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This paper investigates type isomorphism in a λ-calculus with intersection and union types. It is
known that in λ-calculus, the isomorphism between two types is realised by a pair of terms inverse
one each other. Notably, invertible terms are linear terms of a particular shape, called finite hereditary
permutators. Typing properties of finite hereditary permutators are then studied in a relevant type
inference system with intersection and union types for linear terms. In particular, an isomorphism
preserving reduction between types is defined. Reduction of types is confluent and terminating, and
induces a notion of normal form of types. The properties of normal types are a crucial step toward the
complete characterisation of type isomorphism. The main results of this paper are, on one hand, the
fact that two types with the same normal form are isomorphic, on the other hand, the characterisation
of the isomorphism between types in normal form, modulo isomorphism of arrow types.

1 Introduction
In a calculus with types, two types σ and τ are isomorphic if there exist two terms P of type σ→ τ and
P′ of type τ→ σ such that both their compositions P ◦P′ = λx.P(P′x) and P′ ◦P = λx.P′(Px) give the
identity (at the proper type). The study of type isomorphism started in the 1980s with the aim of finding
all the type isomorphisms valid in every model of a given language [3]. If one looks at this problem
choosing as language a λ-calculus with types, one can immediately note the close relation between type
isomorphism and λ-term invertibility. Actually, in the untyped λ-calculus a λ-term P is invertible if there
exists a λ-term P′ such that P◦P′ =βη P′ ◦P =βη I (I = λx.x). The problem of term invertibility has been
extensively studied for the untyped λ-calculus since 1970 and the main result has been the complete
characterisation of the invertible λ-terms in λβη-calculus [6]: the invertible terms are all and only the
finite hereditary permutators.

Definition 1.1 (Finite Hereditary Permutator). A finite hereditary permutator (fhp for short) is a λ-term
of the form (modulo β-conversion)

λxy1 . . .yn.x(P1yπ(1)) . . . (Pnyπ(n)) (n ≥ 0)

where π is a permutation of 1, . . . ,n, and P1, . . . ,Pn are fhps.

Note that the identity is trivially an fhp (take n = 0). Another example of an fhp is
λxy1y2.xy2 y1 = λxy1y2.x ((λz.z)y2) ((λz.z)y1).

It is easy to show that fhps are closed by composition.

Theorem 1.2. A λ -term is invertible iff it is a finite hereditary permutator.

This result, obtained in the framework of the untyped λ-calculus, has been the basis for studying type
isomorphism in different type systems for the λ-calculus. Note that every fhp has, modulo βη-conversion,
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a unique inverse P−1. Even if in the type free λ-calculus fhps are defined in [6] modulo βη-conversion,
in this paper each fhp is considered only modulo β-conversion, because types are not invariant under
η-expansion. Taking into account these properties, the definition of type isomorphism in a λ-calculus
with types can be stated as follows:

Definition 1.3 (Type isomorphism). Given a λ-calculus with types, two types σ and τ are isomorphic
(σ ≈ τ) if there exists a pair < P,P−1 > of fhps, inverse of each other, such that ` P :σ→ τ and ` P−1 :
τ→ σ. The pair < P,P−1 > proves the isomorphism.

When P = P−1 one can simply write “P proves the isomorphism”.
The main approach used to characterise type isomorphism in a given system has been to provide

a suitable set of equations and to prove that these equations induce the type isomorphism w.r.t. βη-
conversion, i.e. that the types of the fhps are all and only those induced by the set of equations.

The typed λ-calculus studied first has been the simply typed λ-calculus. For this calculus Bruce and
Longo proved in [3] that only one equation is needed, namely the swap equation:

σ→ τ→ ρ ≈ τ→ σ→ ρ

Later, the study has been directed toward richer λ-calculi, obtained from the simply typed λ-calculus in
an incremental way, by adding some other type constructors (like product and unit types [15, 2, 14]) or by
allowing higher-order types (System F [3, 8]). Di Cosmo summarised in [9] the equations characterising
type isomorphism; the set of equations grows incrementally in the sense that the set of equations for
a typed λ-calculus, obtained by adding a primitive to a given λ-calculus, is an extension of the set of
equations of the λ-calculus without that primitive.

In the presence of intersection, this incremental approach does not work, as pointed out in [7]; in
particular with intersection types, the isomorphism is no longer a congruence and type equality in the
standard models of intersection types does not entail type isomorphism. These quite unexpected facts
required the introduction of a syntactical notion of type similarity in order to fully characterise the iso-
morphic types [7].

The study of isomorphism looks even harder for type systems with intersection and union types
because for these systems, in general, the Subject Reduction property does not hold [1]. As in the case
of intersection types, the isomorphism of union types is not a congruence and it is not complete for type
equality in standard models. For example σ∨τ→ ρ and τ∨σ→ ρ are isomorphic, while (σ∨τ→ ρ)∨ϕ
and (τ∨σ→ ρ)∨ϕ are not isomorphic, whenever ϕ is an atomic type.

This paper gives essential results for the characterisation of isomorphism of intersection and union
types. To this aim a relevant type system, defined as a slight modification of the standard one in [11], has
been introduced. In this system, in particular, Subject Conversion holds for linear terms.

A main difficulty in studying types for fhps is that intersection/union introduction and elimination
rules allow to write types in different, although isomorphic, ways. Since the standard distributive laws of
union and intersection correspond to provable isomorphisms, types can be considered both in disjunctive
and in conjunctive normal forms. This, besides providing a very useful technical tool, allows one to
define, together with other basic isomorphisms involving the → type constructor, a general notion of
normal form of types. A main result proved in this paper is that if σ→ τ is a type of an fhp P, then:

• for all µ in the disjunctive normal form of σ, there is ν in the disjunctive normal form of τ such
that µ→ ν is a type of P;

• for all κ in the conjunctive normal form of τ, there is χ in the conjunctive normal form of σ such
that χ→ κ is a type of P.
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Another crucial contribution is the introduction of normalisation rules which allow to split arrows
over intersections/unions and to erase “useless” types by preserving isomorphism. The proof of sound-
ness of these rules is done by building the pairs of fhps witnessing isomorphism. Termination and
confluence of the normalisation rules are also shown. Two types with the same normal form are iso-
morphic. Normal types are intersections of unions of atomic and arrow types. A key property is that
two isomorphic normal types have the same number of intersections and unions and that the arrows and
atoms are pairwise isomorphic. The last step toward a complete characterisation of type isomorphism is
that of combining normal forms with the swap equation, and this is done in [4].

2 Type assignment system

(Ax) x :σ ` x :σ

(→ I)
Γ, x :σ ` M :τ

Γ ` λx.M :σ→ τ
(→ E)

Γ1 ` M :σ→ τ Γ2 ` N :σ
Γ1,Γ2 ` MN :τ

(∧I)
Γ ` M :σ Γ ` M :τ

Γ ` M :σ∧τ
(∧E)

Γ ` M :σ∧τ
Γ ` M :σ

Γ ` M :σ∧τ
Γ ` M :τ

(∨I)
Γ ` M :σ

Γ ` M :σ∨τ
Γ ` M :σ

Γ ` M :τ∨σ

(∨E)
Γ1, x :σ∧ θ ` M :ρ Γ1, x :τ∧ θ ` M :ρ Γ2 ` N : (σ∨τ)∧ θ

Γ1,Γ2 ` M[N/x] :ρ

Figure 1: Typing rules.

The syntax of intersection and union types is given by:
σ ::= ϕ | σ→ σ | σ∧σ | σ∨σ

where ϕ denotes an atomic type. It is useful to distinguish between different kinds of types. So in the
following:
• σ,τ,ρ,θ,ϑ,ζ,ς range over arbitrary types;

• α,β,γ,δ,ð range over atomic and arrow types, defined as α ::= ϕ | σ→ σ;

• µ,ν,λ,ξ,η range over intersections of atomic and arrow types (basic intersections), defined as
µ ::= α | µ∧µ;

• χ,κ, ι,ω range over unions of atomic and arrow types (basic unions), defined as χ ::= α | χ∨χ.
Note that no structural equivalence is assumed between types, for instance σ∨ τ is different from τ∨σ.
As usual, parentheses are omitted according to the precedence rule “∨ and ∧ over→” and→ associates
to the right.

The union/intersection type system considered in this paper is a modified version of the basic one
introduced in the seminal paper [11], restricted to linear λ-terms. A λ-term is linear if each free or bound
variable occurs exactly once in it.

Figure 1 gives the typing rules. As usual, environments associate variables to types and contain at
most one type for each variable. The environments are relevant, i.e. they contain only the used premises.
When writing Γ1,Γ2 one convenes that the sets of variables in Γ1 and Γ2 are disjoint.
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[y :σ∧ρ]
(∧E)

y :ρ

[y :σ∧ρ]
(∧E)

y :σ
(∧I)

y :ρ∧σ
(∨I)

y : (ρ∧σ)∨ (ρ∧τ)

[y :τ∧ρ]
(∧E)

y :ρ

[y :τ∧ρ]
(∧E)

y :τ
(∧I)

y :ρ∧τ
(∨I)

y : (ρ∧σ)∨ (ρ∧τ)

[x :ρ∧ (σ∨τ)]
(∧E)

x :σ∨τ

[x :ρ∧ (σ∨τ)]
(∧E)

x :ρ
(∧I)

x : (σ∨τ)∧ρ
(∨E)

x : (ρ∧σ)∨ (ρ∧τ)
(→ I)

λx.x :ρ∧ (σ∨τ)→ (ρ∧σ)∨ (ρ∧τ)

Figure 2: A deduction of ` λx.x :ρ∧ (σ∨τ)→ (ρ∧σ)∨ (ρ∧τ).

The only non-standard rule is (∨E). This rule takes into account the fact that, as it seems natural in a
system with intersection types, one variable can be used in a deduction with different types in different
occurrences (by applications of the (∧E) rule). It should then be possible, in general, to apply the union
elimination only to the type of one of these occurrences. A paradigmatic example is the one in Figure 2
where one occurrence of the variable y is used (after an application of (∧E)) with type σ in one branch
of the (∨E) rule and with type τ in the other branch. Other occurrences of y are used instead with type
ρ in both branches. Rule (∨E) is then the right way to formulate union elimination in a type system in
which union and intersection interact. It is indeed a generalisation of the (∨E′) rule given in [11]. A
last observation is that, being M linear, in an application of the (∨E) rule, exactly one occurrence of x is
replaced inside M.

Some useful admissible rules are:

(L)
x :σ ` x :τ Γ, x :τ ` M :ρ

Γ, x :σ ` M :ρ
(C)

Γ1, x :σ ` M :τ Γ2 ` N :σ
Γ1,Γ2 ` M[N/x] :τ

(∨I′)
Γ, x :σ ` M :ρ Γ, x :τ ` M :ρ

Γ, x :σ∨τ ` M :ρ
(∨E′)

Γ1, x :σ ` M :ρ Γ1, x :τ ` M :ρ Γ2 ` N :σ∨τ
Γ1,Γ2 ` M[N/x] :ρ

To show (∨I′) it is enough to apply rule (∨E) with x :σ∨τ ` x : (σ∨τ)∧ (σ∨τ) as third premise.

The system of Figure 1 can be extended to non-linear terms simply by erasing the condition that, in
rules (→ E) and (∨E), the environments need to be disjoint. It is easy to check that this extended system
is conservative over the present one. Therefore the types that can be derived for fhps are the same in the
two systems, so the present study of type isomorphism holds for the extended system too.

In order to show Subject Reduction one can follow the classical approach of [12] by considering a
sequent formulation of the type assignment system and showing cut elimination. This is done in [1] for
a system which differs from the present one for being not relevant, having the universal type and rule
(∨E′) instead of (∨E). It is just routine to modify that proof by taking as left and right rules for the ∨
constructor:

(∨L)
Γ, x :σ∧ θ ` M :ρ Γ, x :τ∧ θ ` M :ρ

Γ, x : (σ∨τ)∧ θ ` M :ρ
(∨R)

Γ ` M :σ∧ θ
Γ ` M : (σ∨τ)∧ θ

Γ ` M :τ∧ θ
Γ ` M : (σ∨τ)∧ θ

Remark that, considering only linear terms, cut elimination corresponds to standard β-reduction, while
for arbitrary terms parallel reductions are needed; for details see [1]. Therefore one can conclude:

Theorem 2.1 (SR). If Γ ` M :σ and M −→∗β N, then Γ ` N :σ.

The Subject Reduction Theorem allows one to show the following corollary.
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Corollary 2.2. 1. If Γ ` λx.M :σ→ τ, then Γ, x :σ ` M :τ.

2. If Γ, x :σ∨ρ ` M :τ, then Γ, x :σ ` M :τ and Γ, x :ρ ` M :τ.

3. If Γ ` λx.M :σ→ ρ and Γ ` λx.M :τ→ θ, then Γ ` λx.M :σ∧τ→ ρ∧θ and Γ ` λx.M :σ∨τ→ ρ∨θ.

4. If Γ ` λx.M :σ→ τ, then Γ ` λx.M :σ∧ρ→ τ∨ θ for all ρ,θ.

Proof. (1). One gets Γ, x :σ ` (λy.M[y/x])x :τ by rule (→ E) and α-renaming. So the Subject Reduction
Theorem (Theorem 2.1) concludes the proof.
(2). One gets Γ ` λy.M[y/x] :σ∨ρ→ τ by rule (→ I) and α-renaming, and Γ, x :σ ` (λy.M[y/x])x :τ by
rules (∨I) and (→ E). So Theorem 2.1 concludes the proof.
(3). By Point (1) Γ, x :σ `M :ρ and Γ, x :τ `M :θ, so by rules (∨I) and (∨I′) one gets Γ, x :σ∨τ `M :ρ∨θ,
which implies the result by rule (→ I). The proof of Γ ` λx.M :σ∧τ→ ρ∧ θ is similar.
(4). Obvious because, by Point (1), Γ, x :σ ` M :τ. �

Also subject expansion holds.

Theorem 2.3 (SE). If M −→∗β N and Γ ` N :σ, then Γ ` M :σ.

Proof. It is enough to show: Γ ` M[N/x] :σ implies Γ ` (λx.M)N :σ. The proof is by induction on the
derivation of Γ ` M[N/x] :σ. The only interesting case is when the last applied rule is

(∨E)
Γ1, x :ρ∧ θ ` M :σ Γ1, x :τ∧ θ ` M :σ Γ2 ` N : (ρ∨τ)∧ θ

Γ1,Γ2 ` M[N/x] :σ

It is easy to derive x : (ρ∨ τ)∧ θ ` x : (ρ∧ θ)∨ (τ∧ θ). Rule (∨I′) applied to the first two premises gives
Γ1, x : (ρ∧ θ)∨ (τ∧ θ) ` M :σ. So rule (L) derives Γ1, x : (ρ∨ τ)∧ θ ` M :σ, and rule (→ I) derives
Γ1 ` λx.M : (ρ∨τ)∧ θ→ σ. Rule (→ E) gives the conclusion. �

The following basic isomorphisms are directly related to standard properties of functional types and
to set theoretic properties of union and intersection. It is interesting to remark that all these isomorphisms
are provable equalities in the system B+ of relevant logic [13].

Lemma 2.4. The following isomorphisms hold:

idem. σ∧σ ≈ σ, σ∨σ ≈ σ

comm. σ∧τ ≈ τ∧σ, σ∨τ ≈ τ∨σ

assoc. (σ∧τ)∧ρ ≈ σ∧ (τ∧ρ), (σ∨τ)∨ρ ≈ σ∨ (τ∨ρ)
dist→∧. σ→ τ∧ρ ≈ (σ→ τ)∧ (σ→ ρ)
dist→∨. σ∨τ→ ρ ≈ (σ→ ρ)∧ (τ→ ρ)
swap. σ→ τ→ ρ ≈ τ→ σ→ ρ

dist∧∨. (σ∨τ)∧ρ ≈ (σ∧ρ)∨ (τ∧ρ)
dist∨∧. (σ∧τ)∨ρ ≈ (σ∨ρ)∧ (τ∨ρ)

Proof. The η-expansion of the identity λxy.xy proves the fourth and the fifth isomorphisms, λxy1y2.xy2y1
proves the sixth one and the identity proves all the remaining ones. �

The isomorphisms idem, comm and assoc allow one to consider types, at top level, modulo idempo-
tence, commutativity and associativity of ∧ and ∨. Then types, at top level, can be written as

∧
i∈Iσi and∨

i∈Iσi with finite I, where a single arrow or atomic type is seen both as an intersection and as a union (in
this case I is a singleton). However, as noted in the introduction, these isomorphisms are not preserved
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by arbitrary contexts since, for example, σ∨τ→ ρ ≈ τ∨σ→ ρ but (σ∨τ→ ρ)∧ϕ and (τ∨σ→ ρ)∧ϕ
are not isomorphic.

The isomorphisms of Lemma 2.4 naturally induce the notions of disjunctive and conjunctive forms.
In particular:

• the disjunctive weak normal form of a type σ (notation dw(σ)) is obtained by using (dist∧∨) from
left to right at top level;

• the conjunctive weak normal form of a type σ (notation cw(σ)) is obtained by using (dist→ ∧),
(dist→∨), and (dist∨∧) from left to right at top level.

Notice that the isomorphisms (dist→∧) and (dist→∨) are useful only to get conjunctive normal forms,
since they only generate intersections.

This section ends with some lemmas on derivability properties. Lemmas 2.5 characterises the types
derivable for variables using disjunctive weak normal form, Corollary 2.6 considers three useful particu-
lar cases of previous lemma, while Lemma 2.7 gives typing properties of the application of a variable to
n λ-terms.

Lemma 2.5. If dw(σ) =
∨

i∈I(
∧

h∈Hi α
(i)
h ), dw(τ) =

∨
j∈J(
∧

k∈K j β
( j)
k ) and x :σ ` x :τ, then for all i ∈ I there

is ji ∈ J such that {β( ji)
k | k ∈ K ji} ⊆ {α

(i)
h | h ∈ Hi}, which implies x :

∧
h∈Hi α

(i)
h ` x :

∧
k∈K ji

β
( ji)
k .

Proof. By induction on derivations. Assume dw(ρ) =
∨

l∈L(
∧

w∈Wl γ
(l)
w ) and dw(θ) =

∨
r∈R(
∧

s∈S r δ
(r)
s ) and

dw(ϑ) =
∨

u∈U(
∧

v∈Vu ð
(u)
v ). If the last applied rule is (Ax) or (∨I) it is easy.

If the deduction ends with (∧I):

(∧I)
x :σ ` x :ρ x :σ ` x :θ

x :σ ` x :ρ∧ θ

by definition dw(ρ∧ θ) =
∨

l∈L
∨

r∈R((
∧

w∈Wl γ
(l)
w )∧ (

∧
s∈S r δ

(r)
s )). By induction for all i ∈ I there is li ∈ L

such that {γ(li)
w |w ∈Wli} ⊆ {α

(i)
h | h ∈Hi} and for all i ∈ I there is ri ∈R such that {δ(ri)

s | s ∈ S ri} ⊆ {α
(i)
h | h ∈Hi},

then for all i ∈ I there are li ∈ L and ri ∈ R such that {γ(li)
w | w ∈Wli}∪ {δ

(ri)
s | s ∈ S ri} ⊆ {α

(i)
h | h ∈ Hi}.

If the deduction ends with (∧E):

(∧E)
x :σ ` x :τ∧ρ

x :σ ` x :τ

by definition dw(τ∧ρ) =
∨

j∈J
∨

l∈L((
∧

k∈K j β
( j)
k )∧ (

∧
w∈Wl γ

(l)
w )). By induction for all i ∈ I there are ji ∈ J

and li ∈ L such that {β( ji)
k | k ∈ K ji}∪ {γ

(li)
w | w ∈Wli} ⊆ {α

(i)
h | h ∈ Hi}.

If the deduction ends with (∨E):

(∨E)
y :ρ∧ θ ` y :τ y :ϑ∧ θ ` y :τ x :σ ` x : (ρ∨ϑ)∧ θ

x :σ ` x :τ

By definition dw(ρ∧ θ) =
∨

l∈L
∨

r∈R((
∧

w∈Wl γ
(l)
w )∧ (

∧
s∈S r δ

(r)
s )) and

dw(ϑ∧ θ) =
∨

u∈U
∨

r∈R((
∧

v∈Vu ð
(u)
v )∧ (

∧
s∈S r δ

(r)
s )) and dw((ρ∨ϑ)∧ θ) =

dw((ρ∧ θ)∨ (ϑ∧ θ)) = (
∨

l∈L
∨

r∈R((
∧

w∈Wl γ
(l)
w )∧ (

∧
s∈S r δ

(r)
s )))∨ (

∨
u∈U
∨

r∈R((
∧

v∈Vu ð
(u)
v )∧ (

∧
s∈S r δ

(r)
s ))).

By induction:

• on the first premise for all l ∈ L and r ∈ R there is jl,r ∈ J such that
{β

( jl,r)
k | k ∈ K jl,r } ⊆ {γ

(l)
w | w ∈Wl}∪ {δ

(r)
s | s ∈ S r} and
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• on the second premise for all u ∈ U and r ∈ R there is ju,r ∈ J such that
{β

( ju,r)
k | k ∈ K ju,r } ⊆ {ð

(u)
v | v ∈ Vu}∪ {δ

(r)
s | s ∈ S r} and

• on the third premise for all i ∈ I either there are li ∈ L and ri ∈ R such that
{γ(li)

w | w ∈Wli}∪ {δ
(ri)
s | s ∈ S ri} ⊆ {α

(i)
h | h ∈ Hi} or there are ui ∈ U and ri ∈ R such that

{ð(ui)
v | v ∈ Vui}∪ {δ

(ri)
s | s ∈ S ri} ⊆ {α

(i)
h | h ∈ Hi}.

So for all i ∈ I there is ji ∈ J such that {β( ji)
k | k ∈ K ji} ⊆ {α

(i)
h | h ∈ Hi}. �

Corollary 2.6. 1. If x :σ→ τ ` x :ρ→ θ, then σ→ τ = ρ→ θ.

2. If x :σ→ τ ` x : (ρ∨ θ)∧ϑ, then either x :σ→ τ ` x :ρ∧ϑ or x :σ→ τ ` x :θ∧ϑ.

3. Let χ be a union of atomic and arrow types pairwise different. Then x :χ ` x :κ implies either κ = χ

or κ = χ∨ ι for some type ι.

Proof. (1),(3). By Lemma 2.5.
(2). By rule (∧E), Lemma 2.5 and rule (∧ I). �

Note that Point (3) of previous corollary holds only under the given condition on type χ, since for example
x : (ϕ→ ϕ)∨ (ϕ→ ϕ) ` x :ϕ→ ϕ.

In the following, as usual, Γ � FV(M) denotes the set of premises in Γ whose subjects are the free
variable of M.

Lemma 2.7. Let Γx = Γ, x :τ1→ . . .→ τn→ σ and Γx ` xM1 . . .Mn :ρ. Then:

1. Γx ` xM1 . . .Mn :σ and Γ � FV(Mi) ` Mi :τi for 1 ≤ i ≤ n;

2. y :σ ` y :ρ.

Proof. A stronger statement is proved, i.e. that for all types ς:
x :τ1→ . . .→ τn→ σ ` x :ς and Γ, x :ς ` xM1 . . .Mn :ρ

imply Points (1) and (2) above.
If m = 0 Point (1) is immediate, Point (2) follows by rule (L).
For m > 0 the proof is by induction on derivations. First note that the last applied rule can be neither (Ax)
nor (→ I). If the last applied rule is (∧I), (∨I) or (∧E) Points (1) and (2) easily follow.

If the deduction ends with (→ E):

(→ E)
Γ � FV(xM1 . . .Mn−1), x :ς ` xM1 . . .Mn−1 :θ→ ρ Γ � FV(Mn) ` Mn :θ

Γ, x :ς ` xM1 . . .Mn−1Mn :ρ

By induction, Point (2) implies y :τn→ σ ` y :θ→ ρ, which gives θ = τn and ρ = σ by Corollary 2.6(1).
This shows Point (2) and Γ � FV(Mn) ` Mn :τn. By induction Γ � FV(Mi) ` Mi :τi for 1 ≤ i ≤ n− 1 and
Γx � FV(xM1 . . .Mn−1) ` xM1 . . .Mn−1 :τn→σ, so rule (→ E) gives Γx ` xM1 . . .Mn :σ and this concludes
the proof of Point (1).

If the deduction ends with (∨E) two different cases are considered according to the subterms which
are the subjects of the premises. In the first case:

(∨E)

Γ1,z :θ1∧ ζ ` zMs+1 . . .Mn :ρ Γ1,z :θ2∧ ζ ` zMs+1 . . .Mn :ρ
Γ � FV(M1, . . . ,Ms), x :ς ` xM1 . . .Ms : (θ1∨ θ2)∧ ζ

Γ, x :ς ` xM1 . . .Mn :ρ

where Γ1 = Γ � FV(Ms+1, . . . ,Mn) and 0 ≤ s ≤ n. By induction the third premise implies
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Γx � FV(M1, . . . ,Ms) ` xM1 . . .Ms :τs+1→ . . .→ τn→ σ (1)

and Γ � FV(Mi) ` Mi :τi for 1 ≤ i ≤ s and

z :τs+1→ . . .→ τn→ σ ` z : (θ1∨ θ2)∧ ζ. (2)

Corollary 2.6(2) applied to (2) gives

z :τs+1→ . . .→ τn→ σ ` z :θi∧ ζ (3)

where either i = 1 or i = 2. Let i = 1, then induction applied to (3) and to the first premise gives

Γ � FV(Ms+1 . . .Mn),z :τs+1→ . . .→ τn→ σ ` zMs+1 . . .Mn :σ (4)

and Γ � FV(Mi) ` Mi :τi for s + 1 ≤ i ≤ n and y :σ ` y :ρ (i.e. Point (2)).
Rule (C) applied to (4) and (1) derives

Γx ` xM1 . . .Mn :τm+1→ . . .→ τn→ σ

and this completes the proof of Point (1).
In the second case:

(∨E)

Γ1,z :θ1∧ ζ ` xM1 . . .Ms−1MMs+1 . . .Mn :ρ Γ1,z :θ2∧ ζ ` xM1 . . .Ms−1MMs+1 . . .Mn :ρ
Γ � FV(N) ` N : (θ1∨ θ2)∧ ζ

Γ ` xM1 . . .Mn :ρ

where Γ1 = Γ � FV(M1, . . . ,Ms−1MMs+1 . . .Mn), x : ς and Ms = M[N/z]. Induction on the first two
premises gives:

Γ � FV(M),z :θ1∧ ζ ` M :τs Γ � FV(M),z :θ2∧ ζ ` M :τs (5)
so the application of rule (∨E) to (5) and to the third premise derives Γ � FV(Ms) ` Ms :τs. The other
Points follow by induction. �

3 Types of finite hereditary permutators
Aim of this section is to characterise the types derivable for the fhps. In particular, for an arbitrary fhp
P such that ` P :σ→ τ, two crucial properties of the disjunctive and conjunctive weak normal forms of
σ and τ are proved:

P1 if dw(σ) =
∨

i∈I µi and dw(τ) =
∨

j∈J ν j, then for all i ∈ I there is ji ∈ J such that ` P :µi→ ν ji ;

P2 if cw(σ) =
∧

i∈I χi and cw(τ) =
∧

j∈J κ j, then for all j ∈ J there is i j ∈ I such that ` P :χi j → κ j.

The content of this section can be summarised as follows:

• Lemma 3.1 gives all possible ways of getting an fhp, possibly with some missing abstractions, as
result of a substitution (this is useful to deal with rule (∨E));

• Theorem 3.2 characterises the types derivable for fhps using disjunctive weak normal form: it
gives P1;

• Lemma 3.3 characterises the types derivable for fhps, possibly with some missing abstractions,
using conjunctive weak normal form: it implies P2, i.e. Theorem 3.4.

The proof of P1 is much simpler than that of P2. The reason is that Theorem 3.2 uses the property of
union stated in Corollary 2.2(2), while there is no similar property for intersection.

Lemma 3.1. If λxy1 . . .yn.xQ1 . . .Qn (n ≥ 0) is an fhp and λym+1 . . .yn.xQ1 . . .Qn = M[N/z] with 0 ≤ m ≤
n1, then the possible cases are:

1for m = n M[N/z] = xQ1 . . .Qn.
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1. M = λym+1 . . .yn.zQl+1 . . .Qn with l ≤ m and N = xQ1 . . .Ql and FV(N) ⊆ {x,y1, . . . ,ym};

2. M = z and N = λym+1 . . .yn.xQ1 . . .Qn;

3. M = λym+1 . . .yn.xQ1 . . .Q j−1zQ j+1 . . .Qn and N = Q j and the head variable of Q j belongs to
{y1, . . . ,ym};

4. M = λym+1 . . .yn.xQ1 . . .Q j−1Q′jQ j+1 . . .Qn and Q′j = Q j[z/yl] and N = yl, where yl ∈ {y1, . . . ,ym} is
the head variable of Q j.

Proof. Easy observing that the variables y1, ...,yn must be the head variables of Q1, ...,Qn. �

Theorem 3.2 (Property P1). Let dw(σ) =
∨

i∈I µi, dw(τ) =
∨

j∈J ν j and P be an fhp. Then ` P :σ→ τ

implies that for all i ∈ I there is ji ∈ J such that ` P :µi→ ν ji .

Proof. If P = λx.x the proof follows immediately from Lemma 2.5.
Otherwise let P = λxy1 . . .yn.xQ1 . . .Qn. By Corollary 2.2(1) x :σ ` λy1 . . .yn.xQ1 . . .Qn :τ. The proof

is by induction on the derivation of x :σ ` λy1 . . .yn.xQ1 . . .Qn :τ. Assume dw(ρ) =
∨

h∈H λh and dw(θ) =∨
k∈K ξk and dw(ϑ) =

∨
l∈L ηl. Let Q = λy1 . . .yn.xQ1 . . .Qn.

If the last applied rule is (∨I) the proof is easy.
If the last applied rule is (→ I), then τ is an arrow type. Corollary 2.2(2) gives x :µi ` Q :τ for all i ∈ I.
Let the last applied rule be (∧E):

(∧E)
x :σ ` Q :τ∧ρ

x :σ ` Q :τ

By definition dw(τ∧ρ) =
∨

j∈J
∨

h∈H(ν j∧λh). By induction, for all i ∈ I there are ji ∈ J and hi ∈ H such
that x :µi ` Q :ν ji ∧λhi , which gives x :µi ` Q :ν ji for all i ∈ I using rule (∧E).

Let the last applied rule be (∧I):

(∧I)
x :σ ` Q :ρ x :σ ` Q :θ

x :σ ` Q :ρ∧ θ

By definition dw(ρ∧ θ) =
∨

h∈H
∨

k∈K(λh∧ ξk).
By induction, for all i ∈ I there is hi ∈ H such that x :µi ` Q :λhi and for all i ∈ I there is ki ∈ K such that
x :µi ` Q :ξki . Then rule (∧I) derives x :µi ` Q :λhi ∧ ξki for all i ∈ I.

If the last applied rule is (∨E) by Lemma 3.1 there are two cases to consider.
By definition, dw(ρ∧ θ) =

∨
h∈H
∨

k∈K(λh∧ ξk) and dw(ϑ∧ θ) =
∨

l∈L
∨

k∈K(ηl∧ ξk) and dw((ρ∨ϑ)∧ θ) =

(
∨

h∈H
∨

k∈K(λh∧ ξk))∨ (
∨

l∈L
∨

k∈K(ηl∧ ξk)). In the first case:

(∨E)
z :ρ∧ θ ` Q′ :τ z :ϑ∧ θ ` Q′ :τ x :σ ` x : (ρ∨ϑ)∧ θ

x :σ ` Q :τ

where Q′ = λy1 . . .yn.zQ1 . . .Qn. By induction:

• on the first premise for all h ∈ H and k ∈ K there is jh,k ∈ J such that z :λh∧ ξk ` Q′ :ν jh,k ;

• on the second premise for all l ∈ L and k ∈ K there is jl,k ∈ J such that z :ηl∧ ξk ` Q′ :ν jl,k ;

• on the third premise for all i ∈ I either there are hi ∈ H and ki ∈ K such that x :µi ` x :λhi ∧ ξki or
there are li ∈ L and ki ∈ K such that x :µi ` x :ηli ∧ ξki .
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So rule (L) implies that for all i ∈ I either there is jhi,ki ∈ J such that x :µi ` Q :ν jhi ,ki
or there is jli,ki ∈ J

such that x :µi ` Q :ν jli ,ki
. The other possible case is given by:

(∨E)
z :ρ∧ θ ` z :τ z :ϑ∧ θ ` z :τ x :σ ` Q : (ρ∨ϑ)∧ θ

x :σ ` Q :τ

By induction:

• on the first premise for all h ∈ H and k ∈ K there is jh,k ∈ J such that z :λh∧ ξk ` z :ν jh,k ;

• on the second premise for all l ∈ L and k ∈ K there is jl,k ∈ J such that z :ηl∧ ξk ` z :ν jl,k ;

• on the third premise for all i ∈ I either there are hi ∈ H and ki ∈ K such that x :µi ` Q :λhi ∧ ξki or
there are li ∈ L and ki ∈ K such that x :µi ` Q :ηli ∧ ξki .

So rule (C) implies that for all i ∈ I either there is jhi,ki ∈ J such that x :µi ` Q :ν jhi ,ki
or there is jli,ki ∈ J

such that x :µi ` Q :ν jli ,ki
. �

Lemma 3.3. Let cw(σ) =
∧

i∈I χi, cw(τ) =
∧

j∈J κ j and λxy1 . . .yn.xQ1 . . .Qn (n ≥ 0) be an fhp. Then
x :σ,y1 :ρ1, . . . ,ym :ρm ` λym+1 . . .yn.xQ1 . . .Qn :τ and dw(ρh) =

∨
k∈Kh µ

(h)
k (1 ≤ h ≤ m ≤ n) imply that for

all j ∈ J and for all kh ∈ Kh (1 ≤ h ≤ m) there is i j,k1,...,km ∈ I such that

x :χi j,k1 ,...,km
,y1 :µ(1)

k1
, . . . ,ym :µ(m)

km
` λym+1 . . .yn.xQ1 . . .Qn :κ j.

Proof. By induction on derivations. If the last applied rule is (Ax) or (∧I) the proof is easy.
Assume cw(θ) =

∧
l∈L ιl and cw(ϑ) =

∧
s∈S υs and cw(ζ) =

∧
t∈T ωt. Then cw(θ∧ϑ) =

∧
l∈L ιl∧

∧
s∈S υs

and cw(ζ ∧ϑ) =
∧

t∈T ωt ∧
∧

s∈S υs and cw((θ∨ ζ)∧ϑ) =
∧

l∈L
∧

t∈T (ιl∨ωt)∧
∧

s∈S υs.
Assume dw(θ) =

∨
l∈L νl and dw(ϑ) =

∨
s∈S λs and dw(ζ) =

∨
t∈T ξt. Then dw(θ∧ϑ) =

∨
l∈L
∨

s∈S (νl∧

λs) and dw(ζ ∧ϑ) =
∨

t∈T
∨

s∈S (ξt ∧λs) and dw((θ∨ ζ)∧ϑ) =
∨

l∈L
∨

s∈S (νl∧λs)∨
∨

t∈T
∨

s∈S (ξt ∧λs).
Let the last applied rule be (→ I):

(→ I)
Γ,ym+1 :ρm+1 ` R :θ

Γ ` λym+1.R :ρm+1→ θ

where Γ = x :σ,y1 :ρ1, . . . ,ym :ρm and R = λym+2 . . .yn.xQ1 . . .Qn.
By definition cw(ρm+1 → θ) =

∧
l∈L
∧

k∈Km+1(µ(m+1)
k → ιl). By induction, for all l ∈ L and for all kh ∈ Kh

(1≤ h≤m+1) there is il,k1,...,km+1 ∈ I such that x:χil,k1 ,...,km+1
,y1 :µ(1)

k1
, . . . ,ym+1 :µ(m+1)

km+1
`R:ιl, so the application

of rule (→ I) concludes the proof.
Let the last applied rule be (→ E):

(→ E)
Γ ` R :θ→ τ yπ(r) :ρπ(r) ` Qr :θ

Γ ` RQr :τ

where Γ = x :σ,yπ(1) :ρπ(1), . . . ,yπ(r−1) :ρπ(r−1) and R = xQ1 . . .Qr−1. If dw(θ) =
∨

u∈U νu, then cw(θ→ τ) =∧
u∈U
∧

j∈J(νu → κ j). By induction for all u ∈ U, j ∈ J and for all kπ(s) ∈ Kπ(s) (1 ≤ s ≤ r − 1) there is
i(u, j),kπ(1),...,kπ(r−1) ∈ I such that

x :χi(u, j),kπ(1) ,...,kπ(r−1)
,y1 :µ(π(1))

kπ(1)
, . . . ,yπ(r−1) :µ(π(r−1))

kπ(r)
` R :νu→ κ j. (6)

By Theorem 3.2 for all kπ(r) ∈ Kπ(r) there is ukπ(r) ∈ U such that

yπ(r) :µ(π(r))
kπ(r)
` Qr :νukπ(r)

. (7)

Choosing u = ukπ(r) in (6) the application of rule (→ E) to (6) and (7) gives the result.
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Let the last applied rule be (∧E):

(∧E)
Γ ` R :τ∧ θ

Γ ` R :τ
where Γ = x :σ,y1 :ρ1, . . . ,ym :ρm and R = λym+1 . . .yn.xQ1 . . .Qn. Since cw(τ∧ θ) = cw(τ)∧ cw(θ), this
case easily follows by induction.

Let the last applied rule be (∨I):

(∨I)
Γ ` R :θ

Γ ` R :θ∨ϑ
where Γ = x :σ,y1 :ρ1, . . . ,ym :ρm and R = λym+1 . . .yn.xQ1 . . .Qn. Since cw(θ∨ϑ) =

∧
l∈L
∧

s∈S (ιl ∨ υs),
this case easily follows by induction.

If the last applied rule is (∨E) there are four different cases as prescribed by Lemma 3.1.
In the first case:

(∨E)
Γ1,z :θ∧ϑ ` R :τ ,Γ1,z :ζ ∧ϑ ` R :τ Γ2 ` xQ1 . . .Qu : (θ∨ ζ)∧ϑ

Γ1,Γ2 ` λym+1 . . .yn.xQ1 . . .Qn :τ

where R = λym+1 . . .yn.zQu+1 . . .Qn, Γ1 = {y1 :ρ1, . . . ,ym :ρm} � FV(R),
Γ2 = x :σ,yπ(1) :ρπ(1), . . . ,yπ(u) :ρπ(u) and (0 ≤ u ≤ m). Let Γ1 = yw1 :ρw1 , . . . ,ywm−u :ρwm−u .

.
For all j ∈ J and for all kwv ∈ Kwv (1 ≤ v ≤ m−u) by induction :

• on the first premise either there is l j,kw1 ,...,kwm−u
∈ L such that

z : ιl j,kw1 ,...,kwm−u
,yw1 :µ(w1)

kw1
, . . . ,ywm−u :µ(wm−u)

kwm−u
` R :κ j or there is

s j,kw1 ,...,kwm−u
∈ S such that z :υs j,kw1 ,...,kwm−u

,yw1 :µ(w1)
kw1

, . . . ,ywm−u :µ(wm−u)
kwm−u

` R :κ j;

• on the second premise either there is t j,ku+1,...,km ∈ T such that
z :ωt j,kw1 ,...,kwm−u

,yw1 :µ(w1)
kw1

, . . . ,ywm−u :µ(wm−u)
kwm−u

` R :κ j or there is

s j,kw1 ,...,kwm−u
∈ S such that z :υs j,kw1 ,...,kwm−u

,yw1 :µ(w1)
kw1

, . . . ,ywm−u :µ(wm−u)
kwm−u

` R :κ j.

Therefore for all j ∈ J and for all kwv ∈ Kwv (1 ≤ v ≤ m−u):

• either there is l j,kw1 ,...,kwm−u
∈ L such that

z : ιl j,kw1 ,...,kwm−u
,yw1 :µ(w1)

kw1
, . . . ,ywm−u :µ(wm−u)

kwm−u
` R :κ j (8)

and there is t j,kw1 ,...,kwm−u
∈ T such that

z :ωt j,kw1 ,...,kwm−u
,yw1 :µ(w1)

kw1
, . . . ,ywm−u :µ(wm−u)

kwm−u
` R :κ j; (9)

• or there is s j,ku+1,...,km ∈ S such that

z :υs j,kw1 ,...,kwm−u
,yw1 :µ(w1)

kw1
, . . . ,ywm−u :µ(wm−u)

kwm−u
` R :κ j. (10)

By induction the third premise implies that for all l ∈ L, t ∈ T and for all kπ(h) ∈ Kπ(h) (1 ≤ h ≤ u) there is
il,t,kπ(1),...,kπ(u) ∈ I such that

x :χil,t,kπ(1) ,...,kπ(u)
,yπ(1) :µ(π(1))

kπ(1) , . . . ,yπ(u) :µ(π(u))
kπ(u)

` xQ1 . . .Qu : ιl∨ωt (11)

and for all s ∈ S and for all kπ(h) ∈ Kπ(h) (1 ≤ h ≤ u) there is is,kπ(1),...,kπ(u) ∈ I such that

x :χis,kπ(1) ,...,kπ(u)
,yπ(1) :µ(π(1))

kπ(1) , . . . ,yπ(u) :µ(π(u))
kπ(u)

` xQ1 . . .Qu :υs. (12)

If (8) and (9) hold, then the conclusion follows from the application of rule (∨E) to (8), (9) and (11) by
choosing l = l j,kw1 ,...,kwm−u

and t = t j,kw1 ,...,kwm−u
. Otherwise (10) must hold, and the conclusion follows from

the application of rule (C) to (10) and (12) by choosing s = s j,ku+1,...,km .
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In the second case:

(∨E)
z :θ∧ϑ ` z :τ z :ζ ∧ϑ ` z :τ Γ ` λym+1 . . .yn.xQ1 . . .Qn : (θ∨ ζ)∧ϑ

Γ ` λym+1 . . .yn.xQ1 . . .Qn :τ
where Γ = x :σ,y1 :ρ1, . . . ,ym :ρm.

For all j ∈ J by induction:
• the first premise implies that either there is l j ∈ L such that z : ιl j ` z :κ j or there is s j ∈ S such that

z :υs j ` z :κ j;

• the second premise implies that either there is t j ∈ T such that z :ωt j ` z :κ j or there is s j ∈ S such
that z :υs j ` z :κ j.

Therefore for all j ∈ J:
• either there are l j ∈ L and t j ∈ T such that

z : ιl j ` z :κ j z :ωt j ` z :κ j; (13)
• or there is s j ∈ S such that z :υs j ` z :κ j. (14)

By induction on the third premise for all l ∈ L, t ∈ T and for all kh ∈ Kh (1 ≤ h ≤ m) there is il,k1,...,km ∈ I
such that

x :χil,k1 ,...,km
,y1 :µ(1)

k1
, . . . ,ym :µ(m)

km
` λym+1 . . .yn.xQ1 . . .Qn : ιl∨ωt (15)

and for all s ∈ S and kh ∈ Kh (1 ≤ h ≤ m) there is is,k1,...,km ∈ I such that
x :χsl,k1 ,...,km

,y1 :µ(1)
k1
, . . . ,ym :µ(m)

km
` λym+1 . . .yn.xQ1 . . .Qn :υs. (16)

If (13) holds, then the conclusion follows from the application of rule (∨E) to (13) and (15) by choosing
l = l j and t = t j. Otherwise (14) must hold, and the conclusion follows from the application of rule (C) to
(14) and (16) by choosing s = s j.

As for the third case:

(∨E)
Γ,z :θ∧ϑ ` R :τ Γ,z :ζ ∧ϑ ` R :τ yu :ρu ` Qv : (θ∨ ζ)∧ϑ

Γ ` λym+1 . . .yn.xQ1 . . .Qn :τ

where Γ = x :σ,y1 :ρ1, . . . ,yu−1 :ρu−1,yu+1 :ρu+1, . . . ,ym :ρm, R = λym+1 . . .yn.xQ1 . . .Qv−1zQv+1 . . .Qn and
u = π(v).
By induction on the first premise for all j ∈ J, l ∈ L, s ∈ S , and for all kh ∈ Kh (1 ≤ h ≤ m,h , u), there is
i( j,l,s),k1,...,ku−1,ku+1,...,km ∈ I such that

x:χi( j,l,s),k1 ,...,ku−1 ,ku+1 ,...,km
,y1:µ(1)

k1
, . . . ,yu−1:µ(u−1)

ku−1
,yu+1:µ(u+1)

ku+1
, . . . ,ym:µ(m)

km
,z :νl∧λs `R:κ j. (17)

By induction on the second premise for all j ∈ J, t ∈ T , s ∈ S , and for all kh ∈ Kh (1 ≤ h ≤ m + 1,h , u),
there is i( j,t,s),k1,...,ku−1,ku+1,...,km ∈ I such that

x:χi( j,t,s),k1 ,...,ku−1 ,ku+1 ,...,km
,y1 :µ(1)

k1
, . . . ,yu−1:ρu−1,yu+1:ρu+1, . . . ,ym:µ(m)

km
,z:ξt ∧λs ` R:κ j. (18)

By Theorem 3.2 applied to the third premise for all ku ∈ Ku:
either there are lku ∈ L, sku ∈ S such that yu :µ(u)

ku
` Qv :νlku

∧λsku
; (19)

or there are tku ∈ T , sku ∈ S such that yu :µ(u)
ku
` Qv :ξtku

∧λsku
. (20)

If (19) holds, then the conclusion follows from the application of rule (C) to (17) and (19) by choosing
l = lku and s = sku . Otherwise (18) must hold, and the conclusion follows from the application of rule (C)
to (18) and (20) by choosing t = tku and s = sku .

The proof for the last case is similar and simpler than that one of the third case. �

Theorem 3.4 (Property P2). If P is an fhp, cw(σ) =
∧

i∈I χi, cw(τ) =
∧

j∈J κ j, and ` P :σ→ τ, then for
all j ∈ J there is i j ∈ I such that ` P :χi j → κ j.
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4 Normalisation of types
To investigate type isomorphism it is necessary to consider the basic laws introduced in Lemma 2.4,
for finding conditions allowing to apply them also at the level of subtypes and to exploit some provable
properties of type inclusion. To this aim, following a common approach [2, 7], a notion of normal form
of types is introduced. Normal type is short for type in normal form.

Normal types are obtained by applying as far as possible a set of isomorphism preserving transfor-
mations, that are all realised by suitable η-expansions of the identity. The transformations applied to
obtain normal types are essentially:

• the distribution of intersections over unions or vice versa, in such a way that all types to the right
of an arrow are in conjunctive normal form and all types to the left of an arrow are in disjunctive
normal form. This is obtained by using (dist∨∧) and (dist∧∨) (distribution);

• the elimination of intersections to the right of arrows and of unions to the left of arrows using the
isomorphisms (dist→∧) and (dist→∨) from left to right (splitting);

• the elimination of redundant intersections and unions, corresponding roughly to intersections and
unions performed on types provably included in one another, as (σ→ τ)∧ (σ∨ρ→ τ), that can be
reduced to σ∨ρ→ τ; similarly (σ→ ρ∨τ)∧ (σ→ τ) can be reduced to σ→ τ (erasure);

• the transformation of types at top level in conjunctive normal form.

For example the type ((ϕ1∧ϕ2→ ϕ2∨ϕ3)∨ (ϕ2→ ϕ5))∧ ((ϕ2∧ϕ3→ ϕ5)∨ (ϕ4→ ϕ3∨ϕ5)) is normal.

The normalisation process, although rather intuitive, needs some care when performed inside a type
context since the used transformations must be isomorphism preserving.

The following subsection defines the normalisation rules. In Subsection 4.2 the soundness and ter-
mination of the normalisation rules and the unicity of normal forms are proved. The notion of normal
form is effective since an algorithm to find the normal form of an arbitrary type can be given. Lastly
Subsection 4.3 presents interesting properties of normal types, in particular Theorem 4.15 characterises
the isomorphic normal types.

4.1 Normalisation rules
Since the normalisation rules have to be applied (whenever possible) also to subtypes, the (standard)
notion of type context is introduced.

C[ ] ::= [ ] | C[ ]→ σ | σ→C[ ] | σ∧C[ ] | C[ ]∧σ | σ∨C[ ] | C[ ]∨σ.

The possibility of applying transformations to subtypes strongly depends on the context in which they
occur. An example of this problem was already given at page 59. Also the types (σ∨ τ→ ρ)∧ (σ→ ρ)
and σ∨ τ→ ρ, are isomorphic in the context [ ], with λxy.xy showing the isomorphism. But the same
types are not isomorphic in the context [ ]∧ϕ, because no η-expansion of the identity can map an atomic
type into itself.

To formalise this notion, paths of type contexts are useful (Definition 4.2). The path of a context
describes which arrows need to be traversed in order to reach the hole, if it is possible, i.e. when there
are no atoms on the way. It is handy to have a notion of agreement of a type with a path (Definition
4.1(3)), in order to assure that the types which are composed by intersection or union with the type
context do not block the transformation. An intersection or a union agrees with a path only if all types
belonging to the intersection or to the union agree with that path.
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In paths the symbol ↙ represents going down to the left of an arrow and the symbol ↘ represents
going down to the right of an arrow. For distribution rules it is enough to reach the hole, while for
splitting rules one more arrow needs to be traversed. So two kinds of paths are useful. They are dubbed
d-paths and s-paths, being used in distribution and splitting rules, respectively. An s-path is a d-path
terminated by the symbol �.

The agreement of a type with a set of d-paths (Definition 4.1(4)) and the concatenation of d-paths
(Definition 4.1(5)) are useful for defining the erasure rules (Definition 4.5).

Definition 4.1. 1. A d-path p is a possibly empty string on the alphabet {↙,↘}.

2. An s-path p is a d-path followed by �.

3. The agreement of a type σ with a d-path or an s-path p (notation σ ∝ p) is the smallest relation
between types and d-paths (s-paths) such that:

σ ∝ ε for all σ; τ→ ρ ∝ � for all τ,ρ;
τ ∝ p implies τ→ ρ ∝↙ p; ρ ∝ p implies τ→ ρ ∝↘ p;
τ ∝ p and ρ ∝ p imply τ∧ρ ∝ p; τ ∝ p and ρ ∝ p imply τ∨ρ ∝ p.

4. A type σ agrees with a set of d-paths P (notation σ ∝ P) if it agrees with all the d-paths in P, i.e.
σ ∝ p for all p ∈ P.

5. If p and p′ are d-paths, p ·p′ denotes their concatenation; if P is a set of d-paths, p ·P denotes the
set {p ·p′ | p′ ∈ P}∪ {p}.

For example the type σ1 → (σ2 → ρ1 ∧ ρ2)∧ (σ3 ∨σ1 → τ1)→ τ2 agrees with the d-path ↘↙↙ and
with the s-path↘↙ �, while the type σ1 → (σ2 → ρ1 ∧ρ2)∧ (σ3 ∨σ1 → τ1)∧ϕ→ τ2 agrees with the
d-path ↘↙ and with the s-path ↘ �, but it does not agree with the d-path ↘↙↙ nor with the s-path
↘↙ �, since ϕ does not agree with↙ nor with �.

The d-paths and s-paths of contexts can be formalised using the agreement between types and paths.

Definition 4.2. The d-path and the s-path of a type context C[ ] (notations d(C[ ]) and s(C[ ]), respec-
tively) are defined by induction on C[ ]:

d(C[ ]) = ε if C[ ] = [ ]; s(C[ ]) = � if C[ ] = [ ];
∗(C′[ ]) = p implies ∗ (C[ ]) =↙ p if C[ ] = C′[ ]→ σ and ∗ (C[ ]) =↘ p if C[ ] = σ→C′[ ];

σ ∝ ∗(C′[ ]) implies ∗ (C[ ]) = ∗(C′[ ]) if C[ ] = C′[ ]∧σ or C[ ] = σ∧C′[ ] or
C[ ] = C′[ ]∨σ or C[ ] = σ∨C′[ ].

where ∗ holds for d and s.

For example the d-path and the s-path of the context σ1→ [ ]∧ (σ2→ τ1∨τ2)→ τ2 are↘↙ and↘↙ �,
respectively, while the d-path and the s-path of the context σ1→ ([ ]∧σ2→ τ1)∨ϕ→ τ2 are undefined,
since ϕ 6∝↙ and ϕ 6∝ �.

In giving the normalisation rules one can consider types in holes modulo idempotence, commutativity
and associativity, when the d-paths of contexts are defined. This is assured by the following lemma, that
can be easily proved by induction on d-paths.

Lemma 4.3. If σ ≈ τ holds the isomorphisms (idem), (comm), (assoc), and d(C[ ]) is defined, then
C[σ] ≈ C[τ].

Distribution and splitting rules can now be defined.
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Definition 4.4 (Distribution and Splitting). 1. The two distribution rules are:

C[(σ∧τ)∨ρ] =⇒C[(σ∨ρ)∧ (τ∨ρ)] if d(C[ ]) = ε or d(C[ ]) = p· ↘ for some path p;
C[(σ∨τ)∧ρ] =⇒C[(σ∧ρ)∨ (τ∧ρ)] if d(C[ ]) = p· ↙ for some path p.

2. The two splitting rules are:

C[σ→ τ∧ρ] =⇒C[(σ→ τ)∧ (σ→ ρ)] if s(C[ ]) is defined;
C[σ∨τ→ ρ] =⇒C[(σ→ ρ)∧ (τ→ ρ)] if s(C[ ]) is defined.

The conditions for erasure rules use two preorders on types, defined in Figure 3 between basic inter-
sections and between basic unions (see page 60), respectively. This is enough since the distribution and
splitting rules (when applicable) give arrow types with basic intersections as left-hand-sides and basic
unions as right-hand-sides. The symbol ≤^stands for either ≤∧or ≤∨. It easy to verify that α ≤∧β if and
only if α ≤∨β, so comparing two arrows or two atomic types one can write α ≤^β. For example µ∧ν ≤∧µ
and χ ≤∨χ∨ κ imply µ→ χ ≤^µ∧ ν→ χ∨ κ and (µ∧ ν→ χ∨ κ)→ ι ≤^(µ→ χ)→ ι.

It is easy to show that ≤∧and ≤∨are preorders since transitivity holds. The presence, at top level, of
an atomic type on both sides of ≤^forces atomic and arrow types to be only erased or added. In relating
types one can exploit also idempotence. For instance two copies of (µ → χ) are needed in deriving
µ→ χ ≤∧(µ∧ ν→ χ)∧ (µ→ χ∨ κ) to show µ→ χ ≤^µ∧ ν→ χ and µ→ χ ≤^µ→ χ∨ κ.

µ ≤∧µ χ ≤∨χ ϕ∧µ ≤∧ϕ ϕ ≤∨ϕ∨χ

ϕ∧µ∧λ ≤∧ϕ∧µ ϕ∨χ ≤∨ϕ∨χ∨ ι

νi ≤
∧µi, χi ≤

∨κi for all i ∈ I ⇒
∧

i∈I(µi→ χi)[∧λ] ≤∧
∧

i∈I(νi→ κi)
νi ≤

∧µi, χi ≤
∨κi for all i ∈ I ⇒

∨
i∈I(µi→ χi) ≤∨

∨
i∈I(νi→ κi)[∨ι]

where the notation [∧λ] ([∨ι]) means that ∧λ (∨ι) can either occur or not.

Figure 3: Preorders on types.

e(µ ≤∧µ) = e(χ ≤∨χ) = {}

e(ϕ∧µ ≤∧ϕ) = e(ϕ ≤∨ϕ∨χ) = e(ϕ∧µ∧λ ≤∧ϕ∧µ) = e(ϕ∨χ ≤∨ϕ∨χ∨ ι) = {ε}

e(
∧

i∈I(µi→ χi)[∧λ] ≤∧
∧

i∈I(νi→ κi))
e(
∨

i∈I(µi→ χi) ≤∨
∨

i∈I(νi→ κi)[∨ι])
=


{ε} if λ or ι is present and

e(νi ≤
∧µi) = e(χi ≤

∨κi) = {} for all i ∈ I,⋃
i∈I(↙ ·e(νi ≤

∧µi)∪↘ ·e(χi ≤
∨κi)) otherwise

if νi ≤
∧µi, χi ≤

∨κi for all i ∈ I

Figure 4: Set of d-paths of a preorder derivation.

These preorders are crucial for the definition of the erasure rules. In fact some types in an intersection
can be erased only if the remaining types are smaller or equal to the erased ones. Dually some types in a
union can be erased only if the remaining types are bigger or equal to the erased ones. Another necessary
condition for erasing types is that the fhps can reach the subtypes in which the types related by the
preorder differ. In order to formalise this, one d-path is not enough, since there can be many subtypes in
which the types differ, so sets of d-paths are needed. Sets of d-paths are then associated with derivations
of preorders between types, so that one can check when a type can be erased in a type context. The set of
d-paths of σ ≤^τ (notation e(σ ≤^τ)) represents the set of paths that make accessible the points in which
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σ and τ differ. For this reason, e(µ ≤∧µ) and e(χ ≤∨χ) are defined as the empty set and the sets:
e(ϕ∧µ ≤∧ϕ), e(ϕ ≤∨ϕ∨χ), e(ϕ∧µ∧λ ≤∧ϕ∧µ), and e(ϕ∨χ ≤∨ϕ∨χ∨ ι)

contain only ε; in the other cases this set must be built from the sets of paths associated with the subtypes
using ↙ and ↘. This definition is given in Figure 4. Notice that the condition e(σ ≤^τ) = {} implies
σ = τ.
For example e(µ→ χ≤^µ∧ν→ χ∨κ) = {↙,↘} and e((µ∧ν→ χ∨κ)→ ι≤^(µ→ χ)→ ι) = {↙↙,↙↘}.

Finally one can define erasure rules.

Definition 4.5 (Erasure). The three erasure rules are:∧
i∈I χi =⇒

∧
j∈J χ j if J ⊂ I and ∀i ∈ I ∃ ji ∈ J. χ ji ≤

∨χi and ∀ j ∈ J. χ j ∝ P,
where P =

⋃
i∈I e(χ ji ≤

∨χi);

C[
∧

i∈I αi] =⇒C[
∧

j∈J α j] if J ⊂ I and ∀i ∈ I ∃ ji ∈ J. α ji ≤
^αi and ∀ j ∈ J. C[α j] ∝ P,

where P = d(C[]) ·
⋃

i∈I e(α ji ≤
^αi);

C[
∨

i∈I αi] =⇒C[
∨

j∈J α j] if J ⊂ I and ∀i ∈ I ∃ ji ∈ J. αi ≤
^α ji and ∀ j ∈ J. C[α j] ∝ P,

where P = d(C[]) ·
⋃

i∈I e(αi ≤
^α ji).

In the first erasure rule the absence of the context indicates that it can be applied only at top level, i.e. in
the empty context.

By applying the erasure rules, it is essential to allow to remove more than one type in a single step.
For example (µ→ ϕ→ χ)∧ (µ→ (ϕ∧ ν→ χ)∨ψ1)∧ (µ→ (ϕ∧ ν→ χ)∨ψ2) =⇒ µ→ ϕ→ χ, but this
type does not reduce to (µ→ ϕ→ χ)∧ (µ→ (ϕ∧ ν→ χ)∨ψi) for i = 1 or i = 2. The problem is that
µ→ (ϕ∧ ν→ χ)∨ψ1 does not agree with e(µ→ ϕ→ χ ≤^µ→ (ϕ∧ ν→ χ)∨ψ2) = {↘↙} and dually
exchanging ψ1 with ψ2.

Normalisation can create redexes, for example the first distribution rule applied to σ→ (τ∧ ρ)∨ θ
gives σ→ (τ∨ θ)∧ (ρ∨ θ), which can be reduced to (σ→ τ∨ θ)∧ (σ→ ρ∨ θ) by the first splitting rule.
The second splitting rule applied to (σ∨ϕ→ ϕ)∧ (ϕ∧ψ→ ϕ) gives (σ→ ϕ)∧ (ϕ→ ϕ)∧ (ϕ∧ψ→ ϕ),
which can be reduced to (σ → ϕ)∧ (ϕ → ϕ) by the first or second erasure rule. A more interesting
example is (ϕ∧ (ψ→ ψ)→ ψ)∧ ((ψ→ ψ)→ ψ)∧ (((σ∨τ)∧ρ→ ρ)→ ρ): this type can only be reduced
to ((ψ → ψ) → ψ)∧ (((σ∨ τ)∧ ρ → ρ) → ρ) by the first or second erasure rule and then the second
distribution rule becomes applicable.

4.2 Soundness, confluence and termination of type normalisation
The soundness of the normalisation rules, i.e. that σ =⇒ τ implies σ ≈ τ, uses η-expansions of the
identity, called finite hereditarily identities (fhis). More precisely for each rule σ =⇒ τ two fhis Id, Id′

such that ` Id :σ→ τ and ` Id′ :τ→ σ are built. fhis can be associated with d-paths, s-paths and sets of
d-paths.

Definition 4.6. 1. The fhi induced by the s-path p (notation Idp) is defined by induction on p:
Id� = λxy.xy Id↙p β←− λxy.x(Idpy) Id↘p β←− λxy.Idp(xy)

2. The fhi induced by the set of d-paths P (notation IdP) is defined by induction on the d-paths in P:
Id{ } = Id{ε} = λx.x IdP β←− λxy.IdR(P)(x(IdL(P)y)) if P , { }, {ε}

where L(P) = {p |↙ p ∈ P} and R(P) = {p |↘ p ∈ P}.

3. The fhi induced by the d-path p (notation Idp) is Idp = Id{p}.

For example Id↘↙� β←− λx1y1.Id↙�(x1y1) β←− λx1y1.(λx2y2.x2(Id�y2))(x1y1) β←−

λx1y1.(λx2y2.x2((λx3y3.x3y3)y2))(x1y1), so Id↘↙� = λx1y1y2.x1y1(λy3.y2y3).
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The following lemma shows that the fhi associated with a d-path, an s-path or a set of d-paths maps
to itself each type that agrees with it.

Lemma 4.7. 1. Let p be a d-path or an s-path, then σ ∝ p implies ` Idp:σ→ σ.

2. Let P be a set of d-paths, then σ ∝ P implies ` IdP:σ→ σ.

Proof. Only Point (2) is proved, being the proof of Point (1) similar and simpler. The proof is by
induction onσ andP. Ifσ= τ→ ρ, then by definition τ∝L(P) and ρ∝R(P). By induction ` IdL(P):τ→ τ

and ` IdR(P) :ρ→ ρ, which imply ` λxy.IdR(P)(x(IdL(P)y)):σ→ σ. If σ = τ∨ ρ or σ = τ∧ ρ, then by
definition τ ∝ P and ρ ∝ P. These cases easily follow by induction using Corollary 2.2(3). �

To prove the soundness of erasure one needs to show that the fhi associated with a set of d-paths
“respects” the preorder relation, in the sense that, if the set of d-paths of the derivation σ≤^τ is contained
in a set P and either σ or τ agrees with P, then the fhi IdP maps σ to τ.

Lemma 4.8. If e(σ ≤^τ) ⊆ P and either σ ∝ P or τ ∝ P, then ` IdP:σ→ τ.

Proof. By induction on the proof of σ ≤^τ. The cases µ ≤∧µ and χ ≤∨χ follow immediately by Lemma
4.7. In cases ϕ∧µ ≤∧ϕ,ϕ ≤∨ϕ∨χ,ϕ∧µ∧λ ≤∧ϕ∧µ and ϕ∨χ ≤∨ϕ∨χ∨ ι one has e(σ ≤^τ) = {ε}. Since
σ ∝ P or τ ∝ P implies ϕ ∝ P, P = {ε} and by Definition 4.6(2), one gets IdP = λx.x.
Consider the case: νi ≤

∧µi, χi ≤
∨κi for all i ∈ I ⇒

∧
i∈I(µi→ χi)[∧λ] ≤∧

∧
i∈I(νi→ κi). By definition:

• e(
∧

i∈I(µi→ χi)[∧λ] ≤∧
∧

i∈I(νi→ κi)) ⊆ P implies e(νi ≤
∧µi) ⊆ L(P) and e(χi ≤

∨κi) ⊆ R(P) for all
i ∈ I;

• either
∧

i∈I(µi→ χi)[∧λ] ∝ P or
∧

i∈I(νi→ κi) ∝ P implies either νi ∝L(P) or µi ∝L(P) and either
χi ∝ R(P) or κi ∝ R(P) for all i ∈ I.

This gives by induction ` IdL(P):νi→ µi and ` IdR(P):χi→ κi for all i ∈ I. By definition
IdP β←− λxy.IdR(P)(x(IdL(P)y)). It can be easily shown that:

` λxy.IdR(P)(x(IdL(P)y)):(µi→ χi)→ νi→ κi for all i ∈ I.
The Subject Reduction (Theorem 2.1) implies ` IdP:(µi → χi)→ νi → κi for all i ∈ I, and so by Corol-
lary 2.2(3) and (4)

` IdP:
∧

i∈I(µi→ χi)[∧λ]→
∧

i∈I(νi→ κi).
For the case: νi ≤

∧µi, χi ≤
∨κi for all i ∈ I ⇒

∨
i∈I(µi→ χi) ≤∨

∨
i∈I(νi→ κi)[∨ι] a similar argument gives

` IdP:
∨

i∈I(µi→ χi)→
∨

i∈I(νi→ κi)[∨ι]. �

The soundness of the normalisation rules can now be proved.

Theorem 4.9. 1. If d(C[ ]) is defined, then for arbitrary σ, τ, and ρ, the fhi Idd(C[ ]) proves the
isomorphisms: C[(σ∨τ)∧ρ] ≈ C[(σ∧ρ)∨ (τ∧ρ)] and C[(σ∧τ)∨ρ] ≈ C[(σ∨ρ)∧ (τ∨ρ)].

2. If s(C[ ]) is defined, then for arbitrary σ, τ, and ρ, the fhi Ids(C[ ]) proves the isomorphisms:
C[σ→ τ∧ρ] ≈ C[(σ→ τ)∧ (σ→ ρ)] and C[σ∨τ→ ρ] ≈ C[(σ→ ρ)∧ (τ→ ρ)].

3. Let
∧

i∈I χi =⇒
∧

j∈J χ j, i.e. J ⊂ I and ∀i ∈ I ∃ ji ∈ J. χ ji ≤
∨χi and ∀ j ∈ J. χ j ∝ P,

where P =
⋃

i∈I e(χ ji ≤
∨χi). Then IdP proves

∧
j∈J χ j ≈

∧
i∈I χi.

4. Let C[
∧

i∈I αi] =⇒C[
∧

j∈J α j], i.e. J ⊂ I and ∀i ∈ I ∃ ji ∈ J. α ji ≤
^αi and ∀ j ∈ J. C[α j] ∝ P,

where P = d(C[]) ·
⋃

i∈I e(α ji ≤
^αi). Then IdP proves C[

∧
j∈J α j] ≈ C[

∧
i∈I αi].

5. Let C[
∨

i∈I αi] =⇒C[
∨

j∈J α j] i.e. J ⊂ I and ∀i ∈ I. ∃ ji ∈ J. αi ≤
^α ji and ∀ j ∈ J.C[α j] ∝ P,

where P = d(C[]) ·
⋃

i∈I e(αi ≤
^α ji). Then IdP proves C[

∨
i∈I αi] ≈ C[

∨
j∈J α j].
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Proof. (1). By induction on C[ ]. If C[ ] = [ ] by Definition 4.2 d([ ]) = ε and Idε = λx.x.
If C[ ] = C′[ ]→ θ, then by induction

` Idd(C′[ ]):C′[(σ∨τ)∧ρ]→C′[(σ∧ρ)∨ (τ∧ρ)]
` Idd(C′[ ]):C′[(σ∧ρ)∨ (τ∧ρ)]→C′[(σ∨τ)∧ρ].

Since by definition Idd(C[ ]) β←− λxy.x(Idd(C′[ ])y) the result follows.
If C[ ] = θ→C′[ ] the proof is similar to that one of previous case.
If C[ ] = C′[ ]∧ θ, then by induction

` Idd(C′[ ]):C′[(σ∨τ)∧ρ]→C′[(σ∧ρ)∨ (τ∧ρ)]
` Idd(C′[ ]):C′[(σ∧ρ)∨ (τ∧ρ)]→C′[(σ∨τ)∧ρ].

Moreover d(C[ ]) = d(C′[ ]) and θ ∝ d(C′[ ]), so from Lemma 4.7(1) ` Idd(C′[ ]) :θ → θ and by Corol-
lary 2.2(3) the proof is done.
If C[ ] = C′[ ]∨ θ, the proof is similar.

(2). Similar to the proof of Point (1). The only difference is case C[ ] = [ ], in which by Definition
4.2 s([ ]) = � and Id� = λxy.xy.

(3). Lemma 4.8 implies ` IdP:χ ji → χi, since χ ji ∝ P for all i ∈ I, and P =
⋃

i∈I e(χ ji ≤
∨χi). Lemma

4.7(2) gives ` IdP:χ j→ χ j for all j ∈ J, since χ j ∝P for all j ∈ J. So, by Corollary 2.2(3), IdP has both the
types

∧
i∈I χ ji→

∧
i∈I χi and

∧
j∈J χ j→

∧
j∈J χ j. Finally, Corollary 2.2(4) implies ` IdP:

∧
j∈J χ j→

∧
i∈I χi.

(4). By induction on C[ ]. If C[ ] = [ ], the proof is immediate from Point (3).
Let P′ = d(C′[]) ·

⋃
i∈I e(α ji ≤

^αi).
If C[ ] = C′[ ]→ σ, then d(C[ ]) =↙ ·d(C′[ ]). By induction

` IdP′ :C′[
∧

j∈J α j]→C′[
∧

i∈I αi] and ` IdP′ :C′[
∧

i∈I αi]→C′[
∧

j∈J α j] .
Since by definition IdP β←− λxy.x(IdP′y), the result follows.

If C[ ] = σ→C′[ ] the proof is similar to that one of previous case.
If C[ ] = C′[ ]∧σ, then by induction

` IdP′ :C′[
∧

j∈J α j]→C′[
∧

i∈I αi] and ` IdP′ :C′[
∧

i∈I αi]→C′[
∧

j∈J α j] .
In this case P = P′ and σ ∝ P. Lemma 4.7(2) gives ` IdP :σ→ σ and Corollary 2.2(3) concludes the
proof.

If C[ ] = C′[ ]∨σ, the proof is similar.
(5). Similar to the proof of Point (4). �

This subsection ends with the proof of the existence and unicity of normal forms, i.e. that the nor-
malisation rules are terminating and confluent.

Theorem 4.10 (Normal Forms). The rewriting system of Definitions 4.4 and 4.5 is terminating and
confluent.

Proof. The termination follows from an easy adaptation of the recursive path ordering method [5]. The
partial order on operators is defined by: → � ∨ � ∧ for holes at top level or in the right-hand-sites of
arrow types and→ � ∧ � ∨ for holes in the left-hand-sites of arrow types. Notice that the induced
recursive path ordering �∗ has the subterm property. This solves the case of erasure rules. For the first
distributive rule, since ∨ � ∧ for holes at top level or in the right-hand-sites of arrow types, it is enough
to observe that (σ∧τ)∨ρ �∗ σ∨ρ and (σ∧τ)∨ρ �∗ τ∨ρ. For the first splitting rule, since→ � ∧,
it is enough to observe that σ→ τ∧ρ �∗ σ→ τ and σ→ τ∧ρ �∗ σ→ ρ. The proof for the remaining
rules are similar.

For confluence, following the Knuth-Bendix algorithm [10] it is sufficient to prove the convergence of
the critical pairs, that are generated (modulo commutativity and associativity of union and intersection)
by:

(
∧

i∈I αi)∨σ, σ→ (
∧

i∈I αi)∨τ, (
∨

i∈I αi)∧σ→ τ,
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σ→ (
∨

i∈I αi)∧τ, σ∨ (
∧

i∈I αi)→ τ, σ→
∧

i∈I αi∧τ, σ∨
∨

i∈I αi→ τ,
(σ∧τ)∨ρ∨ (θ∧ϑ), (σ∨τ)∧ρ∧ (θ∨ϑ)→ ζ,

σ∨τ∨ρ→ θ, σ→ τ∧ρ∧ θ,∧
i∈I χi,

∧
i∈I αi,

∨
i∈I αi,

when
∧

j∈J α j ≤
∧
∧

i∈I αi,
∨

i∈I αi ≤
∨
∨

j∈J α j, J ⊂ I and all the conditions required by the normalisation
rules are satisfied. The types of the last line generate critical pairs when, for some L ⊂ I, L , J, one has,
for the first type ∀i ∈ I ∃ ji ∈ J li ∈ L such that χ ji ≤

∨χi and χli ≤
∨χi and, for the second and the third

types, in addition to the above conditions,
∧

l∈Lα j ≤
∧
∧

i∈I αi and
∨

l∈Lαi ≤
∨
∨

j∈J α j, respectively.
The types in the first line can be reduced by distribution and erasure rules, the types in the second line

can be reduced by splitting and erasure rules, the types in the third line can be reduced by distribution
rules, the types in the forth line can be reduced by splitting rules, the types in the last line can be
reduced by erasure rules. Notice that distribution and splitting rules do not generate critical pairs, since
they require respectively unions and intersections for holes in the right-hand-sites of arrow types and
intersections and unions for holes in the left-hand-sites of arrow types.

The proof is given only for a top level occurrence of the type (
∧

i∈I αi)∨σ, the proof for the other
cases being similar. In this case (

∧
i∈I αi)∨σ =⇒ (

∧
j∈J α j)∨σ by erasure since J ⊂ I and ∀i ∈ I ∃ ji ∈ J

such that α ji ≤
^αi and (

∧
i∈I αi)∨σ ∝

⋃
i∈I e(α ji ≤

^αi). Moreover
(
∧

i∈I αi)∨σ =⇒ (
∧

i∈I1 αi∨σ)∧ (
∧

i∈I2 αi∨σ)
with I1 ∪ I2 = I and I1 ∩ I2 = ∅ by distribution. Let

∧
l∈Lχl be the conjunctive normal form of σ, then

σ =⇒∗
∧

l∈Lχl. This implies (
∧

j∈J αi)∨σ =⇒∗
∧

l∈L
∧

j∈J(αi∨χl) and
(
∧

i∈I1 αi∨σ)∧ (
∧

i∈I2 αi∨σ) =⇒∗
∧

l∈L(
∧

i∈I1 αi∨χl)∧ (
∧

i∈I2 αi∨χl) =
∧

l∈L
∧

i∈I(αi∨χl)
by the first distribution rule. Since α ji ≤

^αi implies α ji∨χl ≤
∨αi∨χl, and (

∧
j∈J α j)∨σ∝

⋃
i∈I e(α ji ≤

^αi)
implies

∧
l∈L
∧

j∈J(α j∨χl) ∝
⋃

l∈L
⋃

i∈I e(α ji ∨χl ≤
∨αi∨χl), the first erasure rule gives∧

l∈L
∧

i∈I(αi∨χl) =⇒
∧

l∈L
∧

j∈J(α j∨χl). �

4.3 Properties of normal types
It is interesting to show that normal types do not contain “superfluous” subtypes, in particular that:

1. if χ∧ κ is a normal type, then there is no Id such that ` Id :χ→ κ;

2. if α∨β is a normal type, then there is no Id such that ` Id :α→ β;

Theorem 4.14 shows Points (1) and (2).
The more interesting result is Theorem 4.15, which assures that isomorphic normal types have the

same number of intersections and unions and that the atomic and arrow types are pairwise isomorphic.

It is easy to verify that each fhi Id different from the identity is such that Id β←− λxy.Id1(x(Id2y))
for unique Id1, Id2. A key result is a relation between the arrow types that can be derived for Id, Id1, Id2.
Lemma 4.11(4) gives this relation, by exploiting the constraints on typings of variables and fhis, shown
in the first three points of the same lemma.

Building on Definition 4.6(2) a non-empty set of d-paths is associated with each fhi (Definition 4.12).
This association is based on the natural correspondence between lambda abstractions and arrow types.

A last Lemma (Lemma 4.13) relates basic intersections and unions in normal form (when they can
be mapped by fhis) to preorders and to sets of d-paths.

Lemma 4.11. 1. If Γ, x :σ→ τ,y :ρ ` x(My) :θ, then Γ ` λy.My :ρ→ σ.

2. Let M be either a fhi or a free variable. Then Γ, x :σ→ τ,y :ρ ` M(xy) :θ implies Γ ` λz.Mz :τ→ θ

and z :ρ ` z :σ.
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3. Let M1,M2 be either fhis or free variables and FV(Mi) be the set of variables in Γi for i = 1,2.
Then Γ1,Γ2, x :σ→ τ,y :ρ ` M1(x(M2y)) :θ implies Γ1 ` λz.M1z :τ→ θ and Γ2 ` λz.M2z :ρ→ σ.

4. If ` Id : (µ→ χ)→ ν→ κ and Id β←− λxy.Id1(x(Id2y)), then ` Id1 :χ→ κ and ` Id2 :ν→ µ.

Proof. (1). Lemma 2.7(1) implies Γ,y :ρ ` My :σ, and rule (→ I) derives Γ ` λy.My :ρ→ σ.
(2). The proof is similar and simpler than that of (3).
(3). A stronger statement, i.e.

x :σ→ τ ` x :ς and Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ imply Γ1 ` λz.M1z :τ→ θ and Γ2 ` λz.M2z :ρ→ σ,

is proved by induction on the derivation of Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ.
Let the last applied rule be (→ E):

(→ E)
Γ1 ` M1 :ϑ→ θ Γ2, x :ς,y :ρ ` x(M2y) :ϑ

Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ

The second premise and x :σ→ τ ` x :ς imply Γ2, x :σ→ τ,y :ρ ` x(M2y) :ϑ by rule (L). Point (1) gives
Γ2 ` λy.M2y :ρ→ σ and Lemma 2.7(2) gives z :τ ` z :ϑ. The application of (→ E) to the first premise and
to z :τ ` z :ϑ derives Γ1,z :τ ` M1z :θ, and then Γ1 ` λz.M1z :τ→ θ by using (→ I).

If the last applied rule is (∧I), (∧E), or (∨I) the proof easily follows by induction.
For rule (∨E) there are seven cases, which differ for the subjects of the premises. I.e. if t is

the replaced variable the subjects of the first two premises can be: t(x(M2y)), M1(t(M2y)), M1(x(ty)),
M1(x(M2t)), M1t, M1(xt) and t. The proof is given for all the cases but the last one, which easily follows
by induction. Notice that the proof of the sixth case needs Point (2).

In the first case:

(∨E)

Γ2, x :ς,y :ρ, t :ϑ1∧ ζ ` t(x(M2y)) :θ Γ2, x :ς,y :ρ, t :ϑ2∧ ζ ` t(x(M2y)) :θ
Γ1 ` M1 : (ϑ1∨ϑ2)∧ ζ

Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ

By induction t :ϑ1 ∧ ζ ` λz.tz :τ→ θ and t :ϑ2 ∧ ζ ` λz.tz :τ→ θ and Γ2 ` λy.M2y :ρ→ σ. By rule (∨L)
t :(ϑ1∨ϑ2)∧ζ ` λz.tz:τ→ θ, so the application of rule (C) to the third premise derives Γ1 ` λz.M1z:τ→ θ.

In the second case:

(∨E)

Γ1,Γ2,y :ρ, t :ϑ1∧ ζ ` M1(t(M2y)) :θ Γ1,Γ2,y :ρ, t :ϑ2∧ ζ ` M1(t(M2y)) :θ
x :ς ` x : (ϑ1∨ϑ2)∧ ζ

Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ

Rule (L) applied to x :σ→ τ ` x :ς and to the third premise derives x :σ→ τ ` x : (ϑ1∨ϑ2)∧ ζ. Corollary
2.6(2) gives either x :σ→ τ ` x :ϑ1∧ ζ or x :σ→ τ ` x :ϑ2∧ ζ. This implies either t :σ→ τ ` t :ϑ1∧ ζ or
t :σ→ τ ` t :ϑ2 ∧ ζ. By induction on the first premise in the first case and on the second premise in the
second case Γ1 ` λz.M1z :τ→ θ and Γ2 ` λz.M2z :ρ→ σ.

In the third case:

(∨E)

Γ1, x :ς,y :ρ, t :ϑ1∧ ζ ` M1(x(ty)) :θ Γ1, x :ς,y :ρ, t :ϑ2∧ ζ ` M1(x(ty)) :θ
Γ2 ` M2 : (ϑ1∨ϑ2)∧ ζ

Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ

By induction Γ1 ` λz.M1z:τ→ θ and t :ϑ1∧ζ ` λz.tz:ρ→σ and t :ϑ2∧ζ ` λz.tz:ρ→σ. Rule (∨L) derives
t :(ϑ1∨ϑ2)∧ζ ` λz.tz:ρ→σ, so the application of rule (C) to the third premise gives Γ2 ` λy.M2y:ρ→σ.
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In the fourth case:

(∨E)

Γ1,Γ2, x :ς, t :ϑ1∧ ζ ` M1(x(M2t)) :θ Γ1,Γ2, x :ς, t :ϑ2∧ ζ ` M1(x(M2t)) :θ
y :ρ ` y : (ϑ1∨ϑ2)∧ ζ

Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ

By induction on one of the first two premises Γ1 ` λz.M1z :τ→ θ and Γ2 ` λz.M2z :ρ→ σ.
In the fifth case:

(∨E)
Γ1, t :ϑ1∧ ζ ` M1t :θ Γ1, t :ϑ2∧ ζ ` M1t :θ Γ2, x :ς,y :ρ ` x(M2y) : (ϑ1∨ϑ2)∧ ζ

Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ

The third premise with x :σ→ τ ` x : ς give Γ2, x :σ→ τ,y : ρ ` x(M2y) : (ϑ1 ∨ϑ2)∧ ζ, so by Point (1)
Γ2 ` λz.M2z :ρ→ σ. By Lemma 2.7(2) Γ2, x :σ→ τ,y :ρ ` x(M2y) : (ϑ1 ∨ϑ2)∧ ζ implies z : τ ` z : (ϑ1 ∨

ϑ2)∧ ζ. The application of rule (∨E) to the first two premises and to z : τ ` z : (ϑ1 ∨ ϑ2)∧ ζ derives
Γ1,z :τ ` M1z :θ, which implies Γ1 ` λz.M1z :τ→ θ by rule (→ I).

In the sixth case:

(∨E)

Γ1, x :ς, t :ϑ1∧ ζ ` M1(xt) :θ Γ1, x :ς, t :ϑ2∧ ζ ` M1(xt) :θ
Γ2,y :ρ ` M2y : (ϑ1∨ϑ2)∧ ζ

Γ1,Γ2, x :ς,y :ρ ` M1(x(M2y)) :θ

The first and the second premise with x : σ → τ ` x : ς give Γ1, x : σ → τ, t : ϑ1 ∧ ζ ` M1(xt) : θ and
Γ1, x :σ→ τ, t :ϑ2∧ ζ ` M1(xt) :θ. So Point (2) implies Γ1 ` λz.M1z:τ→ θ, t:ϑ1∧ζ ` t:σ and t:ϑ2∧ζ ` t:σ.
The application of rule (∨E) to the last two statements and to the third premise derives Γ2,y :ρ ` M2y :σ,
so rule (→ I) concludes the proof.

(4). The Subject Expansion (Theorem 2.3) gives ` λxy.Id1(x(Id2y)) : (µ→ χ)→ ν→ κ. Corollary
2.2(1) implies

x :µ→ χ,y :ν ` Id1(x(Id2y)) :κ.
Point (3) and Subject Reduction conclude the proof. �

Definition 4.12 (Set of d-paths of an fhi). The set of d-paths of the fhi Id (notation #(Id)) is defined by:

#(λx.x) = {ε} #(λxy.Id1(x(Id2y))) = {↙ p | p ∈ #(Id2)}∪ {↘ p | p ∈ #(Id1)}.

Lemma 4.13. 1. If ` Id :σ→ τ, where σ,τ are both basic intersections or basic unions in normal
form, then σ ≤^τ and #(Id) ⊇ e(σ ≤^τ), with ^ = ∧ if σ,τ are intersections and ^ = ∨ if σ,τ are
unions.

2. If ` Id:σ→σwhereσ is either a basic intersection or a basic union in normal form, thenσ∝ #(Id).

Proof. (1). By induction on Id. If Id = λx.x, then x :σ ` x : τ by Corollary 2.2(1). This implies either
σ = τ or σ = µ∧ν and τ = µ or σ = χ and τ = χ∨ κ by Lemma 2.5. By definition either e(σ ≤^τ) = { } or
e(σ ≤^τ) = {ε}. If Id , λx.x, the following stronger statement is proved:
If ` Id :σl→ τl, where σl, τl are normal types and either intersections of arrows or unions of arrows for
all l ∈ L, then σl ≤

^τl and #(Id) ⊇
⋃

l∈L e(σl ≤
^τl) for all l ∈ L, with ^ = ∧ if σl, τl are intersections and

^ = ∨ if σl, τl are unions.

If Id β←− λxy.Id1(x(Id2y)), let σl =
∧

i∈Il(µ
(l)
i → χ(l)

i ), τl =
∧

j∈Jl(ν
(l)
j → κ(l)

j ) (the proof for the case the
types are basic unions is similar). Theorem 3.4 and Corollary 2.2(1) imply for all l ∈ L and j ∈ Jl there
is i j ∈ Il such that x :µ(l)

i j
→ χ(l)

i j
,y : ν(l)

j ` Id1(x(Id2y)) : κ(l)
j . Lemma 4.11(4) implies ` Id1 :χ(l)

i j
→ κ(l)

j and
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` Id2 :ν(l)
j → µ(l)

i j
for all l ∈ L and j ∈ Jl. By induction for all l ∈ L and j ∈ Jl:

χ(l)
i j
≤∨κ(l)

j and #(Id1) ⊇
⋃

l∈L
⋃

j∈Jl e(χ(l)
i j
≤∨κ(l)

j )

ν(l)
j ≤

∧µ(l)
i j

and #(Id2) ⊇
⋃

l∈L
⋃

j∈Jl e(ν(l)
j ≤

∧µ(l)
i j

)

By definition of e (Figure 4)
⋃

l∈L e(σl ≤
∧τl) =

⋃
l∈L
⋃

j∈Jl(↙ ·e(ν(l)
j ≤

∧µ(l)
i j

) ∪↘ ·e(χ(l)
i j
≤∨κ(l)

j )) ⊆ #(Id).
(2). By induction on Id. If Id = λx.x, then #(Id) = {ε} and the proof is immediate.
If Id β←− λxy.Id1(x(Id2y)) let σ =

∧
i∈I(µi → χi) (the proof for the case of the union is similar). Let

I = J∪H , with J∩H = ∅, and J be the maximum subset of I such that ` Id:(µ j→ χ j)→ µ j→ χ j for all
j ∈ J.
The proof starts by showing that J can not be empty. Theorem 3.4 assures that for all i ∈ I there is ji ∈ I
such that ` Id:(µ ji → χ ji)→ µi → χi. If there are i1, . . . , in such that ` Id:(µil → χil)→ µil+1 → χil+1 for
1 ≤ l ≤ n− 1 and ` Id:(µin → χin)→ µi1 → χi1 , then also ` Id:(µil → χil)→ µil → χil for 1 ≤ l ≤ n, since
Id β←− Id◦ Id.
From ` Id:(µ j→ χ j)→ µ j→ χ j Corollary 2.2(1) and Lemma 4.11(3) give Id2 :µ j→ µ j and Id1 :χ j→ χ j.
By induction µ j ∝ #(Id2) and χ j ∝ #(Id1) for all j ∈ J, which imply

∧
j∈J(µ j→ χ j) ∝ #(Id). Moreover by

assumption for all h ∈ H there is jh ∈ J such that Id : (µ jh → χ jh)→ µh → χh. Point (1) implies µ jh →

χ jh ≤
^µh→ χh and #(Id) ⊇ e(µ jh → χ jh ≤

^µh→ χh). The second erasure rule gives σ =⇒
∧

j∈J(µ j→ χ j).
Therefore σ would not be a normal type. So H must be empty. �

Theorem 4.14. 1. If ` Id :
∧

j∈J χ j→
∧

i∈I χi and J ⊂ I, then
∧

i∈I χi is not a normal type.

2. If ` Id :
∨

i∈I αi→
∨

j∈J α j and J ⊂ I, then
∨

i∈I αi is not a normal type.

Proof. (1). Assume ad absurdum that
∧

i∈I χi is a normal type. Let I = K∪H, with K∩H = ∅, and H be
the maximum subset of I such that for all h ∈H there is kh ∈ K such that Id:(µkh→ χkh)→ µh→ χh. Notice
that by construction H ⊇ I − J, therefore H can not be empty. By Lemma 4.13(1) µkh → χkh ≤

^µh→ χh

and #(Id) ⊇ e(µkh → χkh ≤
^µh → χh). Moreover by assumption ` Id : χk → χk for all k ∈ K. Lemma

4.13(2) implies
∧

k∈K χk ∝ #(Id). The first erasure rule gives
∧

i∈I χi =⇒
∧

k∈K χk, proving that
∧

i∈I χi is
not a normal type.

(2). Similar to the proof of (1), using the last erasure rule. �

Theorem 4.15. Let
∧

i∈I(
∨

h∈Hi α
(i)
h ) ≈

∧
j∈J(
∨

k∈K j β
( j)
k ) and both types be normal. Then I = J, Hi = Ki

and α(i)
h ≈ β

(i)
h for all h ∈ Hi and i ∈ I.

Proof. Let < P,P−1 > prove the isomorphism and let χi =
∨

h∈Hi α
(i)
h and κ j =

∨
k∈K j β

( j)
k .

Assume ad absurdum that I ⊂ J. By Theorem 3.4 for all j ∈ J there is i j ∈ I such that ` P :χi j → κ j

and for i j ∈ I there is ji j ∈ J such that ` P−1 : κ ji j
→ χi j . This implies ` P ◦ P−1 : κ ji j

→ κ j and, for
cardinality reasons, there are i, j such that ji j , j. This, together with ` P◦P−1 :

∧
j∈J κ j→

∧
j∈J κ j, gives

` P ◦P−1 :
∧

j∈J′ κ j →
∧

j∈J κ j for some J′ ⊆ I. By Theorem 4.14(1)
∧

j∈J κ j is not a normal type. Then
I = J and ji j = j. Therefore the indexes can be chosen to get χi ≈ κi for all i ∈ I.
Assume ad absurdum that Ki ⊂ Hi. By Theorem 3.2 for all h ∈ Hi there is kh ∈ Ki such that ` P :α(i)

h → β(i)
kh

and for all kh ∈ Ki there is hkh ∈ Hi such that ` P−1 : β(i)
kh
→ α(i)

hkh
. This implies ` P−1 ◦ P :α(i)

h → α(i)
hkh

and there are h, k such that hkh , h. This fact, together with ` P−1 ◦ P :
∨

h∈Hi α
(i)
h →

∨
h∈Hi α

(i)
h , gives

` P−1 ◦P :
∨

h∈Hi α
(i)
h →

∨
h∈H′ α

(i)
h for some H′ ⊆ Ki. By Theorem 4.14(2)

∨
h∈Hi α

(i)
h is not a normal type.

Then Hi = Ki and hkh = h. Therefore the indexes can be chosen to get α(i)
h ≈ β

(i)
h for all h ∈Hi and i ∈ I. �
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5 Conclusion
This paper introduces a system with intersection and union types for linear λ-terms. The system enjoys
subject conversion owing to the linearity restriction. The types that can be derived for the λ-terms proving
type isomorphism are studied. A main achievement of this paper is the definition of rules to reduce types
to normal form, while preserving isomorphism. These rules are the building blocks for characterising
type isomorphism by means of a syntactic equivalence relation between types. This characterisation is
the content of [4], where all proofs given in the present paper are omitted. The present paper and [4] can
be considered as the first and the second part of a unique work.
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