
S. Graham-Lengrand and L. Paolini (Eds.): Sixth Workshop on
Intersection Types and Related Systems (ITRS 2012).
EPTCS 121, 2013, pp. 81–93, doi:10.4204/EPTCS.121.6

c© Ancona, Giannini and Zucca
This work is licensed under the
Creative Commons Attribution License.

Reconciling positional and nominal binding∗

Davide Ancona
DIBRIS, Univ. di Genova, Italy

Paola Giannini
DISIT, Univ. Piemonte Orientale, Italy

Elena Zucca
DIBRIS, Univ. di Genova, Italy

We define an extension of the simply-typed lambda-calculus where two different binding mecha-
nisms, by position and by name, nicely coexist. In the former, as in standard lambda-calculus, the
matching between parameter and argument is done on a positional basis, hence α-equivalence holds,
whereas in the latter it is done on a nominal basis. The two mechanisms also respectively corre-
spond to static binding, where the existence and type compatibility of the argument are checked at
compile-time, and dynamic binding, where they are checked at run-time.

1 Introduction

Two different binding mechanisms which are both widely applied in computer science are binding by po-
sition and binding by name. In the former, matching is done on a positional basis, hence α-equivalence
holds, as demonstrated by the de Bruijn presentation of the lambda-calculus. This models parameter
passing in most languages. In the latter, matching is done on a nominal basis, hence α-equivalence
does not hold, as in name-based parameter passing, method look-up in object-oriented languages, and
synchronization in process calculi. Usually, identifiers which can be α-renamed are called variables,
whereas names cannot be α-renamed (if not globally in a program) [2, 11]. An analogous difference
holds between tuples and records, as recently discussed by Rytz and Odersky [13]. The record notation
has been extremely successful in object-oriented languages, whereas functional languages use preva-
lently tuples for non curried functions. The positional notation allows developers not to be constrained
to a particular choice of names; from the point of view of clients, instead, the nominal notation can be
better, since names are in general more suggestive. However, in both cases developers and clients have
to agree on some convention, either positional or nominal.

The aim of this paper is to define a very simple and compact calculus which smoothly integrates
positional and nominal binding, providing a “minimal” unifying foundation for these two mechanisms,
and to investigate the expressive power of their combination. Notably, we extend the simply typed
lambda-calculus with two constructs.

• An unbound term 〈r | t〉, with r = x1 7→ X1, . . . ,xm 7→ Xm, is a value representing “open code”. That
is, t may contain free occurrences of variables x1, . . . ,xm to be dynamically bound, when code will
be used, through the global nominal interface offered by names X1, . . . ,Xm. Each occurrence of
x1, . . . ,xm in r is called an unbinder.

• To be used, open code should be passed as argument to a rebinding lambda-abstraction λx[s].t,
with s = X1 7→ t1, . . . ,Xm 7→ tm. This construct behaves like a standard lambda-abstraction. How-
ever, the argument, which is expected to be open code, is not used as it stands, but rebound as
specified by s, and if some rebinder is missing a dynamic error occurs.

∗This work has been partially supported by MIUR DISCO - Distribution, Interaction, Specification, Composition for Object
Systems, and MIUR CINA - .

http://dx.doi.org/10.4204/EPTCS.121.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

82 Reconciling positional and nominal binding

For instance, the application (λ z[X 7→ 1,Y 7→ 2].z)〈x 7→ X,y 7→ Y | x + y〉 reduces to 1 + 2, while (λ z[X 7→
1].z)〈x 7→ X,y 7→ Y | x + y〉 reduces to error.

This proposal is based on our previous extension of lambda-calculus with unbind and rebind primi-
tives [6, 7] (of which [5] is a preliminary version) and indeed shares with this work the ability to express
static and dynamic binding mechanisms within the same calculus. A thorough comparison between the
current calculus and the calculi of [6, 7] is presented in Section 5.

In the rest of this paper, we first provide the formal definition of an untyped version of the calculus
(Section 2), then of a typed version with its type system (Section 3), for which we prove a soundness
result in Section 4. In Section 5 we compare this calculus with our previous calculi and with various other
calculi and examine the meta-programming features offered by the calculus. Finally, in the Conclusion
we discuss future work.

2 Untyped calculus

The syntax and reduction rules of the untyped calculus are given in Figure 1. We assume infinite sets of
variables x and names X.

t :: = x | n | t1 + t2 | λx.t | t1 t2 | 〈r | t〉 | λx[s].t | error term
r :: = x1 7→ X1, . . . ,xm 7→ Xm unbinding map
s :: = X1 7→ t1, . . . ,Xm 7→ tm rebinding map

v :: = n | λx.t | | λx[s].t | 〈r | t〉 (FV(t)⊆dom(r)) value
E :: = [] | E + t | n + E | E t | v E evaluation context
σ :: = x1 7→ t1, . . . ,xm 7→ tm substitution

n1 + n2 −→ n if ñ = ñ1 +
Z ñ2 (SUM)

(λx.t) v−→ t{x 7→ v} (APP)

(λx[s].t) 〈r | t′〉 −→ t{x 7→ t′{y 7→ s(r(y)) | y ∈ dom(r)}} rng(r)⊆ dom(s) (APPREBINDOK)

(λx[s].t) 〈r | t′〉 −→ error rng(r) 6⊆ dom(s) (APPREBINDERR)

t −→ t′ E 6= []
(CONT)

E [t]−→ E [t′]

t −→ error E 6= []
(CONTERROR)

E [t]−→ error

Figure 1: Syntax and reduction rules

Terms of the calculus are λ -calculus terms, unbound terms, rebinding lambda-abstractions, and a
term representing dynamic error. We also include integers with addition for concreteness. We use r
for unbinding maps, which are finite maps from variables to names, and s for rebinding maps, which
are finite maps from names to terms. Note that a standard lambda-abstraction is not a special case of
rebinding lambda-abstraction, that is, the term λx[/0].t behaves differently from λx.t.

Note that in unbound terms we write, say, 〈x 7→ X | y x〉, rather than directly 〈y X〉, that is, differently
from, e.g., [10], names are not terms of the underlying language but we keep an explicit mapping from

Ancona, Giannini and Zucca 83

variables into names. This distinction is a tradition in module calculi [1] and the main motivation is to
keep separate the intra-module language, or core language (in our paper, the language used to write code
which can be unbound/rebound, which is here lambda-calculus for simplicity) from the inter-module
language (constructs at the meta-level1) whose semantics can then be given independently from the core
language. With our approach the inter-module language/meta-level can be built smoothly on top of the
core language, without changing its syntax/semantics. The inter-module language could be even applied
to terms coming from different languages.

The operational semantics is described by the reduction rules in Figure 1. We denote by ñ the integer
represented by the constant n, by +Z the sum of integers, and by dom and rng the domain and range
of a map, respectively. The application of a substitution to a term, t{σ}, is defined, together with free
variables, in Figure 2, where we denote by σ\S the substitution obtained from σ by removing variables in
set S. Note that an unbinder (that is, a variable occurrence in the domain of an unbinding map) behaves

FV(x) = {x}
FV(n) = /0
FV(t1 + t2) = FV(t1)∪FV(t2)
FV(λx.t) = FV(t)\{x}
FV(t1 t2) = FV(t1)∪FV(t1)
FV(〈r | t〉) = FV(t)\dom(r)
FV(λx[s].t) = (FV(t)\{x})∪FV(s)
FV(X1 7→ t1, . . . ,Xm 7→ tm) =

⋃
i∈1..m FV(ti)

x{σ}= t if σ(x) = t
x{σ}= x if x 6∈ dom(σ)
n{σ}= n
(t1 + t2){σ}= t1{σ} + t2{σ}
(λx.t){σ}= λx.t{σ\{x}} if x 6∈ FV(σ)

(t1 t2){σ}= t1{σ} t2{σ}
〈r | t〉{σ}= 〈r | t{σ\dom(r)}〉 if dom(r)∩FV(σ) = /0
(λx[s].t){σ}= λx[s{σ}].t{σ\{x}} if x 6∈ FV(σ)

(X1 7→ t1, . . . ,Xm 7→ tm){σ}= X1 7→ t1{σ}, . . . ,Xm 7→ tm{σ}

Figure 2: Free variables and application of substitution

like a λ -binder: for instance, in a term of shape 〈x 7→ X | t〉, the unbinder x introduces a local scope,
that is, binds free occurrences of x in t. Hence, a substitution for x is not propagated inside t. Moreover,
a condition which prevents capture of free variables, similar to the λ -abstraction case, is needed. For
instance, the term t = (λy.〈x 7→ X | y x〉) (λ z.x) is stuck, since the substitution 〈x 7→ X | y x〉{y 7→ λ z.x} is
undefined, and therefore the term does not reduce to 〈x 7→ X | (λ z.x) x〉, which would be, indeed, wrong.
This condition is enforced by the definition of substitution where we require that the free variables of the
substitution are disjoint from the domain of the unbinding map. However, as for the similar requirement
for substitution applied to a lambda-abstraction we can always α-rename the variables in the domain of
the unbinding map (and consistently in the body of the unbound term) to meet the requirement (we omit

1In this paper they are limited to the unbind and rebind constructs but they could include, for instance, a renaming construct.

84 Reconciling positional and nominal binding

the obvious formal definition). Consider the term t′ = (λy.〈x′ 7→ X | y x′〉) (λ z.x) which is t with the
unbinder x renamed to x′. The term t′ is α-equivalent to t, and reduces (correctly) to 〈x′ 7→ X | (λ z.x) x′〉.

The rules of the operational semantics for sum and standard application are the usual ones. For
application of a rebinding lambda-abstraction to an unbound term the variable x in the body of the
lambda-abstraction is substituted with t′ in which each unbinder is substituted with the term bound to the
corresponding name in the rebinding. This application, however, evaluates to error in case the domain
of the rebinding map is not a superset of the range of the unbinding map. We write the side condition in
both rules for clarity, even though it is redundant in the former.

Example 1 This example shows that unbound terms can be arguments of both standard and rebinding
lambda-abstractions. Consider the term t that follows

(λy.(λ z[X 7→ 2].z) y+(λ z[X 7→ 3].z) y) 〈x 7→ X | x+1〉

applying the rules of the operational semantics we get the following reduction:

t −→ (λ z[X 7→ 2].z) 〈x 7→ X | x+1〉+(λ z[X 7→ 3].z) 〈x 7→ X | x+1〉 (APP)

−→ (2+1)+(λ z[X 7→ 3].z) 〈x 7→ X | x+1〉 (APPREBINDOK)

−→ 3+(λ z[X 7→ 3].z) 〈x 7→ X | x+1〉 (SUM)

−→ 3+(3+1) (APPREBINDOK)

−→ 3+4 (SUM)

−→ 7 (SUM)

From now on, we will use the abbreviation t[s] for (λx[s].x) t.

Example 2 The classical example showing the difference between static and dynamic scoping:
let x=3 in

let f=lambda y.x+y in

let x=5 in

f 1

can be translated as follows:
1. (λx.(λ f .(λx.f 1) 5) (λy.x+ y)) 3 which reduces to 4 (static scoping), or

2. (λx.(λ f .(λx.f [X 7→ x] 1) 5) 〈x 7→ X | λy.x+ y〉) 3 which reduces to 6 (dynamic scoping).

Example 3 The following example shows some of the meta-programming features offered by the open
code and the rebinding lambda-abstraction constructs.

f = λx1.λx2.〈y1 7→ X,y2 7→ X | (x1[X 7→ y1]) x2[X 7→ y2]〉

f is a function manipulating open code: it takes two open code fragments, with the same global nominal
interface containing the sole name X, and, after rebinding both, it combines them by means of func-
tion application; finally, it unbinds the result so that the resulting nominal interface contains again the
sole name X. The fact that the unbinding map is not injective means that the free variables of the two
combined open code fragments will be finally rebound to the same value (that is, the same value will be
shared).

For instance, (f 〈x 7→ X | λy.y+ x〉 〈x 7→ X | x〉)[X 7→ 1] reduces to 2.

As the examples above show, the most useful construct in many cases is the application of a rebinding
to an expression t[s], which is a shortcut for (λx[s].x) t. We prefer to take as primitive the rebinding
lambda-abstraction λx[s].t because in this way we also have, for free, rebindings as first-class values
(they are terms of shape λx[s].x), with a syntax which is a smooth extension of lambda calculus.

Ancona, Giannini and Zucca 85

3 Typed calculus

The syntax and operational semantics of the typed calculus are given in Figure 3.

t :: = x | n | t1 + t2 | λx:T.t | t1 t2 | 〈r | t〉 | λx:T[s].t term
r :: = x1:T1 7→ X1, . . . ,xm:Tm 7→ Xm unbinding map
s :: = X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm rebinding map

T :: = int | T1→ T2 | 〈∆ | T〉 type
Γ :: = x1:T1, . . . ,xm:Tm context
∆ :: = X1:T1, . . . ,Xm:Tm name context

v :: = n | λx:T.t| λx:T[s].t | 〈r | t〉 (FV(t)⊂ dom(r)) value
E :: = [] | E + t | n + E | E t | v E evaluation context

(λx : T[s].t) 〈r | t′〉 −→ t{x 7→ t′{y 7→ s(r(y)) | y ∈ dom(r)}} (APPREBIND)

Figure 3: Syntax of typed calculus, and modified reduction rules

In typed terms, as usual, variables and names (either in lambda-abstractions or maps) are decorated
with types. We assume that in an unbinding map two variables which are mapped in the same name are
decorated with the same type, hence there is an implicit decoration for names as well.

Types are either ground types: integer and function types, or unbound types, that is, types for open
code, that needs the rebinding of some names. More precisely, a term has type 〈X1:T1, . . . ,Xm:Tm | T〉
if the term needs the rebinding of the names Xi (1 ≤ i ≤ m) to terms of type Ti (1 ≤ i ≤ m) in order to
produce a term of type T . A sequence X1:T1, . . . ,Xm:Tm is called a type context and is well-formed if,
for each i, j (1≤ i, j ≤ m) , Xi = X j implies Ti = T j, and analogously for contexts x1:T1, . . . ,xm:Tm. Two
name contexts are equal modulo permutation and repetitions of type assignments; consequently, the two
types 〈Y1:int,Y2:int→ int | int〉 and 〈Y2:int→ int,Y1:int,Y1:int | int〉 are considered equal.

The operational semantics of the untyped and typed versions of the language differs only in the rules
for application with rebinding, and the fact that we do not have rule (CONTERROR). In this case we do not
check the correctness of the rebinding, that is that we have at least a rebinding for each name, and this is
of the right type, since, as we will prove, the type system enforces this property statically.

For instance, the untyped term t = (λx[Y 7→ 3].x + 4) 〈y 7→ Y | y 2〉 reduces with rule (APPREBINDOK) of
Figure 1 to (3 2) + 4 which is a stuck term. However, the term cannot be assigned a type, since in the typed
version of the unbound term 〈y:int→ int 7→ Y | y 2〉 the variable y and therefore the name Y have type
int→ int, whereas in the typed version of the rebinding lambda-abstraction, λx:〈Y:int | int〉[Y:int 7→
3].x + 4, the name Y has type int.

The typing rules use the subtyping relation defined in Figure 4.
Subtyping rules for int and arrow types are standard; as usual, for arrow types subtyping is con-

travariant in the type of the formal parameter, and covariant in the returned type. A similar consideration
applies to unbound types: an unbound term of type 〈∆2 | T2〉 can be safely replaced by another term of
type 〈∆1 | T1〉 if the requirements expressed by the corresponding name context ∆1 are weaker than those
of ∆2, and the type T1 of the term obtained after rebinding is a subtype of T2.

86 Reconciling positional and nominal binding

(SUB-INT)
int≤ int

(SUB-ARR)
T ′1 ≤ T1 T2 ≤ T ′2

T1→ T2 ≤ T ′1→ T ′2
(SUB-UNBIND)

∆2 ≤ ∆1 T1 ≤ T2

〈∆1 | T1〉 ≤ 〈∆2 | T2〉

(SUB-CONTEXT)
T1 ≤ T ′1, . . . ,Tm ≤ T ′m

X1:T1, . . . ,Xm+k:Tm+k ≤ X1:T ′1, . . . ,Xm:T ′m

Figure 4: Typed calculus: subtyping rules

(T-NUM)
Γ ` n : int

(T-VAR)
Γ(x) = T
Γ ` x : T

(T-SUM)
Γ ` t1 : int Γ ` t2 : int

Γ ` t1 + t2 : int

(T-ABS)
Γ[x:T1] ` t : T2

Γ ` λx : T1.t : T1→ T2
(T-APP)

Γ ` t1 : T1→ T2 Γ ` t2 : T ′1 T ′1 ≤ T1

Γ ` t1 t2 : T2

(T-UNBIND)
Γ[xenv(r)] ` t : T

Γ ` 〈r | t〉 : 〈Xenv(r) | T〉
(T-REBIND)

Γ[x:T ′] ` t : T s = X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm
Γ ` ti : Ti (1≤ i≤ m)

Γ ` λx:(〈Xenv(s) | T ′〉)[s].t : (〈Xenv(s) | T ′〉)→ T

Figure 5: Typed calculus: typing rules

Finally, subtyping for name contexts coincides with the usual notion of width and depth subtyping
for record types: a name context ∆1 is more specific than ∆2 if it defines at least the same names defined
by ∆2, associated with types that are allowed to be subtypes of the corresponding types in ∆2.

In the typing rules (see Figure 5) we use the following notations for extracting a name context from
an unbinding/rebinding map, extracting a context from an unbinding map, and updating a context, re-
spectively:

• Xenv(X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm) = Xenv(x1:T1 7→ X1, . . . ,xm:Tm 7→ Xm) = X1:T1, . . . ,Xm:Tm

• xenv(x1:T1 7→ X1, . . . ,xm:Tm 7→ Xm) = x1:T1, . . . ,xm:Tm and

• Γ[Γ′](x) = Γ′(x) if x ∈ dom(Γ′), Γ(x) otherwise.

The rules are quite standard: variables have their declared type, integers and lambda-abstractions
have types not needing rebindings, and the sum operator requires parameters of integer type. Rule (T-APP)

is standard: the type of the actual parameter must be a subtype of the type of the formal one. We have
two rules for application, both require that the left term has a function type. The first (T-APP) is the
standard rule, in which the type of the actual parameter is equal to the one of the formal one. The second
application rule, (T-APPREB), in case the argument reduces to an unbound term, the type of the formal
parameter of the rebinding lambda-abstraction to which the function reduce, may provide rebindings for
more names than the ones needed.

For an unbound term the body of the term must have type T in the current environment Γ updated
by the environment xenv(r) where the unbound variables have the type specified in r. Note that the
rule can be applied only if, in the resulting unbound type, the name context Xenv(r) extracted from r

Ancona, Giannini and Zucca 87

is well-formed, according to the definition given above. For instance, the name context extracted from
x1:int 7→X,x2:int→ int 7→X is not well-formed, since the name X is required to have the two different
types int and int→ int at the same time.

Finally, the type of the formal parameter of a rebinding lambda-abstraction specifies the types of the
names that are in the rebinding s, and the type that the variables x must have in order to type the body of
the lambda-abstraction.

Let T = 〈X:int | int〉, the typed term corresponding to the untyped term of Example 1 is:

(λy:T.(λ z:T[X:int 7→ 2)].z) y+(λ z:T[X:int 7→ 3)].z) y) 〈x:int 7→ X | x+1〉

4 Soundness of the calculus

The type system is safe since types are preserved by reduction, subject reduction property, and closed
terms are not stuck, progress property.

The proof of subject reduction relays on the inversion and context lemmas that follows.

Lemma 4 (Inversion)

1. If Γ ` x : T, then T = Γ(x).

2. If Γ ` n : T, then T = int.

3. If Γ ` t1 + t2 : T, then T = int, Γ ` t1 : int, and Γ ` t2 : int.

4. If Γ ` λx:T1.t : T, then for some T2 we have T = (T1→ T2), and Γ[x:T1] ` t : T2.

5. If Γ ` t1 t2 : T, then for some T1, and T ′1 we have Γ ` t1 : (T1→ T), Γ ` t2 : T ′1, and T ′1 ≤ T1.

6. If Γ ` 〈r | t〉 : T, then for some T ′ we have T = 〈Xenv(r) | T ′〉, and Γ[tenv(r)] ` t : T ′.

7. If Γ ` λx:T ′[X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm].t : T, then for some T ′1, and T ′2, T = T ′ → T ′2, T ′ =
〈X1:T1, . . . ,Xm:Tm | T ′1〉, Γ[x:T ′1] ` t : T ′2, and for all i, 1≤ i≤ m, Γ ` ti : Ti.

Proof By case analysis on typing rules.

Lemma 5 (Substitution) If Γ[x1:T1, . . . ,xm:Tm] ` t : T, Γ ` ti : T ′i , and T ′i ≤ Ti (1 ≤ i ≤ m), then Γ `
t{x1 7→ t1, . . . ,xm 7→ tm} : T ′ where T ′ ≤ T.

Proof By induction on terms t.

Lemma 6 (Context) Let Γ ` E [t] : T, then

• Γ ` t : T ′ for some T ′, and

• for all t′, if Γ ` t′ : T ′′, and T ′′ ≤ T ′, then Γ ` E [t′] : T ′′′ for T ′′′ ≤ T .

Proof By induction on evaluation contexts E .

Theorem 7 (Subject Reduction) If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof By induction on reduction derivations. We consider only the interesting rules.
If the applied rule is (APP), then

(λx:T1.t) v−→ t{x 7→ v}.

88 Reconciling positional and nominal binding

By hypothesis Γ ` (λx:T1.t) v : T . From Lemma 4, cases (5) and (4) we have that there is T ′1 such that
Γ ` λx:T1.t : (T1→ T), Γ ` v : T ′1, and T ′1 ≤ T1. Again by Lemma 4, case (4) we have that Γ[x:T1] ` t : T .
By Lemma 5 we derive that Γ ` t{x 7→ v} : T .

If the applied rule is (APPREBIND), then

(λx : T ′[s].t) 〈r | t′〉 −→ t{x 7→ t′{y 7→ s(r(y)) | y ∈ dom(r)}}

From Lemma 4, cases (5) and (7) we have that there is T ′′ such that Γ ` λx : T ′[s].t : (T ′→ T), Γ `
〈r | t′〉 : T ′′, and T ′′ ≤ T ′. Again by Lemma 4, case (7) we have that T ′ = 〈Xenv(s) | T ′′′〉 for some T ′′′,
and Γ[x:T ′′′] ` t : T .
From Γ ` 〈r | t′〉 : T ′′, Lemma 4, case (6), we have that T ′′ = 〈Xenv(r) | T ′′1 〉 for some T ′′1 . Assume that

s = X1:T1 7→ t1, . . . ,Xn:Tn 7→ tn

so Xenv(s) = X1:T1, . . . ,Xn:Tn, from the subtyping rule (SUB-UNBIND) we have that

• T ′′1 ≤ T ′′′,

• Xenv(r) = X1:T ′1, . . . ,Xm:T ′m, where m≤ n, and

• Ti ≤ T ′i for all 1≤ i≤ m.

From Lemma 4, case (7), we have that for all i, 1 ≤ i ≤ m, Γ ` ti : Ti, and from Γ ` 〈r | t′〉 : T ′′,
Lemma 4, case (6), we get that Γ[x1:T ′1, . . . ,xm:T ′m] ` t′ : T ′′1 . Let t′′ = t{x1 7→ t1, . . . ,xm 7→ tm} =
t′{y 7→ s(r(y)) | y ∈ dom(r)}, from Lemma 5, we derive that Γ ` t′′ : T ′′2 and T ′′2 ≤ T ′′1 . Therefore, again
Lemma 5, T ′′2 ≤ T ′′′ (derived from transitivity of ≤), and Γ[x:T ′′′] ` t : T , imply that Γ ` t{x 7→ t′′} : T ′′3
for T ′′3 ≤ T , which is what we wanted to prove.

If the applied rule is (CONT), t = E [t1], t′= E [t′1] and t1−→ t′1. By Lemma 6, and Γ` E [t1] : T for some
T ′, Γ ` t1 : T ′. By induction hypothesis, Γ ` t′1 : T ′1 with T ′1 ≤ T ′. Therefore, by Lemma 6, Γ ` E [t′1] : T ′′1
with T ′′1 ≤ T .

In order to show the Progress Theorem, we first state the Canonical Forms Lemma, and then a lemma
asserting the usual relation between type contexts and free variables (Lemma 9).

Lemma 8 (Canonical Forms)

1. If ` v : int, then v = n.

2. If ` v : 〈∆ | T〉, then v = 〈r | t〉 for some r and t.

3. If ` v : (T→ T ′), then either v = λx:T.t, or v = λx:T[s].t for some s and t.

Proof By case analysis on the shape of values.

Lemma 9 If Γ ` t : T, then FV(t)⊆ dom(Γ).

Proof By induction on type derivations.

Theorem 10 (Progress) If ` t : T, then either t is a value, or t −→ t′ for some t′.

Proof By induction on the typing derivation of ` t : T .
If ` t : T and t is not a value, then the last applied rule cannot be (T-NUM), (T-ABS), (T-UNBIND), or

(T-REBIND). Moreover the typing environment for the expression is empty, hence by Lemma 9 the last
applied rule cannot be (T-VAR).

Ancona, Giannini and Zucca 89

If the last typing rule applied is (T-SUM), then t = t1 + t2 and:

` t1 : int ` t2 : int
` t1 + t2 : int

If t1 is not a value, then, by induction hypothesis, t1 −→ t′1. So by rule (CONT), with context E = [] + t2, we
have t1 + t2 −→ t′1 + t2. If t1 is a value, then, by Lemma 8, case (1), t1 = n1. Now, if t2 is not a value, then,
by induction hypothesis, t2 −→ t′2. So by rule (CONT), with context E = n1 + [], we get t1 + t2 −→ t1 + t′2.
Finally, if t2 is a value, then by Lemma 8, case (1), t2 = n2. Therefore rule (SUM) is applicable.

If the last applied rule is (T-APP), then t = t1 t2, therefore for some T ′ and T ′′:

` t1 : (T ′→ T) ` t2 : T ′′ T ′′ ≤ T ′

` t1 t2 : T

If t1 is not a value, then, by induction hypothesis, t1 −→ t′1. So t1 t2 = E [t1] with E = [] t2, and by rule
(CONT), t1 t2 −→ t′1 t2. If t1 is a value v, and t2 is not a value, then, by induction hypothesis, t2 −→ t′2. So
t1 t2 = E [t2] with E = v [], and by rule (CONT), v t2 −→ v t′2.
If both t1 and t2 are values, then by Lemma 8, case (3),

1. t1 = λx:T ′.t, or

2. λx:T ′[s].t.

For case (1), rule (APP) can be applied. For case (2), from Lemma 4, case (7), T ′ = 〈Xenv(s) | T ′′′〉. Let
Xenv(s) = X1:T1, . . . ,Xn:Tn, since T ′′ ≤ T ′ from rule (SUB-UNBIND), T ′′ = 〈X1:T ′1, . . . ,Xm:T ′m | T ′′1 〉, where
m≤ n, and rule (APPREBIND) is applicable.

5 Related Work

5.1 Comparisons with our previous calculi

This proposal is based on our previous extension of lambda-calculus with unbind and rebind primitives
[6, 7] and indeed shares with this work the ability to express static and dynamic binding mechanisms
within the same calculus. However, there are two main novelties. Firstly, the explicit distinction between
variables and names allows us a cleaner and simpler treatment of α-equivalence, which only holds for
variables2, as in process and module calculi. Secondly, we investigate here a different semantics where
rebinding is more controlled, that is, can only be applied to terms which effectively need to be rebound.

The two previous points are reflected in the difference in the unbinding and rebinding constructs. In
[6, 7],

• the unbinding construct had shape 〈x1, . . . ,xm | t〉, specifying a set of unbinders,

• correspondingly, the rebinding construct had shape t[s], specifying that the variables in the domain
of s were rebound,

• applying a rebinding to an unbound term had a behavior as in the current calculus, but rebinding
could also be applied to terms not reducing to unbound terms. For instance, in

(λy.y+ 〈x | x〉)[x 7→ 1] 〈x | x+2〉
2We thank an anonymous referee of [6] for pointing out this problem.

90 Reconciling positional and nominal binding

the term 〈x | x+2〉 is rebound inside the lambda-expression. To produce this semantics, rebinding
maps were pushed, with reduction rules, inside lambdas (and applications) and remained stuck on
variables. They were then resolved when, via a standard application, the variable is substituted
with an unbind construct. A term such as (〈x 7→ X | x〉 + 4)[X 7→ 1] is stuck in the current calculus,
whereas its analogous in the calculi of [6, 7] reduces to 5.

In the calculus of the current paper, unbinding/rebinding are mediated by the use of names, and
rebinding is done via application of rebinding lambda-abstractions λx[s].t to unbound terms. The opera-
tional semantics of the rebinding construct t[s] of [6, 7], corresponds to the one of term (λx[s].x) t of the
current calculus, if we take only well-typed terms. However, e.g., the term 〈x 7→ X | x〉 + 4 is well typed
in the calculus of [6, 7], but not in the current one.

Another important difference w.r.t. previous calculi is that, as the abbreviation introduced at the end
of Example 1 suggests, the term λx[s].x, which is a value, may be thought as the rebinding s. That is, as
a matter of fact, rebindings are first-class values. In the previous calculi in [6, 7] this was not the case, as
it is not in [12], where rebinding is applied via the use of metavariables.

Comparing the type systems of previous calculi with the current one, we can notice that in [7] sound-
ness was proved for a call-by-name semantics and did not hold for call-by-value. The introduction of
intersection types, in [6], allowed us the characterization of terms that could be used both as values and
in contexts providing unbindings, and the proof of soundness for a call-by-value semantics. The more
restricted semantics of rebinding of the calculus of the current paper allows us the definition of a simpler
type system that does not require intersection types, to prove soundness for the call-by-value evaluation
strategy.

5.2 Comparisons with other calculi

5.2.1 Dynamic binding

As we can see from Example 2, we are able to model dynamic scoping, where identifiers are resolved
w.r.t. their dynamic environments, and rebinding, where identifiers are resolved w.r.t. their static environ-
ments, but additional primitives allow explicit modification of these environments. Classical references
for dynamic scoping are [9], and [4], whereas the λmarsh calculus of [3] supports rebinding w.r.t. named
contexts (not of individual variables). Our semantics corresponds more closely to what happens in the
calculus for dynamic binding of Nanevski, see [10], and in the contextual modal type theory of [12].
However, in [10], there are two severe limitations: lambda-abstraction may not contain “names” (this
means in our setting that it is not possible to unbind a variable in a lambda), and unbound terms may
not have free variables that may be unbound to names later. Both this limitations, and Nanevski says it,
prevent gradual unbinding, and therefore the utility of the calculus for metaprogramming. In contextual
modal type theory, see [12], there may not be occurrences of free variables in unbound terms (this was not
a limitation of [10]), whereas this may happen in our calculi. Consider the term t = 〈y:int 7→ Y | y + x〉.
In contextual modal type theory, there is no environment Γ in which this term is well-typed, due to the
occurrence of the free x in an unbound term. In our calculi, instead, in an environment in which x has
type int, the term is well-typed. This allows an expressive power similar to “unquote”, even though a
precise comparison is matter of further investigation. Indeed, if the term is in the scope of a lambda, say
λx:int. · · · t · · · , applying the lambda to an integer, say 3, replaces such integer in the term t.

Ancona, Giannini and Zucca 91

5.2.2 Modules

An unbound term 〈r | t〉 resembles a module in the CMS calculus [1], having just an output unnamed
component; in CMS the input components of a module (that is, the external components on which the
module depends on) are represented exactly by an unbinding map r, whereas output components (that is,
the components defined in the module that are available outside) are represented exactly by a rebinding
map s = X1 7→ t1, . . . ,Xm 7→ tm, where each ti may contain free occurrences of variables (corresponding
to unbinders). Such variables represent input components that have to be provided dynamically by other
modules through nominal interfaces and suitable operators for combining modules.

For instance, the CMS term3 M1 = [x1 7→ X1,x2 7→ X2;Y1 7→ 1,Y2 7→ x1 + x2] represents a module
defining two output components Y1 and Y2, where the definition of Y2 depends on both the input compo-
nents X1 and X2. In the calculus we have presented here, such a module can be represented by the term
t1 = 〈x1 7→ X1,x2 7→ X2 | λ z[Y1 7→ 1,Y2 7→ x1 + x2].z〉. Similarly, the module M2 = [X1 7→ 1,X2 7→ 2]
without input components, is represented by the term t2 = λ z[X1 7→ 1,X2 7→ 2].z.

Whereas in CMS linking of the two modules M1 and M2 can be expressed as a combination of prim-
itive module operators yielding the final module M = [Y1 7→ 1,Y2 7→ 1+ 2;], here linking is expressed
in terms of application: t2 t1 reduces to the term t = λ z[Y1 7→ 1,Y2 7→ 1+2].z which, indeed, represents
the module M. Finally, selection of a module component, as M.Y2, can be expressed again in terms of
application and an unbound term: t 〈x 7→ Y2 | x〉 reduces to 1+2 which, in turns, reduces to 3 as expected.

5.2.3 Meta-programming

We have already shown how the calculus supports meta-programming features to promote dynamic com-
position of software components (example 3 of Section 2, and Section 5.2.2).

In particular, when components are composed together, it is possible to identify and/or to discrim-
inate components (dependening on the specific need) in a simple way. Let us consider the following
expression:

f1 = λc1.λc2.〈x 7→ X | (c1[X1 7→ x]) c2[X2 7→ x]〉

The term f1 represents a meta-operator for combining two different components c1 and c2 that have
to be “connected” through the two input names X1 and X2, respectively. The output of the component
composition specified by f1 is a new component with just one input name X connected to both X1 and
X2, and thus identifying the two names of c1 and c2 (see Figure 6, left-hand-side).

The following term f2 can be used for managing the opposite situation where the same input name
of two different components c1 and c2 has to be discriminated when combining the two components (see
Figure 6, right-hand-side).

f2 = λc1.λc2.〈y1 7→ X1,y2 7→ X2 | (c1[X 7→ y1]) c2[X 7→ y2]〉

Operators corresponding to the functions f1 and f2, as defined above, can be expressed in the MMLN
ν

calculus of [2]. In MMLN
ν , modules can be expressed as suitable combinations of records and code

fragments; the code fragment expression b(r)e is the analogous of the unbound term 〈r | t〉, where r is
a binding variable, occurring free in e, which is expected to be dynamically bound to a resolver, that
is, a map from names to expressions (indeed, resolvers correspond to the rebinding maps); differently
from the calculus presented in this paper, input names in code fragments are not referenced by means of
variables and unbinding maps but by means of resolver variables and the dot notation.

3A module in CMS can contain also local components, but for simplicity here we consider just input and output components.

92 Reconciling positional and nominal binding

X

c
1
c
1

c
2
c
2

X
1

X
2

c
1
c
1

c
2
c
2

X

X

X
1

X
2

Figure 6: Component composition with name identification (left) or discrimination (right).

The term 〈x 7→ X,y 7→ Y | x+ y〉 can be encoded in MMLN
ν by the term b(r)r.X + r.Y , while the term

(λ z[X 7→ 1,Y 7→ 2].z) 〈x 7→ X ,y 7→Y | x+y〉 can be encoded by the term (b(r)r.X + r.Y)〈?{X :1}{Y :2}〉.
In MMLN

ν the expression e〈θ〉 allows the linking of the code fragment e with the resolver θ (the resolver
?{X :1,Y :2} corresponds to the rebinding map X 7→ 1,Y 7→ 2).

Differently from the calculus presented here, in MMLN
ν linking of code fragments e〈θ〉 is kept distinct

from standard function application. However, MMLN
ν supports features not covered by the calculus pre-

sented in this paper: fresh names generation and multi-stage programming [14] (thanks to computational
types).

The features of our calculus support meta-programming “in the large”, promoting dynamic compo-
sition and reconfiguration of software components; other interesting and finer-grained kinds of meta-
programming, like multi-stage programming [14] and first-class patterns [8], are beyond the scope of the
calculus and would require non trivial extensions to be supported.

6 Conclusion

We have presented a minimal calculus which smoothly integrates positional and nominal binding.
Despite its simplicity, this calculus provides a unifying foundation for module composition/adaptation,

meta-programming, mobile code, and dynamic binding of variables.
Soundness can be guaranteed by a type system where types are hierarchical, that is, an unbound

type 〈∆ | T〉 is the type of open code, where ∆ describes the types of names to be rebound, and T can
be an unbound type in turn. These types have a modal interpretation studied in [12]. However, in our
calculus we may have free variables in unbound terms (that could be bound in lambda-abstractions later
on). Therefore, we may have terms of type T → 〈〉T and 〈〉T → T , implying that 〈〉T and T would be,
as modal formulas, equivalent, thus making the modal interpretation not correct. We plan to investigate
this interesting issue in further work.

An alternative approach to guarantee soundness, that we described in previous work [5, 6] consists
in simplifying the types so that they only take into account the number of rebindings needed to obtain a
ground type, and to combine static and dynamic type checking. That is, rebinding raises a dynamic error

Ancona, Giannini and Zucca 93

if for some variable there is no replacing term or it has the wrong type.
As explained at the end of Section 5.1, particular rebinding lambda-expression, which are values,

may be interpreted as representing substitutions, i.e., contexts of execution, moreover at the beginning
of Section 5.2 we showed how the presence of free variables in unbound terms allows us to express
“unquote”. We are investigating how to increase these meta-programming capabilities of our calculus to
support the code manipulation required by multi-stage programming, see [14].

References
[1] D. Ancona & E. Zucca (2002): A Calculus of Module Systems. Journal of Functional Programming 12(2),

pp. 91–132, doi:10.1017/S0956796801004257.
[2] Davide Ancona & Eugenio Moggi (2004): A Fresh Calculus for Name Management. In: GPCE’04, LNCS

3286, Springer, pp. 206–224, doi:10.1007/978-3-540-30175-2 11.
[3] Gavin Bierman, Michael W. Hicks, Peter Sewell, Gareth Stoyle & Keith Wansbrough (2003): Dynamic

Rebinding for Marshalling and Update, with Destruct-Time λ . In: ICFP’03, ACM Press, pp. 99–110,
doi:10.1145/944705.944715.

[4] Laurent Dami (1997): A Lambda-Calculus for Dynamic Binding. Theoretical Computer Science 192(2), pp.
201–231, doi:10.1016/S0304-3975(97)00150-3.

[5] Mariangiola Dezani-Ciancaglini, Paola Giannini & Elena Zucca (2009):
The essence of static and dynamic bindings. In: ICTCS’09.
http://www.disi.unige.it/person/ZuccaE/Research/papers/ICTCS09-DGZ.pdf.

[6] Mariangiola Dezani-Ciancaglini, Paola Giannini & Elena Zucca (2010): Intersection Types for Unbind and
Rebind. In Elaine Pimentel, Betti Venneri & Joe Wells, editors: ITRS’10 - Intersection Types and Related
Systems, EPTCS 45, pp. 45–58, doi:10.4204/EPTCS.45.4.

[7] Mariangiola Dezani-Ciancaglini, Paola Giannini & Elena Zucca (2011): Extending the lambda-calculus
with unbind and rebind. RAIRO - Theoretical Informatics and Applications 45(1), pp. 143–162,
doi:10.1051/ita/2011008.

[8] C. Barry Jay (2004): The pattern calculus. ACM Trans. Program. Lang. Syst. 26(6), pp. 911–937,
doi:10.1145/1034774.1034775.

[9] Luc Moreau (1998): A Syntactic Theory of Dynamic Binding. Higher Order and Symbolic Computation
11(3), pp. 233–279, doi:10.1023/A:1010087314987.

[10] Aleksandar Nanevski (2003): From dynamic binding to state via modal possibility. In: PPDP’03, ACM, pp.
207–218, doi:10.1145/888251.888271.

[11] Aleksandar Nanevski & Frank Pfenning (2005): Staged computation with names and necessity. Journal of
Functional Programming 15(5), pp. 893–939, doi:10.1017/S095679680500568X.

[12] Aleksandar Nanevski, Frank Pfenning & Brigitte Pientka (2008): Contextual modal type theory. ACM
Transactions on Computer Logic 9(3), doi:10.1145/1352582.1352591.

[13] Lukas Rytz & Martin Odersky (2010): Named and default arguments for polymorphic object-oriented lan-
guages. In: OOPS’10, ACM Press, pp. 2090–2095, doi:10.1145/1774088.1774529.

[14] Walid Taha & Tim Sheard (2000): MetaML and multi-stage programming with explicit annotations. Theo-
retical Computer Science 248(1-2), pp. 211–242, doi:10.1016/S0304-3975(00)00053-0.

http://dx.doi.org/10.1017/S0956796801004257
http://dx.doi.org/10.1007/978-3-540-30175-2_11
http://dx.doi.org/10.1145/944705.944715
http://dx.doi.org/10.1016/S0304-3975(97)00150-3
http://dx.doi.org/10.4204/EPTCS.45.4
http://dx.doi.org/10.1051/ita/2011008
http://dx.doi.org/10.1145/1034774.1034775
http://dx.doi.org/10.1023/A:1010087314987
http://dx.doi.org/10.1145/888251.888271
http://dx.doi.org/10.1017/S095679680500568X
http://dx.doi.org/10.1145/1352582.1352591
http://dx.doi.org/10.1145/1774088.1774529
http://dx.doi.org/10.1016/S0304-3975(00)00053-0

	1 Introduction
	2 Untyped calculus
	3 Typed calculus
	4 Soundness of the calculus
	5 Related Work
	5.1 Comparisons with our previous calculi
	5.2 Comparisons with other calculi
	5.2.1 Dynamic binding
	5.2.2 Modules
	5.2.3 Meta-programming

	6 Conclusion

