x/∈ Γ thenΓ ,x : σ ⊢s Mx : τ .

Proof. By induction on the derivation ofΓ ⊢s M : σ → τ . Here we show a few cases.

•
Γ ,y : σ → τ ⊢s y : σ → τ (Ax)

In this case we take two axiomsΓ ,x : σ ⊢s x : σ andΓ ,x : σ ,z : τ ⊢s z : τ , and obtainΓ ,x : σ ,y :
σ → τ ⊢s yx : τ by an instance of the(L→) rule.

•
Γ ⊢s M[y := N]N1 . . .Nn : σ → τ Γ ⊢s N : ρ

Γ ⊢s (λy.M)NN1 . . .Nn : σ → τ
(Beta)s

By the induction hypothesis, we haveΓ ,x : σ ⊢s M[y := N]N1 . . .Nnx : τ , and by Lemma 3.2, we
haveΓ ,x : σ ⊢s N : ρ . From these, we obtainΓ ,x : σ ⊢s (λy.M)NN1 . . .Nnx : τ by an instance of
the(Beta)s rule.
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•
Γ ,y : σ ⊢s M : τ

Γ ⊢s λy.M : σ → τ
(R→)

wherey /∈ Γ . FromΓ ,y : σ ⊢s M : τ , we haveΓ ,x : σ ⊢s M[y := x] : τ . From this and the axiom
Γ ,x : σ ⊢s x : σ , we obtainΓ ,x : σ ⊢s (λy.M)x : τ by an instance of the(Beta)s rule.

Lemma 3.4. If Γ ⊢s M : σ ∩ τ thenΓ ⊢s M : σ andΓ ⊢s M : τ .

Proof. By induction on the derivation ofΓ ⊢s M : σ ∩ τ .

Now we are in a position to prove the following important lemma.

Lemma 3.5. λ s
∩ is closed under substitution, i.e., ifΓ ,x : σ1, . . . ,x : σm ⊢s P : τ where x/∈ Γ , m≥ 0 and

σi 6= σ j for i 6= j, and, for any i∈ {1, . . . ,m}, Γ ⊢s N : σi, thenΓ ⊢s P[x := N] : τ .

Proof. The proof is by main induction on the number of ‘→’ and ‘∩’ occurring inσ1, . . . ,σm and sub-
induction on the length of the derivation ofΓ ,x : σ1, . . . ,x : σm ⊢s P : τ . We proceed by case analysis
according to the last rule used in the derivation ofΓ ,x : σ1, . . . ,x : σm ⊢s P : τ . Here we consider a few
cases.

• Suppose the last rule in the derivation is

Γ ,x : σ ⊢s M[y := Q]N1 . . .Nn : τ Γ ,x : σ ⊢s Q : ρ
Γ ,x : σ ⊢s (λy.M)QN1 . . .Nn : τ

(Beta)s

wherex : σ = x : σ1, . . . ,x : σm. By the subinduction hypothesis, we obtain both

Γ ⊢s M[y := Q][x := N]N1[x := N] . . .Nn[x := N] : τ

and
Γ ⊢s Q[x := N] : ρ

Sincey is a bound variable, we can assume that it does not occur inN. Hence the first judgement
is

Γ ⊢s M[x := N][y := Q[x := N]]N1[x := N] . . .Nn[x := N] : τ

From this andΓ ⊢s Q[x := N] : ρ , we obtain

Γ ⊢s (λy.M[x := N])Q[x := N]N1[x := N] . . .Nn[x := N] : τ

by an instance of the(Beta)s rule.

• Suppose the last rule in the derivation is

Γ ,x : σ ⊢s M : ρ1 Γ ,x : σ ,y : ρ2 ⊢s yN1 . . .Nn : τ
Γ ,x : σ ,x : ρ1 → ρ2 ⊢s xMN1 . . .Nn : τ (L→)

where{x : σ ,x : ρ1 → ρ2} = {x : σ1, . . . ,x : σm}, y /∈ FV(N1)∪ ·· · ∪FV(Nn) andy /∈ Γ ,x : σ . By
the subinduction hypothesis, we obtain both

Γ ⊢s M[x := N] : ρ1 (1)

and
Γ ,y : ρ2 ⊢s (yN1 . . .Nn)[x := N] : τ (2)
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Now consider the assumptionΓ ⊢s N : ρ1 → ρ2 and a fresh variablez. Then by Lemma 3.3, we
haveΓ ,z : ρ1 ⊢s Nz: ρ2. From this and (1), we haveΓ ⊢s NM[x := N] : ρ2 by the main induction
hypothesis. Then, again by the main induction hypothesis, we obtain

Γ ⊢s NM[x := N]N1[x := N] . . .Nn[x := N] : τ

from (2) andΓ ⊢s NM[x := N] : ρ2.

• Suppose the last rule in the derivation is

Γ ,x : σ ,x : ρ1,x : ρ2 ⊢s xN1 . . .Nn : τ
Γ ,x : σ ,x : ρ1∩ρ2 ⊢s xN1 . . .Nn : τ (L∩)

where{x : σ ,x : ρ1∩ρ2}= {x : σ1, . . . ,x : σm}. Then, applying Proposition 2.2 to the conclusion,
we haveΓ ,(x : σ)′,x : ρ1,x : ρ2 ⊢s xN1 . . .Nn : τ where(x : σ)′ = x : σ \{x : ρ1∩ρ2}. Now, from
the assumptionΓ ⊢s N : ρ1∩ρ2, we haveΓ ⊢s N : ρ1 andΓ ⊢s N : ρ2 by Lemma 3.4. Hence, by
the main induction hypothesis, we obtainΓ ⊢s NN1[x := N] . . .Nn[x := N] : τ .

Now we can show that the systemλ s
∩ is closed under the(→ E) rule.

Lemma 3.6. If Γ ⊢s M : σ → τ andΓ ⊢s N : σ thenΓ ⊢s MN : τ .

Proof. By Lemma 3.3, we haveΓ ,x : σ ⊢s Mx : τ for any fresh variablex. Hence by the previous lemma,
we obtainΓ ⊢s (Mx)[x := N]≡ MN : τ .

Now we can prove the announced theorem.

Theorem 3.7. If Γ ⊢ M : σ thenΓ ⊢s M : σ .

Proof. By induction on the derivation ofΓ ⊢ M : σ in λ∩, using Lemmas 3.4 and 3.6.

The converse of this theorem also holds when typing contextsare restricted to those ofλ∩. To prove
it, we need some lemmas on properties of the systemλ∩.

Lemma 3.8. If Γ ⊢ M : τ and z/∈ Γ thenΓ ,z : σ ⊢ M : τ .

Proof. By induction on the derivation ofΓ ⊢ M : τ .

Lemma 3.9. λ∩ is closed under substitution, i.e., ifΓ ,x : σ ⊢ P : τ where x/∈ Γ and Γ ⊢ N : σ then
Γ ⊢ P[x := N] : τ .

Proof. By induction on the derivation ofΓ ,x : σ ⊢ P : τ .

Next we prove a Generation Lemma. For its statement we define apreorder on types.

Definition 3.10. The relation≤ on types is defined by the following axioms and rules:

1. σ ≤ σ 3. σ ≤ τ , τ ≤ ρ ⇒ σ ≤ ρ
2. σ ∩ τ ≤ σ , σ ∩ τ ≤ τ 4. σ ≤ τ , σ ≤ ρ ⇒ σ ≤ τ ∩ρ

Lemma 3.11. If Γ ⊢ M : σ andσ ≤ τ thenΓ ⊢ M : τ .

Proof. By induction on the definition ofσ ≤ τ .
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Lemma 3.12(Generation Lemma).

1. Γ ⊢ MN : σ if and only if there existσ1, . . . ,σn,τ1, . . . ,τn (n≥ 1) such thatσ1∩ ·· ·∩σn ≤ σ and,
for all i ∈ {1, . . . ,n}, Γ ⊢ M : τi → σi andΓ ⊢ N : τi .

2. Γ ⊢ λx.M : σ if and only if there existτ1, . . . ,τn,ρ1, . . . ,ρn (n≥ 1) such that(τ1 → ρ1)∩·· ·∩(τn →
ρn)≤ σ and, for all i∈ {1, . . . ,n}, Γ ,x : τi ⊢ M : ρi .

Proof. The implications from right to left are immediate by the typing rules and Lemma 3.11. The
converses are shown by induction on the derivations.

Now we can prove a crucial lemma about type-checking in the systemλ∩.

Lemma 3.13. If Γ ⊢ M[x := N] : σ and Γ ⊢ N : τ where x/∈ Γ then there exists a typeρ such that
Γ ,x : ρ ⊢ M : σ andΓ ⊢ N : ρ .

Proof. By induction on the structure ofM, using Lemma 3.12.

We are now ready to prove the equivalence between the systemsλ s
∩ andλ∩.

Theorem 3.14.Γ ⊢s M : σ if and only ifΓ∩ ⊢ M : σ .

Proof. The implication from right to left follows from Theorem 3.7 and Proposition 2.2. The converse
is shown by induction on the derivation ofΓ ⊢s M : σ . If the last applied rule is(Beta)s, we use Lem-
mas 3.12 and 3.13.

Finally we show that all strongly normalising terms are typable in λ s
∩.

Theorem 3.15. If M ∈ SN
β then there exist a typing contextΓ and a typeσ such thatΓ ⊢s M : σ .

Proof. The proof is by main induction on the maximal length of allβ -reduction sequences starting from
M and subinduction on the structure ofM. We analyse the possible cases according to the shape of the
termM.

• M ≡ x for some variablex. In this case we just have to takex : σ ⊢s x : σ , which is an axiom.

• M ≡ xN1 . . .Nn. By the subinduction hypothesis, for anyi ∈ {1, . . . ,n}, there exist a typing context
Γi and a typeσi such thatΓi ⊢s Ni : σi. Then consider the following derivation (recall thatλ s

∩ is
closed under the weakening rule):

∪Γi ⊢s N1 : σ1

∪Γi ⊢s N2 : σ2

∪Γi ⊢s Nn : σn ∪Γi,yn : τ ⊢s yn : τ
∪Γi,yn−1 : σn → τ ⊢s yn−1Nn : τ (L→)

....
∪Γi,y2 : σ3 → ··· → σn → τ ⊢s y2N3 . . .Nn : τ

∪Γi,y1 : σ2 → ··· → σn → τ ⊢s y1N2 . . .Nn : τ (L→)

∪Γi,x : σ1 → ··· → σn → τ ⊢s xN1 . . .Nn : τ (L→)

• M ≡ λx.P. By the subinduction hypothesis, there exist a typing context Γ and a typeσ such that
Γ ,x : σ1, . . . ,x : σn ⊢s P : σ wherex /∈ Γ andn≥ 0. Then we haveΓ ⊢s λx.P : σ1∩ ·· · ∩σn → σ
by the(L∩) and(R→) rules. (We use a weakening rule instead of(L∩) whenn= 0.)

• M ≡ (λx.P)NN1 . . .Nn. By the main induction hypothesis, there exist a typing context Γ1 and a
typeσ1 such thatΓ1 ⊢s P[x := N]N1 . . .Nn : σ1, and, by the subinduction hypothesis, there exist a
typing contextΓ2 and a typeσ2 such thatΓ2 ⊢s N : σ2. Then, by the weakening and(Beta)s rules,
we obtainΓ1,Γ2 ⊢s (λx.P)NN1 . . .Nn : σ1.
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It is interesting to note that in the above proof we do not use the (R∩) rule at all, so it is redundant
for characterising the strongly normalisingλ -terms. The absence of the(R∩) rule leads to a restriction
on types that is similar to those investigated in [2].

The results in this section are summarised as follows.

Corollary 3.16. For anyλ -term M, the following are equivalent.

1. M is typable inλ∩.

2. M is typable inλ s
∩.

3. M is strongly normalising.

4. M is typable inλ s
∩ without using the(R∩) rule.

Proof. (1⇒ 2) This follows from Theorem 3.7.
(2⇒ 3) This follows from Theorem 3.1.
(3⇒ 4) This follows from the proof of Theorem 3.15.
(4⇒ 2) This is trivial.
(2⇒ 1) This follows from Theorem 3.14.

4 Characterisation of weakly normalisingλλλ -terms

In this section we are concerned with weak normalisation andsome type systems obtained by extending
the systemsλ∩ andλ s

∩. The main goal of this section is to prove the characterisation theorem of weak
normalisation in a similar way to that of strong normalisation in the previous section.

The extended systems are listed in Figure 3. First we introduce a new rule(Beta)l , which is a
general form of the rule considered in [21] (σ is restricted to type variables in [21]). Then the systemλ l

∩

is obtained fromλ s
∩ by replacing the(Beta)s rule by the(Beta)l rule. The systemsλ∩ω , λ s

∩ω andλ l
∩ω

are obtained fromλ∩, λ s
∩ andλ l

∩, respectively, by adding the type constantω and the(ω) rule. In order
to distinguish the judgements of the systems, we use the symbols⊢l, ⊢ω , ⊢sω and⊢lω .

For the systemλ l
∩, we have the following theorem.

Theorem 4.1. If Γ ⊢l M : σ then M∈WN
β .

Proof. By induction on the derivation ofΓ ⊢l M : τ .

Γ ⊢ M[x := N]N1 . . .Nn : σ
Γ ⊢ (λx.M)NN1 . . .Nn : σ (Beta)l

Γ ⊢ M : ω (ω)

Notation

λ l
∩ := λ s

∩− (Beta)s+(Beta)l Γ ⊢l M : σ
λ∩ω := λ∩+(ω) Γ ⊢ω M : σ
λ s
∩ω := λ s

∩+(ω) Γ ⊢sω M : σ
λ l
∩ω := λ l

∩+(ω) Γ ⊢lω M : σ

Figure 3: Systems extended withω
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For characterisation of weak normalisation in terms of typability in the extended systems, it is neces-
sary to clarify the relationship among them. First we show that the terms typable in the ordinary natural
deduction style systemλ∩ω are typable inλ s

∩ω , in almost the same way as in the previous section.

Theorem 4.2. If Γ ⊢ω M : σ thenΓ ⊢sω M : σ .

Proof. It is easy to see that Lemmas 3.2 through 3.6 hold forλ s
∩ω instead ofλ s

∩. Then the theorem
follows by induction on the derivation ofΓ ⊢ω M : σ in λ∩ω .

Next we relate the systemsλ s
∩ω , λ l

∩ω andλ l
∩. This completes one direction of the characterisation

theorem of weak normalisation.

Lemma 4.3. Γ ⊢sω M : σ if and only ifΓ ⊢lω M : σ .

Proof. The implication from left to right is immediate by forgetting the right premiss of(Beta)s. For
the converse, observe that the(Beta)l rule is derivable inλ s

∩ω using the rules(Beta)s and(ω).

Lemma 4.4. Supposeσ and all types inΓ are ω-free. ThenΓ ⊢lω M : σ if and only ifΓ ⊢l M : σ .

Proof. The implication from right to left is trivial. For the converse, observe that every type occurring
in the derivation ofΓ ⊢lω M : σ also occurs inΓ or σ .

Corollary 4.5. If Γ ⊢ω M : σ whereσ and all types inΓ are ω-free, then M∈WN
β .

Proof. By Theorem 4.2, Lemmas 4.3 and 4.4, and Theorem 4.1.

Conversely, if aλ -termM is weakly normalising, then there exist a typing contextΓ and a typeσ ,
both ω-free, such thatΓ ⊢ω M : σ . To prove this, we need the following lemmas on properties ofthe
systemλ∩ω . These are shown in similar ways to the proofs of Lemmas 3.8 through 3.12.

Lemma 4.6. If Γ ⊢ω M : τ and z/∈ Γ thenΓ ,z : σ ⊢ω M : τ .

Lemma 4.7. λ∩ is closed under substitution, i.e., ifΓ ,x : σ ⊢ω P : τ where x/∈ Γ andΓ ⊢ω N : σ then
Γ ⊢ω P[x := N] : τ .

Definition 4.8. The relation≤ω on types is defined by the axioms and rules in Definition 3.10 together
with the axiomσ ≤ω ω .

Lemma 4.9. If Γ ⊢ω M : σ andσ ≤ω τ thenΓ ⊢ω M : τ .

Lemma 4.10(Generation Lemma). Let σ be any type withω 6≤ω σ . Then

1. Γ ⊢ω MN : σ if and only if there existσ1, . . . ,σn,τ1, . . . ,τn (n ≥ 1) such thatσ1∩ ·· · ∩σn ≤ω σ
and, for all i∈ {1, . . . ,n}, Γ ⊢ω M : τi → σi andΓ ⊢ω N : τi.

2. Γ ⊢ω λx.M : σ if and only if there existτ1, . . . ,τn,ρ1, . . . ,ρn (n ≥ 1) such that(τ1 → ρ1)∩ ·· · ∩
(τn → ρn)≤ω σ and, for all i∈ {1, . . . ,n}, Γ ,x : τi ⊢ω M : ρi .

Now we can prove a crucial lemma about type-checking in the systemλ∩ω .
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Lemma 4.11. If Γ ⊢ω M[x := N] : σ where x/∈ Γ then there exists a typeρ such thatΓ ,x : ρ ⊢ω M : σ
andΓ ⊢ω N : ρ .

Proof. By induction on the structure ofM, using Lemma 4.10. IfM ≡ y(6≡ x) or ω ≤ω σ , then we take
ρ = ω .

We can now prove that in the systemλ∩ω , types are preserved under the inverse ofβ -reduction.

Lemma 4.12. If Γ ⊢ω N : σ and M−→β N thenΓ ⊢ω M : σ .

Proof. By induction on the structure ofM, using Lemma 4.10. IfM is the β -redex then we use
Lemma 4.11.

Now we can prove the announced theorem.

Theorem 4.13. If M ∈WN
β then there exist a typing contextΓ and a typeσ such thatΓ ⊢ω M : σ and

bothΓ andσ are ω-free.

Proof. Let M′ be a normal form ofM. By Theorem 3.15, every normal form is typable inλ s
∩, so there

exist a typing contextΓ and a typeσ , bothω-free, such thatΓ ⊢ω M′ : σ . Hence, by Lemma 4.12, we
haveΓ ⊢ω M : σ .

We can also prove the equivalence of the systemsλ∩ω , λ s
∩ω andλ l

∩ω .

Theorem 4.14.For any typing contextΓ , anyλ -term M and any typeσ , the following are equivalent.

1. Γ∩ ⊢ω M : σ .

2. Γ ⊢sω M : σ .

3. Γ ⊢lω M : σ .

Proof. (1⇒ 2) This follows from Theorem 4.2 and Proposition 2.2 with⊢sω instead of⊢s.
(2⇒ 3) This follows from Lemma 4.3.
(3⇒ 1) This follows by induction on the length of the derivation of Γ ⊢lω M : σ . If the last applied rule
is (Beta)l , we use Lemmas 4.10 and 4.11.

The results in this section are summarised as follows.

Corollary 4.15. For anyλ -term M, the following are equivalent.

1. Γ ⊢ω M : σ for some typing contextΓ and typeσ , bothω-free.

2. Γ ⊢sω M : σ for some typing contextΓ and typeσ , bothω-free.

3. Γ ⊢lω M : σ for some typing contextΓ and typeσ , bothω-free.

4. Γ ⊢l M : σ for some typing contextΓ and typeσ .

5. M is weakly normalising.

Proof. (1⇒ 2) This follows from Theorem 4.2.
(2⇒ 3) This follows from Lemma 4.3.
(3⇒ 4) This follows from Lemma 4.4.
(4⇒ 5) This follows from Theorem 4.1.
(5⇒ 1) This follows from Theorem 4.13.
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5 Application to other properties

The sequent calculus style systems we introduced in the previous sections are very useful for proving
properties of intersection type systems. In this section weillustrate that by giving a simple proof of the
(logical) approximation theorem, a property that is usually proved using reducibility predicates para-
metrised by typing contexts (see, e.g. [11, 4]). Proofs of some other properties through the sequent
calculus style systems are found in [15], which also makes a comparison between general conditions for
applying the reducibility method and our approach.

For the statement of the approximation theorem, we introduce some preliminary definitions. The
set ofλ⊥-terms [5] is obtained by adding the constant⊥ to the formation rules ofλ -terms. The type
systems in the previous section are extended to those forλ⊥-terms, where anyλ⊥-term containing⊥ is
typable by the(ω) rule.

Definition 5.1. Theapproximation mappingα from λ -terms toλ⊥-terms is defined inductively by

α(λx1 . . .xn.xN1 . . .Nm) := λx1 . . .xn.xα(N1) . . .α(Nm)

α(λx1 . . .xn.(λx.M)NN1 . . .Nm) := λx1 . . .xn.⊥

where n,m≥ 0.

Lemma 5.2.

1. If Γ ⊢lω α(M) : σ and M−→∗
β N thenΓ ⊢lω α(N) : σ .

2. Let M−→∗
β N, M−→∗

β N′, Γ ⊢lω α(N) : σ and Γ ⊢lω α(N′) : τ . Then there exists N′′ such that
M−→∗

β N′′ andΓ ⊢lω α(N′′) : σ ∩ τ .

Proof. The first part is proved by induction on the derivation ofΓ ⊢lω α(M) : σ . For the second part,
we use confluence ofβ -reduction.

Now the logical approximation theorem can be formulated as follows.

Theorem 5.3. Γ ⊢ω M : σ if and only if there exists M′ such that M−→∗
β M′ andΓ ⊢ω α(M′) : σ .

Proof. (⇒) By Theorem 4.14, it suffices to show that ifΓ ⊢lω M : σ then there existsM′ such that
M−→∗

β M′ andΓ ⊢lω α(M′) : σ . The proof is by induction on the derivation ofΓ ⊢lω M : σ . Here we
consider some cases.

•
Γ ⊢lω M[x := N]N1 . . .Nn : σ
Γ ⊢lω (λx.M)NN1 . . .Nn : σ (Beta)l

By the induction hypothesis, there existsM′ such thatM[x := N]N1 . . .Nn−→
∗
β M′ and Γ ⊢lω

α(M′) : σ . ThisM′ also satisfies(λx.M)NN1 . . .Nn−→
∗
β M′.

•
Γ ⊢lω N : σ1 Γ ,y : σ2 ⊢lω yN1 . . .Nn : τ

Γ ,x : σ1 → σ2 ⊢lω xNN1 . . .Nn : τ (L→)

wherey /∈ FV(N1)∪·· ·∪FV(Nn) andy /∈Γ . By the induction hypothesis, there existN′,N′
1, . . . ,N

′
n

such thatN−→∗
β N′, Ni−→

∗
β N′

i , Γ ⊢lω α(N′) : σ1 andΓ ,y : σ2 ⊢lω yα(N′
1) . . .α(N′

n) : τ . Hence,
by an instance of the(L→) rule, we obtainΓ ,x : σ1 → σ2 ⊢lω xα(N′)α(N′

1) . . .α(N′
n) : τ . So we

takexN′N′
1 . . .N

′
n asM′.
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•
Γ ,x : σ ⊢lω N : τ

Γ ⊢lω λx.N : σ → τ
(R→)

wherex /∈ Γ . By the induction hypothesis, there existsN′ such thatN−→∗
β N′ andΓ ,x : σ ⊢lω

α(N′) : τ . By an instance of the(R→) rule, we obtainΓ ⊢lω λx.α(N′) : σ → τ . Sinceα(λx.N′)≡
λx.α(N′), we takeλx.N′ asM′.

•
Γ ⊢lω M : σ Γ ⊢lω M : τ

Γ ⊢lω M : σ ∩ τ (R∩)

By the induction hypothesis, there existM1,M2 such thatM−→∗
β M1, M−→∗

β M2, Γ ⊢lω α(M1) : σ
andΓ ⊢lω α(M2) : τ . Then by Lemma 5.2(2), there existsM′ such thatM−→∗

β M′ andΓ ⊢lω
α(M′) : σ ∩ τ .

(⇐) We can show by induction on the derivation that ifΓ ⊢ω α(M′) : σ thenΓ ⊢ω M′ : σ . Hence, by
Lemma 4.12, we haveΓ ⊢ω M : σ .

Thus our method has been successfully applied to proving theapproximation theorem for the map-
ping α and the systemλ∩ω . It is work in progress to give similar proofs of the approximation theorems
for the η-approximation mappingαη , which mapsλx.⊥ directly to⊥, and type systems with various
preorders as discussed in [10, 11, 4].

6 Conclusion

We have presented uniform proofs of the characterisation theorems of normalisation properties and the
approximation theorem. The proofs have been given via intersection type systems in sequent calculus
style. As investigated in [15], our method can be consideredto have embedded certain conditions for
applying reducibility directly into the typing rules of thesequent calculus style systems. (See [13] for a
recent survey of general conditions for applying the reducibility method.)

As mentioned in the introduction, there are some proofs [18,16, 9, 1] of strong normalisation for
terms typable with intersection types without using reducibility, but they have not considered any other
properties than normalisation. Other syntactic proofs of strong normalisation for terms typable with
intersection types are found in [14, 6], where the problem isreduced to that of weak normalisation with
respect to another calculus or to another notion of reduction. The proofs of [18, 21] and ours are different
from those of [14, 6] in that strong normalisation is proved directly rather than inferring it from weak
normalisation. Yet another syntactic proof [7] uses a translation from terms typable with intersection
types into simply typedλ -terms.

There are many directions for future work. In addition to theone indicated at the last paragraph of
Section 5, it would be worth investigating the type inference and the inhabitation problems for intersec-
tion types by means of our sequent calculus style systems.

AcknowledgementsI would like to thank Katsumasa Ishii for drawing my attention to Valentini’s paper
and pointing out that the system includes theη-rule. I also thank the anonymous reviewers of ITRS
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Tatsuta’sproof.sty macros.
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