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We provide a characterisation of strongly normalising terms of theλµ-calculus by means of a type
system with intersection and product types. The presence ofthe latter and a restricted use of the type
ω enable us to represent the particular notion of continuation used in the literature for the definition
of semantics for theλµ-calculus. This makes it possible to lift the well-known characterisation
property for strongly-normalisingλ-terms - that uses intersection types - to theλµ-calculus. From
this result an alternative proof of strong normalisation for terms typeable in Parigot’s propositional
logical system follows, by means of an interpretation of that system into ours.

Introduction

Parigot’s λµ-calculus [20] is an extension of theλ-calculus [11, 9] that was first introduced in [20]
to express a notion of (confluent) computation with classical proofs in Gentzen’ssequent calculusLK .
That calculus was introduced in [15] as a logical system in which the rules only introduce connectives
(but on either side of a sequent), in contrast tonatural deduction(also introduced in [15]) which uses
rules that introduce or eliminate connectives in the logical formulae. Natural deduction normally derives
statements with a single conclusion, whereasLK allows for multiple conclusions, deriving sequents of
the formA1, . . . , An ⊢ B1, . . . , Bm, whereA1, . . . , An is to be understood asA1∧ . . .∧An andB1, . . . , Bm

is to be understood asB1∨ . . .∨Bm.
With λµ, Parigot created a multi-conclusion typing system that is,in fact, based on a mixture of

Gentzen’s two approaches: the system is a natural deductionsystem that hasintroductionandelimination
rules, but derivable statements have the shapeΓ ⊢ M : A | ∆, whereA is the main conclusion of the
statement, expressed as theactiveconclusion. Here∆ contains the alternative conclusions, consisting of
pairs of Greek characters and types; the left-hand contextΓ, as usual, contains pairs of Roman characters
and types, and represents the types of the free term variables of M. This yields a logic withfocuswhere
the main conclusion is the focus of the proof; derivable judgements correspond to provable statements
in minimal classical logic[1]. In addition to the normalλ-calculus reduction rules, Parigot needed
to express that the focus of the derivation (proof) changes;he therefore addedstructural rules, where
elimination takes place for a type constructor that appearsin one of the alternative conclusions (the
Greek variable is the name given to a subterm). This is achieved by extending the syntax with two new
constructs[α]M andµα.M that act as witness todeactivationandactivation, which together move the
focus of the derivation. The collection of reduction rules Parigot defined are carefully engineered to yield
a confluent reduction system; normally, systems based on classical logic are not confluent, as is the case
for example for the Symmetricλ-calculus [8],λµµ̃ [14], andX [7].

In spite of being motivated by classical logic, theλµ-calculus itself is type free. As a consequence
there exist more terms than proofs, and properties of pureλµ-terms have been extensively studied (see
e.g. [23, 18, 24]). In particular, among them there are perfectly meaningful terms that do not correspond
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2 Characterisation of Strongly Normalisingλµ-Terms

to any proof, like fixed-point constructors for example. Thebasic idea here to turn non-constructive
proofs into algorithms is to add a form of continuation by means ofnamesandµ-abstractionto capture
(a notion of) control. However, continuations introduce a great deal of complexity to the calculus’
semantics and inspired by the results proven in [4] we decided to explore the possibility of definingfilter
semantics forλµ. Starting from Streicher and Reus’ denotational semanticsof λµ in [25], in [6] we
have introduced an intersection type assignment system that induces a filter model. This, essentially, is a
logical description of the domain-theoretic model of [25],with the advantage of providing a formal tool
to reason about the meaning of terms.

One of the main results forλµ, proved in [21], states that allλµ-terms that correspond to proofs of
second-order natural deduction are strongly normalising;the reverse of this property does not hold for
Parigot’s system, since there, for example, not all terms innormal form are typeable.

The full characterisation of strong normalisation (M is strong normalising if and only ifM is typeable)
is a property that is shown for various intersection systemsfor the λ-calculus, and towards the end
of [6] we conjectured that in an appropriate subsystem we would be able to type exactly all strongly
normalisingλµ-terms as well. The first to state the characterisation result was Pottinger [22] for a notion
of type assignment similar to the intersection system of [12, 13], but extended in that it is also closed for
η-reduction, and is defined without the type constantω. However, to show that all typeable terms are
strongly normalisable, [22] onlysuggestsa proof using Tait’s computability technique [26]. A detailed
proof, using computability, in the context of theω-free BCD-system [10] is given in [2]; to establish the
same result saturated sets are used by Krivine in [19] (chapter 4), in Ghilezan’s survey [16], and in [5].

The converse of that result, the property that all strongly normalisable terms are typeable has proven
to be more elusive: it has been claimed in many papers but not shown in full (we mention [22, 2, 16]); in
particular, the proof for the property that type assignmentis closed for subject expansion (the converse
of subject reduction) is dubious. Subject expansion can only reliably be shown forleft-most outermost
reduction, which is used for the proofs in [19, 3, 5], and our result follows that approach as well.

In the full system of [6], all terms are typeable withω and this clearly interferes with the termination
property. However, the problem we face is slightly more complex than straightforwardly removingω,
as done in [2, 3]. In the model (for details, see [6]) acontinuationis an infinite tuple of terms, which
is typed in the system by (a finite intersection of) typesκ = δ1×· · · δk×ω for somek > 0, where the
leadingδ1, . . . ,δk encode the information about the firstk terms in the tuple, while the endingω represents
the lack of information about the remaining infinite part. This implies that, for our system forλµ, we
cannot removeω completely. To solve this problem, we first restrict types tothose havingω only as
the final part of a product type; we then suitably modify the standard interpretation of intersection types,
adapting Tait’s argument in such a way that the semantics ofκ is theset of all finite tuplesL (called
stacks) of strongly normalising terms that begin withk termsL1 . . . , Lk that belong to the interpretations
of, respectively,δ1, . . . ,δk. For this restricted system, we will show that typeability characterises strong
normalisability forλµ-terms.

As a consequence of our characterisation result we also obtain an alternative proof of Parigot’s ter-
mination result [21] (for the propositional fragment), by interpreting ordinary types into our intersection
types and proving that the translation preserves derivability from Parigot’s system to ours.

Outline of this paper. In Section 1, we will briefly recall Parigot’s untypedλµ-calculus [20]. After
defining appropriate sets of types in 2.1, a pre-order over types, and our typeing system in Section 2.2, we
will show that typeability implies strong normalisation. The opposite implication, proved in Section 2.3,
will complete our main results. The alternative proof of Parigot’s theorem for the propositional fragment
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will be developed in Section 3, and we finish by giving concluding remarks.

1 The λµ-calculus

In this section we present Parigot’s pureλµ-calculus as introduced in [20], slightly changing the notation.

Definition 1.1 (Term Syntax [20]) 1. The setsTrm of termsand Cmd of commandsare defined in-
ductively by the following grammar (wherex ∈ Var, a set ofterm variables, andα ∈ Name, a set
of names, both denumerable):

M, N ::= x | λx.M | MN | µα.C (terms)

C ::= [α]M (commands)

2. We callL ≡ L1 : · · · : Lk a stack of terms; we denote the set of all finite (possibly empty) stacks
of terms byTrm∗, and writeǫ for the empty stack. IfM ∈ Trm and L ≡ L1 : · · · : Lk then M : L ≡
M : L1 : · · · : Lk ∈ Trm∗, while we defineM(P : L) =

∆ MPL, soML ≡ ML1 · · · Lk.

We will often speak of a stack rather than a stack of terms. Forconvenience of notation, forL =
L1 : · · · : Lk ∈ Trm∗, we introduce the notation:

M[α⇐ L] =
∆ M[α⇐ L1][α⇐ L2] · · · [α⇐ Ln]

when eachLi does not containα. In particular,M[α⇐ ǫ] =
∆ M. Notice that, by definition of structural

substitution,

[α]M[α⇐ L] =
∆ [α]M[α⇐ L1][α⇐ L2] · · · [α⇐ Ln] =

∆ [α](M[α⇐ L])L

As usual, we considerλ andµ to be binders; we adopt Barendregt’s convention on terms, and will
assume that free and bound variables are different; the setsfv(M) and fn(M) of, respectively,free
variablesandfree namesin a termM are defined in the usual way.

Definition 1.2 (Substitution [20]) Substitution takes two forms:

term substitution: M[N/x] (N is substituted forx in M, avoiding capture)
structural substitution:T[α⇐ L] (every subterm[α]N of M is replaced by[α]NL)

whereM, N, L ∈ Trm, C ∈ Cmd andT ∈ Trm ∪ Cmd. More precisely,T[α⇐ L] is defined by:

([α]M)[α⇐ L] =
∆ [α](M[α⇐ L])L

([β]M)[α⇐ L] =
∆ [β]M[α⇐ L] if α 6= β

(µβ.C)[α⇐ L] =
∆ µβ.C[α⇐ L]

x[α⇐ L] =
∆ x

(λx.M)[α⇐ L] =
∆ λx.M[α⇐ L]

(MN)[α⇐ L] =
∆ (M[α⇐ L])(N[α⇐ L])

Definition 1.3 (Reduction [20]) The reduction relationM → N, whereM, N ∈ Trm, is defined as the
compatible closure of the following rules:

(β) : (λx.M)N → M[N/x] (logical reduction)
(µ) : (µβ.C)N → µβ.C[β⇐N] (structural reduction)
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2 Characterisation of Strong Normalisation

In this section we will show that we can characterise strong normalisation for pureλµ-terms completely
through a notion of intersection typeing which employs product types and a restricted use of the typeω.

2.1 The type system

As mentioned in the introduction, our characterisation canbe carried out by means of a precisely tailored
version of the type system we presented in [6]. The types of our system will be formed by means of the
→, ×, and∧ type constructors over a single base typeν.1

Definition 2.1 (Types) The setsTD of term typesandTC of continuation-stack typesare defined induc-
tively by the following grammar, whereν is a type constant:

TD : δ ::= ν | ω→ν | κ→ν | δ∧δ

TC : κ ::= δ×ω | δ×κ | κ∧κ

(we will call the typesδ×ω andδ×κ alsoproduct types). We define the setT of typesasT = TD ∪ TC

and letσ, τ, ρ, etc. range overT .

Notice that an important feature of our system is the absenceof ω as a proper type (and, consequently,
the absence of its corresponding typeing rule); notice thatwe have not removedω completely, since it
always occurs at the very end of any product type in order to represent the (unspecified) last part of a
continuation stack.

Definition 2.2 The relations≤D and≤C are the least pre-orders overTD and TC, respectively, such
that:

σ∧τ ≤A σ σ∧τ ≤A τ ν ≤D ω→ν ω→ν ≤D ν δ1×δ2×ω ≤C δ1×ω

(δ1×ω)∧(δ2×κ) ≤C (δ1∧δ2)×κ
(κ1,κ2 6≡ ω)

(δ1×κ1)∧(δ2×κ2) ≤C (δ1∧δ2)×(κ1∧κ2)

δ1 ≤D δ2

δ1×ω ≤C δ2×ω

δ1 ≤D δ2 κ1 ≤C κ2

δ1×κ1 ≤C δ2×κ2

σ ≤A τ1 σ ≤A τ2

σ ≤A τ1∧τ2

κ2 ≤C κ1

κ1→ν ≤D κ2→ν

whereA is eitherD or C. As usual, we define=A =
∆ ≤A ∩ ≥A.

For convenience of notation, in the following the subscripts D andC on≤ are normally omitted.

The pre-orders in Definition 2.2 are a restriction toT of the pre-orders defined in [6]. We point out that,
in the system defined in that paper, the inequalityδ1×δ2×ω ≤ δ1×ω is derivable. In fact, in [6] we had
ω =C ω×ω and henceδ1×δ2×ω ≤ δ1×ω×ω = δ1×ω. In the present system, instead,ω 6∈ TD so that
δ1×ω×ω 6∈ TC, and therefore this inequality has to be explicitly postulated above.

The notions ofbasis(variable context), denoted byΓ, Γ
′, . . . , andname context, denoted by∆, ∆

′,
. . . , are defined in the standard way as, respectively, mappings of a finite set of term variables to types
in TD, and of a finite set of names to types inTC, represented for convenience as sets of statements
on variables and names (we call these assumptions). Below weshall writeΓ, x:δ for Γ ∪ {x:δ} where
x 6∈ dom(Γ); similarly for α:κ,∆ (note that the order in which variable and name assumptions are listed
in the rules is immaterial).

1In [6], more base types are used, but for our present purposesone suffices.
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Definition 2.3 (Typeing System) 1. A judgementin our system has the formΓ ⊢ M : δ | ∆, whereΓ

is a basis,M ∈ Trm, δ ∈ TD and∆ is a name context.

2. We definetypeingfor pureλµ-terms (inTrm) through the following natural deduction system:

(ax) :
Γ, x:δ ⊢ x:δ | ∆

(µ) :
Γ ⊢ M :κ′→ν | α:κ,∆

Γ ⊢ µα.[β]M :κ→ν | β:κ ′,∆

Γ ⊢ M :κ→ν | α:κ,∆

Γ ⊢ µα.[α]M : κ→ν | ∆

(abs) :
Γ, x:δ ⊢ M :κ→ν | ∆

Γ ⊢ λx.M : δ×κ→ν | ∆
(app) :

Γ ⊢ M :δ×κ→ν | ∆ Γ ⊢ N : δ | ∆

Γ ⊢ MN :κ→ν | ∆

(≤) :
Γ ⊢ M :δ | ∆

(δ ≤ δ′)
Γ ⊢ M : δ′ | ∆

(∧) :
Γ ⊢ M :δ | ∆ Γ ⊢ M : δ′ | ∆

Γ ⊢ M : δ∧δ′ | ∆

whereκ in rules(abs) and(app)2 is either a type inTC or ω.

3. We writeΓ ⊢ M : δ | ∆ whenever there exists a derivation built using the above rules that has this
judgement in the bottom line, andD :: Γ ⊢ M : δ | ∆ when we want to name that derivation. We
write ⊢ M :δ | ∆ when the variable context is empty, andΓ ⊢ M : δ | when the name context is.

Note that we use a single name,(µ), for the two rules concerningµ-abstraction; which is the one
actually used will always be clear from the context.

We extend Barendregt’s convention to judgementsΓ ⊢ M : δ | ∆ by seeing the variables that occur in
Γ and names in∆ as binding occurrences overM as well; in particular, we can assume that no variable
in Γ and no name in∆ is bound inM.

Definition 2.4 1. The relation≤ is naturally extended to bases as follows:

Γ
′ ≤ Γ iff x:δ ∈ Γ ⇒ ∃ x:δ′ ∈ Γ

′ [δ′ ≤ δ ].

The≤ relation on name contexts is defined in the same way.

2. Given two basesΓ1 andΓ2, we define the basisΓ1∧Γ2 as follows:

Γ1∧Γ2 =
∆ {x:δ1∧δ2 | x:δ1 ∈ Γ1 & x:δ2 ∈ Γ2} ∪

{x:δ | x:δ ∈ Γ1 & x 6∈ dom(Γ2)} ∪
{x:δ | x:δ ∈ Γ2 & x 6∈ dom(Γ1)}

3. The name context∆1∧∆2 is constructed out of∆1 and∆2 in a similar way.

Trivially, dom(Γ1∧Γ2) = dom(Γ1) ∪ dom(Γ2) anddom(∆1∧∆2) = dom(∆1) ∪ dom(∆2). More-
over, it is straightforward to show that:

Proposition 2.5 Γ1∧Γ2 ≤ Γi and∆1∧∆2 ≤ ∆i for i = 1,2.

We can also show thatWeakeningandStrengtheningrules are implied by the system:

2We use(app) and(abs) to name the rules concerningλ-abstraction and application, rather than the more usual(→I) and
(→E), since in our system there is no introduction or eliminationof the→ type constructor.
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Lemma 2.6 (Weakening and Strengthening)The following rules are admissible3:

(W) :
Γ ⊢ M : δ | ∆

(Γ′ ≤ Γ,∆′ ≤ ∆)
Γ
′ ⊢ M : δ | ∆

′

(S) :
Γ ⊢ M : δ | ∆

(Γ′ = {x:δ ∈ Γ | x ∈ fv (M)}, ∆
′ = {α:κ ∈ ∆ | α ∈ fn (M)})

Γ
′ ⊢ M : δ | ∆

′

The above lemma and Proposition 2.5 lead immediately to the following:

Corollary 2.7 If Γ1 ⊢ M : δ | ∆1 then for anyΓ2, ∆2: Γ1∧Γ2 ⊢ M : δ | ∆1∧∆2 .

Notice that, by Barendregt’s convention, the variables inΓ2 and names in∆2 are not bound inM.
The following substitution results can be proved along the lines of similar ones in [6]:

Lemma 2.8 (Substitution Lemma) 1. Γ ⊢ M[N/x] : δ | ∆ with x ∈ fv(M), if and only if there ex-
istsδ′ such thatΓ ⊢ N : δ′ | ∆ and Γ, x:δ′ ⊢ M : δ | ∆.

2. Γ ⊢ M[α⇐ L] : δ | α:κ,∆ with α ∈ fn(M), if and only if there existsδ′ such thatΓ ⊢ L :δ′ | ∆, and
Γ ⊢ M : δ | α:δ′×κ,∆ .

2.2 Typeability implies Strong Normalisation

In this subsection we will show that – as can be expected of a well-defined notion of type assignment
that does not type recursion and has no general rule that types all terms – all typeable terms are strongly
normalising. Such a property does not hold for the system in [6] where, in fact, by means of types not al-
lowed in the present system, it is possible to type the fixed-point constructorλ f .(λx. f (xx))(λx. f (xx))
in a non-trivial way, as shown by the following derivation:

(ax)
f :ω×ω→ν, x:ω ⊢ f : ω×ω→ν |

(ω)
f :ω×ω→ν, x:ω ⊢ xx : ω |

(app)
f :ω×ω→ν, x:ω ⊢ f (xx) : ω→ν |

(abs)
f :ω×ω→ν ⊢ λx. f (xx) : ω×ω→ν |

(ω)
f :ω×ω→ν ⊢ λx. f (xx) : ω |

(app)
f :ω×ω→ν ⊢ (λx. f (xx))(λx. f (xx)) : ω→ν |

(abs)
⊢ λ f .(λx. f (xx))(λx. f (xx)) : (ω×ω→ν)×ω→ν |

Notice that this term does not have a normal form, so is not strongly normalisable.

Definition 2.9 The setSN of strongly normalisableterms is defined as usual as the set of all termsM
such that no infinite reduction sequence out ofM exists; we useSN (M) for M ∈ SN , andSN ∗ for the
set of finite stacks of terms inSN .

The following is straightforward:

3We should perhaps point out that Barendregt’s convention, extended to judgements as we do here, is essential for the
correctness of this result. By writingΓ′ ⊢ M : δ | ∆

′ , we assume thatΓ′ and ∆
′ do not contain statements for variables

and names that occur bound inM, so we do not allow contexts to be weakened by statements concerning bound names
or variables. As a counter example, take⊢ µα.[α]λx.x : (κ→ν)→κ→ν | and Γ2 = x:δ, ∆2 = α:κ; we cannot derive
x:δ ⊢ µα.[α]λx.x : (κ→ν)→κ→ν | α:κ .

This is also the case for systems for theλ-calculus; in past papers it has been claimed that, ifΓ1 ⊢λ M : A andΓ2 ⊢λ N : B
(without any restrictions), then alsoΓ1∧Γ2 ⊢ M : A andΓ1∧Γ2 ⊢ N : B. This is incorrect for the same reason: take⊢λ λy.y :

A→A andy:(A→A)∧A→A ⊢ yy : A; we cannotderivey:(A→A)∧A→A ⊢λ λy.y : A→A.
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Proposition 2.10 1. If SN (xM) andSN (N), thenSN (xMN).

2. If SN (M[N/x]P) andSN (N), thenSN ((λx.M)NP).

3. If SN (M), thenSN (µα.[β]M).

4. If SN (µα.[β]M[α⇐ N]L) andSN (N), thenSN ((µα.[β]M)NL).

5. If SN (µα.[α]M[α⇐N]NL), thenSN ((µα.[α]M)NL).

Definition 2.11 (Type Interpretation) 1. We define a map

‖ · ‖ : (TD → ℘(Trm)) + (TC → ℘(Trm∗))

(where℘ represents the powerset constructor) interpreting term types and continuation-stack types
as, respectively, sets of terms and sets of stacks, as follows:

‖ν‖ = ‖ω→ν‖ = SN
‖κ→ν‖ = {M ∈ Trm | ∀L ∈ ‖κ‖ [ML ∈ ‖ν‖ ]}
‖δ×ω‖ = {N : L | N ∈ ‖δ‖, L ∈ SN ∗}
‖δ×κ‖ = {N : L | N ∈ ‖δ‖, L ∈ ‖κ‖}
‖σ∧τ‖ = ‖σ‖ ∩ ‖τ‖

2. We define thelengthof a stack type,| · | : TC → N, as follows:

|δ×ω| = 1

|δ×κ| = 1 + |κ|
|κ1∧κ2| = max|κ1| |κ2|

By this interpretation, the elements of‖δ1×· · ·×δn×ω‖ are stacks of strongly normalisable terms
that have an arbitrary length greater than or equal ton. It is easy to check that|κ| returns the minimal
length of the stacks in‖κ‖.

We can show:

Lemma 2.12 For anyδ ∈ TD andκ ∈ TC:

1. ‖δ‖ ⊆ SN and‖κ‖ ⊆ SN ∗.

2. xN ∈ SN ⇒ xN ∈ ‖δ‖.

3. x = x1 : . . . : xn ∈ ‖κ‖, for all n such thatn ≥ |κ| .

Proof. By simultaneous induction on the structure of types, using Definition 2.11. We show some of the
cases.

1. (κ→ν) : M ∈ ‖κ→ν‖ ⇒ (IH(2))
x ∈ ‖κ‖ & M ∈ ‖κ→ν‖ ⇒ (2.11)
M x ∈ ‖ν‖ ⇒ (2.11)
M x ∈ SN ⇒ M ∈ SN .

(δ×ω) : M ∈ ‖δ×ω‖ ⇒ (2.11))
M = N : L & N ∈ ‖δ‖ & L ∈ SN ⇒ (IH(1))
N ∈ SN & L ∈ SN ∗ ⇒ N : L ∈ SN ∗.
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(δ×κ) : M ∈ ‖δ×κ‖ ⇒ (2.11))
M = N : L & N ∈ ‖δ‖ & L ∈ ‖κ‖ ⇒ (IH(1))
N ∈ SN & L ∈ SN ∗ ⇒ N : L ∈ SN ∗.

2. (κ→ν) : xN ∈ SN ⇒ (2.11 & IH(1))
L ∈ ‖κ‖ ⇒ xN ∈ SN & L ∈ SN ∗ ⇒ (2.10)
L ∈ ‖κ‖ ⇒ xNL ∈ SN ⇒ (IH(2))
L ∈ ‖κ‖ ⇒ xNL ∈ ‖ν‖ ⇒ (2.11) xN ∈ ‖κ→ν‖.

3. (δ×ω) : x = x : x ′ ⇒ (IH(2))
x ∈ ‖δ‖ & x ′ ∈ SN ∗ ⇒ (2.11) x ∈ ‖δ×ω‖.

(δ×κ) : x = x : x ′ ⇒ (IH(2) & IH(3))
x ∈ ‖δ‖ & x ′ ∈ ‖κ‖ ⇒ (2.11) x ∈ ‖δ×κ‖.

The following result follows immediately from Lemma 2.12 (2):

Corollary 2.13 For anyx ∈ Var and anyδ ∈ TD: x ∈ ‖δ‖.

The following lemma shows that our type interpretation is closed under the type inclusion relation.

Lemma 2.14 For all σ,τ ∈ T : if σ ≤ τ, then‖σ‖ ⊆ ‖τ‖.

Proof. By induction on the definition of≤. We show some of relevant cases.

(δ1×ω)∧(δ2×κ) ≤ (δ1∧δ2)×κ) : ‖(δ1×ω)∧(δ2×κ)‖ =
{M : L | M ∈ ‖δ1‖, L ∈ SN ∗} ∩ {M : L | M ∈ ‖δ2‖, L ∈ ‖κ‖} = (‖κ‖ ⊆ SN ∗ by 2.12 (1))
{M : L | M ∈ ‖δ1‖ ∩ ‖δ2‖, L ∈ ‖κ‖} =
{M : L | M ∈ ‖δ1∧δ2‖, L ∈ ‖κ‖} =
‖(δ1∧δ2)×κ‖

.

(κ2 ≤ κ1 ⇒ κ1→ν ≤ κ2→ν) : ‖κ1→ν‖ =
{M ∈ Trm | ∀L ∈ ‖κ1‖ [ML ∈ SN ]} ⊆ (‖κ2‖ ⊆ ‖κ1‖ by induction)
{M ∈ Trm | ∀L ∈ ‖κ2‖ [ML ∈ SN ]} =
‖κ2→ν‖

Our type interpretation is closed under expansion for the logical and for the structural reduction, with
the proviso that the term or stack to be substituted is an element of an interpreted type as well.

Lemma 2.15 For anyδ,δ′ ∈ TD andκ ∈ TC:

1. If M[N/x]P ∈ ‖δ‖ and N ∈ ‖δ′‖, then(λx.M)NP ∈ ‖δ‖.

2. If µα.[β]M[α⇐ N]P ∈ ‖δ‖ and N ∈ ‖κ‖, then(µα.[β]M)NP ∈ ‖δ‖.

3. If µα.[α]M[α⇐N]NP ∈ ‖δ‖, then(µα.[α]M)NP ∈ ‖δ‖.

Proof. By induction on the structure of types, using 2.10, 2.11 and 2.12.

In Theorem 2.18 we will show that all typeable terms are strongly normalisable. In order to achieve
that, we first show, in Lemma 2.17, that for any a termM typeable withδ, any full substitution instance
Mξ (i.e. replacing all free term variables by terms, and feeding stacks to all free names) is an element
of the interpretation ofδ, which by Lemma 2.12 implies thatMξ is strongly normalisable. We need
these substitutions to be applied all ‘in one go’, so define a notion of parallel substitution. The main
result is then obtained by taking the substitution that replaces term variables by themselves and names
by stacks of term variables. The reason we first prove the result for anysubstitution is that, in the proof
of Lemma 2.17, in the case forλx.M and µα.Q the substitution is extended, by replacing the bound
variable or name with a normal term (or stack).
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Definition 2.16 1. A partial mappingξ : (Var → Trm) + (Name→ Trm∗) is a parallel substitution
if, for everyp,q∈ dom(ξ), if p 6= q thenp 6∈ fv(ξq) andp 6∈ fn(ξq).

2. Borrowing a notation for valuations, for a parallel substitution ξ we define the application ofξ to
a term by:

([α]M)ξ =
∆ [α]Mξ L if ξα = L

([β]M)ξ =
∆ [β]Mξ if β 6∈ dom(ξ)

(µβ.Q)ξ =
∆ µβ.Qξ

xξ =
∆ N if ξx = N

yξ =
∆ y if y 6∈ dom(ξ)

(λx.M)ξ =
∆ λx.Mξ

(MN)ξ =
∆ Mξ Nξ

3. We defineξ[N/x] andξ[α⇐ L] by, respectively,

ξ[N/x]y =
∆

{

N if y = x
ξ y otherwise

ξ[α⇐ L]β =
∆

{

L if α = β

ξ β otherwise

4. We will say thatξ extendsΓ and∆, if, for all x:δ ∈ Γ andα:κ ∈ ∆, we have, respectively,ξ (x) ∈
‖δ‖ andξ (α) ∈ ‖κ‖.

Notice that we do allow a variable to appear in its own image under ξ. Sincex does not appear in
M[N/x], this does not violate Barendregt’s convention.

Lemma 2.17 (Replacement Lemma)Let ξ be a parallel substitution that extendsΓ and∆. Then:

if Γ ⊢ M : δ | ∆ then Mξ ∈ ‖δ‖.

Proof. By induction on the structure of derivations. We show some more illustrative cases.

(abs) : ThenM = λx.M′, δ = δ′×κ→ν, andΓ, x:δ′ ⊢ M′ :κ→ν | ∆. TakeN ∈ ‖δ′‖; sincex is bound,
by Barendregt’s convention we can assume that it does not occur free in the image ofξ, soξ[N/x]
is a well-defined parallel substitution that extendsΓ, x:δ′ and ∆. Then by induction, we have
M′

ξ[N/x] ∈ ‖κ→ν‖. Sincex does not occur free in the image ofξ, M′
ξ[N/x] = M′

ξ[N/x], so
also M′

ξ[N/x] ∈ ‖κ→ν‖. By Lemma 2.15 (1), also(λx.M′
ξ)N ∈ ‖κ→ν‖. By definition of

‖κ→ν‖, for anyL ∈ ‖κ‖ we have(λx.M′
ξ)NL ∈ ‖ν‖; notice thatN : L ∈ ‖δ×κ‖, so(λx.M′)ξ ∈

‖δ′×κ→ν‖.

(µ) : ThenM = µα.[β]M′, andδ = κ→ν. We distinguish two different sub-cases.

α = β : ThenM = µα.[α]M′, δ = κ→ν, andΓ ⊢ M′ :κ→ν | α:κ,∆. TakeL ∈ ‖κ‖; sinceα is bound
in M, we can assume it does not occur free in the image ofξ, so ξ[α⇐ L] is a well-defined
parallel substitution that extendsΓ and ∆,α:κ, and by induction,M′

ξ[α⇐ L] ∈ ‖κ→ν‖. Since

α does not occur free in the image ofξ, M′
ξ[α⇐L] = M′

ξ[α⇐ L], so we haveM′
ξ[α⇐ L] ∈

‖κ→ν‖, and thereforeM′
ξ[α⇐ L]L ∈ ‖ν‖. Then by Definition 2.11,SN (M′

ξ[α⇐ L]L), but
then alsoSN (µα.[α]M′

ξ[α⇐ L]L), by Lemma 2.10 (3). Soµα.[α]M′
ξ[α⇐ L]L ∈ ‖ν‖. Then by

Lemma 2.15 (3),(µα.[α]M′
ξ)L ∈ ‖ν‖; so(µα.[α]M′)ξ ∈ ‖κ→ν‖.
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α 6= β : Then∆ = β:κ′,∆′, andΓ ⊢ M′ :κ′→ν | α:κ, β:κ′,∆ . AssumeL ∈ ‖κ‖, thenξ[α⇐ L] extends
Γ andα:κ, β:κ′,∆′. Then, by induction,M′

ξ[α⇐ L]∈‖κ′→ν‖. Now letQ∈‖κ′‖, thenM′
ξ[α⇐ L]Q∈

‖ν‖ and then also(M′Q)ξ[α⇐ L] ∈ ‖ν‖.
ThenSN ((M′Q)ξ[α⇐ L]) by Definition 2.11, andSN (µα.[β](M′Q)ξ[α⇐ L]) by Lemma 2.10 (3),
so, again by Definition 2.11,µα.[β](M′Q)ξ[α⇐L] ∈ ‖ν‖. As in the previous part,α is not free in
the image ofξ, and therefore alsoµα.[β](M′Q)ξ[α⇐ L] ∈ ‖ν‖.

Then, by Lemma 2.15 (2),(µα.[β](M′Q)ξ)L∈‖ν‖. Notice that[β]M′
ξQ = [β]M′

ξ[β⇐Q]; since
ξβ = Q, we can infer that[β]M′

ξQ = [β]M′
ξ, so(µα.[β]M′)ξL ∈ ‖ν‖. But then(µα.[β]M′)ξ ∈

‖κ→ν‖.

We now come to the main result of this section, that states that all terms typeable in our system are
strongly normalisable.

Theorem 2.18 (Typeable terms areSN ) If Γ ⊢ M : δ | ∆ for someΓ, ∆ andδ, thenM ∈ SN .

Proof. Let ξ be a parallel substitution such that

ξ (x) = x for x ∈ dom(Γ)
ξ (α) = y α for α ∈ dom(∆)

where the length of the stacky α is |κ| if α:κ ∈ ∆ (notice thatξ is well defined). By Lemma 2.12,ξ
extendsΓ and∆. Hence, by Lemma 2.17,Mξ ∈ ‖δ‖, and thenMξ ∈ SN by Lemma 2.12 (1). Now

Mξ ≡ M [x1/x1, . . . , xn/xn,α1⇐ y α1
, . . . ,αm ⇐ y αm

]

≡ M [α1⇐ y α1
, . . . ,αm ⇐ y αm

]

Then, by Proposition 2.10, for anyβ also (µα1.[β1] · · ·µαm.[βm]M)y α1
· · · y αm

∈ SN , and therefore
alsoM ∈ SN .

2.3 Strongly Normalising Terms are Typeable

In this section we will show the counterpart of the previous result, namely that all strongly normalisable
terms are typeable in our intersection system. This result has been claimed in many papers [22, 2], but
has rarely been proven completely.

First we describe the shape of the terms in normal form.

Definition 2.19 (Normal Forms) The setN ⊆ Trm of normal formsis defined by the grammar:

N ::= xN1 · · ·Nk | λx.N | µα.[β]N

It is straightforward to verify that the terms inN are precisely the irreducible ones.

We can show that all terms inN are typeable.

Lemma 2.20 If N ∈N then there existΓ, ∆, and a typeκ→ν such thatΓ ⊢ N :κ→ν | ∆.

Proof. By induction on the definition ofN . We show the most relevant cases.
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(N ≡ xN1 . . . Nk) : SinceN1, . . . , Nk ∈N , by induction we have that, for alli ≤ k there existΓi, ∆i and
δi such thatΓi ⊢ Ni : δi | ∆ i (the structure of eachδi plays no role in this part). Take

Γ = Γ1∧· · ·∧Γk∧x:(δ1×· · ·×δk×δ×ω)→ν, and∆ = ∆1∧· · ·∧∆k.

where δ is any element ofTD. Then, by Lemma 2.6,Γ ⊢ Ni : δi | ∆ for all i ≤ n, and Γ ⊢
x : (δ1×· · ·×δk×δ×ω)→ν | ∆. By repeated application of(app) we getΓ⊢ xN1 · · ·Nk :κ→ν | ∆

for κ = δ×ω.

(N ≡ µα.[β]N′) : By induction,Γ ⊢ N′ :κ→ν | ∆. We distinguish two cases:

(α ≡ β) : In caseα ∈ fn(N′) and∆ = α:κ′,∆′, we can construct:

Γ ⊢ N′ :κ→ν | α:κ′,∆′

(W)
Γ ⊢ N′ :κ→ν | α:κ∧κ′,∆′

(≤)
Γ ⊢ N′ :κ∧κ′→ν | α:κ∧κ′,∆′

(µ)
Γ ⊢ µα.[α]N′ :κ∧κ′→ν | ∆

′

In caseα 6∈ fn(N′), we can construct

Γ ⊢ N′ :κ→ν | ∆
(W)

Γ ⊢ N′ :κ→ν | α:κ,∆′

(µ)
Γ ⊢ µα.[α]N′ :κ→ν | ∆

′

(α 6≡ β) : We can proceed as in the previous case, obtaining nowΓ ⊢ N : κ→ν | α:κ′, β:κ,∆′ . So
by rule(µ) we getΓ ⊢ µα.[β]N′ :κ′→ν | β:κ′′,∆′ .

We will now show that typeing is closed under expansion with respect to both logical and structural
reduction, with the proviso that the term (stack) that gets substituted is typeable as well in the same
contexts.

Lemma 2.21 (Contractum Expansion) 1. If Γ ⊢ M[N/x] : δ | ∆ and Γ ⊢ N : δ′ | ∆ then
Γ ⊢ (λx.M)N : δ | ∆.

2. If Γ ⊢ µα.[β]M[α⇐ N] : δ | ∆ and Γ ⊢ N : δ′ | ∆ thenΓ ⊢ (µα.[β]M)N : δ | ∆.

Proof. 1. Much the same as the similar result for the intersection systems for theλ-calculus.

2. We need to consider two different cases:

(α 6∈ fn([β]M)) : Then ([β]M)[α⇐N] ≡ [β]M and α 6≡ β. We consider all then minimal
sub-derivations (n ≥ 1) havingµα.[β]M as subject, from which conclusions we deriveΓ ⊢
µα.[β]M[α⇐N] : δ | ∆ by applying any number of(≤) and(∧) rules.
The last step in each of these derivations is of the shape:

Γ ⊢ M :κ→ν | α:κi, β:κ,∆′

(µ)
Γ ⊢ µα.[β]M :κi→ν | β:κ,∆′
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where∆ = β:κ,∆′. Sinceα 6∈ fn([β]M), by strengthening (Lemma 2.6) we can removeα:κi

from the name context, so alsoΓ ⊢ M :κ→ν | β:κ,∆′ ; then, by weakening (Lemma 2.6), we
can addα:δ′×κi,, so Γ ⊢ M :κ→ν | α:δ′×κi, β:κ,∆′ , and then we can construct

Γ ⊢ M :κ→ν | α:δ′×κi, β:κ,∆′

(µ)
Γ ⊢ µα.[β]M : δ′×κi→ν | β:κ,∆′

Γ ⊢ N : δ′ | ∆
(app)

Γ ⊢ (µα.[β]M)N :κi→ν | ∆

from which it is possible to deriveΓ ⊢ (µα.[β]M)N : δ | ∆ by applying the same(≤) and
(∧) rules mentioned above.

(α ∈ fn([β]M)) : We distinguish two further cases:
(α = β) : Then([β]M)[α⇐N]≡ ([α]M)[α⇐N]≡ [α](M[α⇐N])N; we can assume, with-

out loss of generality, thatδ = (κ1→ν)∧· · ·∧(κn→ν), and that for alli ≤ n there are sub-
derivations constructed like

Γ ⊢ M[α⇐N] : δi×κi→ν | α:κi ,∆ Γ ⊢ N : δi | ∆
(app)

Γ ⊢ (M[α⇐N])N : κi→ν | α:κi,∆
(µ)

Γ ⊢ µα.[α](M[α⇐N])N : κi→ν | ∆

Then there existsδ′i such thatΓ ⊢ N : δ′i | ∆, and Γ ⊢ M : δi×κi→ν | α:δ′i×κi,∆ by Lemma
2.8 (2); so we can build the derivation:

Γ ⊢ M : δi×κi→ν | α:δ′i×κi,∆
(≤)

Γ ⊢ M : δi∧δ′i×κi→ν | α:δ′i×κi,∆
(W)

Γ ⊢ M : δi∧δ′i×κi→ν | α:δi∧δ′i×κi,∆
(µ)

Γ ⊢ µα.[α]M : δi∧δ′i×κi→ν | ∆

Γ ⊢ N : δi | ∆ Γ ⊢ N : δ′i | ∆
(∧)

Γ ⊢ N : δi∧δ′i | ∆
(app)

Γ ⊢ (µα.[α]M)N :κi→ν | ∆

We deriveΓ ⊢ (µα.[α]M)N : δ | ∆ by rule(∧).
(α 6= β) : Then([β]M)[α⇐N]≡ [β](M[α⇐N]); as aboveδ = (κ1→ν)∧ · · ·∧(κn→ν), and

for all i ≤ n there are derivations structured like:

Γ ⊢ M[α⇐N] : κ′i→ν | α:κi, β:κ′i ,∆
′

(µ)
Γ ⊢ µα.[β](M[α⇐N]) : κi→ν | β:κ′i ,∆

′

where∆ = β:κ′i ,∆
′. As above, by Lemma 2.8 (2) there existsδi such that both

Γ ⊢ N : δi | β:κ′i ,∆
′ andΓ ⊢ M :κ′i→ν | α:δi×κi, β:κ′i ,∆

′ . We can then construct:

Γ ⊢ M :κ′i→ν | α:δi×κi, β:κ′i ,∆
′

(µ)
Γ ⊢ µα.[β]M : δi×κi→ν | ∆ Γ ⊢ N : δi | ∆

(app)
Γ ⊢ (µα.[β]M)N :κi→ν | ∆
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As above, we conclude thatΓ ⊢ (µα.[β]M)N : δ | ∆ by rule(∧).

We will now show that all strongly normalisable terms are typeable in our system. The proof of
the crucial lemma for this result as presented below (Lemma 2.23) goes by induction on the left-most
outer-most reduction path.

Definition 2.22 An occurrence of a redexR = (λx.P)Q or (µα.[β]P)Q in a termM is called theleft-
most outer-most redex ofM (lor (M)), if and only if:

1. there is no redexR′ in M such thatR′ = C [R] (outer-most);

2. there is no redexR′ in M such thatM = C0[C1[R
′]C2[R]] (left-most).

M →lor N is used to indicate thatM reduces toN by contractinglor (M).

The following lemma formulates a subject expansion result for our system with respect to left-most
outer-most reduction. A proof for this property in the context of strict intersection type assignment for
theλ-calculus appeared in [3, 5].

Lemma 2.23 Let M →lor N, lor (M) = RQ, Γ1 ⊢ N : δ1 | ∆1 with δ1 not an intersection, andΓ2 ⊢
Q : δ2 | ∆2 , then there existΓ3, ∆3 andδ3 such thatΓ3 ≤ Γ1, ∆3 ≤ ∆1, δ1 ≤ δ3, and Γ3 ⊢ M : δ3 | ∆3 .

Proof. By induction on the structure of terms.

M = VP1 · · ·Pn : Then either:

1. V is a redex(λy.P)Q, solor (M) = V; let V ′ ≡ P[Q/y]; or

2. V is a redex(µα.[β]P)Q, solor (M) = V; let V ′ ≡ µα.[β]P[α⇐Q]; or

3. V ≡ z and there is ani∈ n such thatlor (M) = lor (Pj), N ≡ zP1 · · ·P′
i · · ·Pn, andPi →lor P′

i ;
let V ′ = z.

By assumptionδ1 = κ1→ν. Then there areδj (j ∈ n), such thatΓ1 ⊢V ′ : δ′1×· · ·×δ′n×κ1→ν | ∆1

andΓ1 ⊢ Pi : δ′i | ∆1 , for all i ∈ n.

We distinguish:

1. V ′ ≡ P[Q/y], where the substitution is capture avoiding, so all free variables inQ are free
in P[Q/y] wheny ∈ fv(P), and we can assume thatΓ2 and∆2 do not have types for bound
variables and names inP. Let Γ3 = Γ1∧Γ2 and ∆3 = ∆1∧∆2, then by Corollay 2.7 and
Lemma 2.21,Γ3 ⊢ (λy.P)Q : δ′1×· · ·×δ′n×κ1→ν | ∆3 .

2. V ′ ≡ µα.[β]P[α⇐Q]; we can assume thatΓ2 and∆2 do not have types for bound variables
and names inµα.[β]P. Let Γ3 = Γ1∧Γ2 and∆3 = ∆1∧∆2, then by Corollay 2.7 and Lemma
2.21,Γ3 ⊢ (µα.[β]P)Q : δ′1×· · ·×δ′n×κ1→ν | ∆3 .

3. V ′ ≡ z. Then, by induction, there areΓ′, ∆
′, δ′′j such thatδ′′j ≤ δ′j, andΓ

′ ⊢ Pj : ψ′
j | ∆

′ . Take

Γ3 = Γ1∧Γ
′,z:δ′1×· · ·×δ′′j ×· · ·×δ′n×κ′1→ν, and∆3 = ∆1∧∆

′, then

Γ3 ⊢ z : δ′1×· · ·×δ′′j ×· · ·×δ′n×κ′1→ν|∆3.

In all cases,Γ3 ≤ Γ1, ∆3 ≤ ∆1, andΓ3 ⊢ VP1 · · ·Pn : δ | ∆3 .

M = λy.M′ : If M →lor N, then N = λy.N′ and M′ →lor N′. Then there existsδ and κ such that
δ1 = δ×κ→ν, andΓ1,y:δ ⊢ N′ :κ→ν | ∆1 . By induction, there existsΓ′ ≤ Γ1, ∆

′ ≤ ∆1, δ′ ≤ δ,
andκ′ ≤ κ such thatΓ′,y:δ′ ⊢ M′ :κ′→ν | ∆

′ . Then, by rule(abs), Γ
′ ⊢ λy.M′ : δ′×κ′→ν | ∆

′ .
Notice thatδ×κ→ν ≤ δ′×κ′→ν; takeΓ3 = Γ

′, ∆3 = ∆
′, andδ3 = δ′×κ′→ν.
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M = µα.[β]M′ : If M →lor N, thenN = µα.[β]N′ andM′ →lor N′. Then there existsκ1 andκ2 such
that δ1 = κ1→ν, ∆1 = α:κ2,∆′

1 and Γ1 ⊢ N′ :κ2→ν | β:κ1,∆′
1 . By induction, there existsΓ′ ≤

Γ1, ∆
′ ≤ ∆1, κ′ ≤ κ1 andκ′′ ≤ κ2 such thatΓ′ ⊢ M′ : κ′′→ν | α:κ′,∆′ . Then, by rule(µ), Γ

′ ⊢
µα.[β]M′ :κ′→ν | β:κ′′,∆′ . Notice thatκ1→ν ≤ κ′→ν, andβ:κ′′,∆′ ≤ β:κ2,∆′

1; takeΓ3 = Γ
′,

∆3 = β:κ′′,∆′, andδ3 = κ′→ν.

M = µα.[α]M′ : If M →lor N, then N = µα.[α]N′ and M′ →lor N′. Then there existsκ such that
δ1 = κ→ν, ∆1 = α:κ,∆′

1 andΓ1 ⊢ N′ : κ→ν | α:κ,∆′
1 . By induction, there existsΓ′ ≤ Γ1, ∆

′ ≤ ∆1,
andκ1 ≤ κ, κ2 ≤ κ such thatΓ′ ⊢ M′ :κ2→ν | α:κ1,∆′ . Takeκ′ = κ1∧κ2, then by weakening and
rule (≤), also Γ

′ ⊢ M′ :κ′→ν | α:κ′,∆′ . Then, by rule(µ), Γ
′ ⊢ µα.[α]M′ :κ′→ν | ∆

′ . Notice
thatκ→ν ≤ κ′→ν; takeΓ3 = Γ

′, ∆3 = ∆
′, andδ3 = κ′→ν.

We can now show that all strongly normalisable terms are typeable in our system.

Theorem 2.24 (Typeability ofSN -Terms) For all M ∈ SN there existΓ and∆ and a typeδ such that
Γ ⊢ M : δ | ∆.

Proof. By induction on the maximum of the lengths of reduction sequences for a strongly normalisable
term to its normal form (denoted by#(M)).

1. If #(M) = 0, thenM is in normal form, and by Lemma 2.20, there existΓ andδ such thatΓ ⊢
M :δ | ∆.

2. If #(M) ≥ 1, soM contains a redex, then letM →lor N by contractingPQ. Then#(N) < #(M),
and#(Q) < #(M) (sinceQ is a proper subterm of a redex inM), so by inductionΓ ⊢ N : δ1 | ∆

and Γ
′ ⊢ Q : δ2 | ∆, for someΓ, Γ

′, δ1, andδ2. Then, by Lemma 2.23, there existΓ1, ∆1 andδ′

such thatΓ1 ⊢ M :δ′ | ∆1 .

In the following section we will prove strong normalisationfor terms typeable in the propositional
fragment of Parigot’s logical system [20] via an interpretation in our system.

3 Interpretation of Parigot’s Logical System

We use a version of Parigot’s logical system (as presented in[20] which is equivalent to the original one
if only terms (so not also proper commands, i.e. elements ofCmd) are typed. This implies that the rule
for ⊥ does not need to be taken into account.4 We call this propositional fragment of Parigot’s original
system thesimply-typedλµ-calculus.

Definition 3.1 (Simply Typedλµ-calculus) 1. The setLF of Logical Formulasis defined by

A, B ::= ϕ | A→B

whereϕ ranges over an infinite set ofProposition (Type) Variables.

2. The inference rules of this system are:

(ax) :
Γ, x:A ⊢ x : A | ∆

(µ1) :
Γ ⊢ M : A | α:A,∆

Γ ⊢ µα.[α]M : A | ∆
(µ2) :

Γ ⊢ M : B | α:A,β:B,∆

Γ ⊢ µα[β]M : A | β:B,∆

4The system we consider here does not include rules(∀I) and(∀E), since they have no effect on the subject in Parigot’s
first-order type assignment system.
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(→I) :
Γ, x:A ⊢ M : B | ∆

Γ ⊢ λx.M : A→B | ∆
(→E) :

Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆

We writeΓ ⊢P M : A | ∆ to denote that this judgement is derivable in this system.

We can interpret formulas into types of our system as follows.

Definition 3.2 The translation functions(·)D : LF→TD and (·)C : LF→TC are defined by (remember
that ν is the (only) base type):

ϕC = ν×ω

(A→B)C = (AC→ν)×BC

AD = AC→ν

For example,(ϕ1→ϕ2→ϕ3)C = (ν×ω→ν)×(ν×ω→ν)×(ν×ω→ν).
It is straightforward to show that the above translations are well defined. We extend them to bases and

name contexts as follows:Γ
D = {x:AD | x:A ∈ Γ} and∆

C = {α:AC | α:A ∈ ∆}.

Theorem 3.3 (Derivability preservation) If Γ ⊢P M : A | ∆, thenΓ
D ⊢ M : AD | ∆

C .

Proof. By induction on the structure of derivations. Each rule of the simply-typedλµ-calculus has a
corresponding one in our intersection type system (allowing for the fact that rule(→I) gets mapped
unto (abs) and(→E) gets mapped unto(app)); hence it suffices to show that rules are preserved when
translating formulas into types. We show just the cases for theµ-abstraction.

Γ
D ⊢ M : AD | α:AC,∆C

(µ1)
Γ

D ⊢ µα.[α]M : AD | ∆
C

becomes Γ
D ⊢ M : AC→ν | α:AC,∆C

(µ)
Γ

D ⊢ µα.[α]M : AC→ν | ∆
C

ΓD ⊢ M : BD | α:AC, β:BC,∆C

(µ2)
Γ

D ⊢ µα.[β]M : AD | β:BC,∆C

becomes ΓD ⊢ M : BC→ν | α:AC, β:BC,∆C

(µ)
Γ

D ⊢ µα.[β]M : AC→ν | β:BC,∆C

notice that the applications of rule(µ) are valid instances of that rule.

Strong normalisation of typeable terms in Parigot’s simplytypedλµ-calculus now follows as a con-
sequence of our characterisation result.

Theorem 3.4 (Strong Normalisability of Parigot’s Simply Typed λµ-calculus) If Γ⊢P M : A | ∆, then
M ∈ SN .

Proof. By Theorem 3.3, ifΓ ⊢P M : A | ∆ then Γ
D ⊢ M : AD | ∆

C is derivable in the intersection type
system. HenceM ∈ SN by Theorem 2.18.

Conclusion

We have defined an intersection type system which characterises strongly normalisingλµ-terms, extend-
ing the strong normalisation result for theλ-calculus to the pureλµ-calculus.

We have also provided a translation of propositional types of Parigot’s system into types of the system
proposed in this paper (a restriction of the one presented in[6]) and proved that derivability is preserved.
We are confident that such a result can be extended to the full first-order type assignment system, to
obtain an alternative proof of Parigot’s strong normalisation theorem.



16 Characterisation of Strongly Normalisingλµ-Terms

As we have observed in [6], our intersection-type assignment system can be adapted to de Groote’s
variant of theλµ-calculus (see e.g. [17]) (calledΛµ by Saurin [23]), that satisfies stronger properties
than Parigot’s original calculus, such as Böhm’s theorem.We leave the question whether the present
characterisation result extends to those cases to future work.
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