
E. Pimentel, B. Venneri and J. Wells (Eds.): Workshop on
Intersection Types and Related Systems 2010 (ITRS 2010).
EPTCS 45, 2011, pp. 59–70, doi:10.4204/EPTCS.45.5

This work is dedicated to the public domain.

Untangling Typechecking of Intersections and Unions

Joshua Dunfield∗

School of Computer Science, McGill University
Montréal, Canada

joshua@mpi-sws.org

Intersection and union types denote conjunctions and disjunctions of properties. Using bidirectional
typechecking, intersection types are relatively straightforward, but union types present challenges.
For union types, we can case-analyze a subterm of union type when it appears in evaluation position
(replacing the subterm with a variable, and checking that term twice under appropriate assumptions).
This technique preserves soundness in a call-by-value semantics. Sadly, there are so many choices
of subterms that a direct implementation is not practical. But carefully transforming programs into
let-normal form drastically reduces the number of choices.The key results are soundness and com-
pleteness: a typing derivation (in the system with too many subterm choices) exists for a program if
and only if a derivation exists for the let-normalized program.

1 Introduction

To check programs in advanced type systems, it can be useful to split the traditional typing judgmente: A
into two forms,e⇑ A read “esynthesizes typeA” ande⇓ A read “echecks against typeA”, and requiring
that the user write annotations on redexes. Thisbidirectional typechecking(Pierce and Turner 1998) is
decidable for many interesting features, including intersection and union types without syntactic markers.
Tridirectional typechecking (Dunfield and Pfenning 2004; Dunfield 2007b) isessentially bidirectional,
but union types are eliminated with the aid of atridirectional rule that uses an evaluation contextE :

Γ;∆1 ⊢ e′ ⇑ A Γ;∆2,x:A ⊢ E [x] ⇓C

Γ;∆1,∆2 ⊢ E [e′] ⇓C
directL

In this rule,Γ is an ordinary variable context and∆1,∆2 is the concatenation oflinear contexts; linear
variablesx in ∆s essentially stand for subterms (occurrences) in the subject. directL givese′ a (linear)
namex, so that a left rule, which decomposes types in the context∆, can eliminate union types appearing
in A. Instead of a direct union elimination rule like∨E, we usedirectL together with a left rule∨L.

Γ ⊢ e′ ⇑ A∨ B Γ,x:A ⊢ E [x] ⇓C Γ,y:B ⊢ E [y] ⇓C

Γ ⊢ E [e′] ⇓C
[∨E]

Γ;∆,x:A ⊢ e⇓C Γ;∆,x:B ⊢ e⇓C

Γ;∆,x:A∨ B ⊢ e⇓C
∨L

While evaluation contexts are defined syntactically, this rule is not syntax-directed in the usual sense:
many terms have more than one decomposition into someE [e′] where the subterme′ can synthesize a
type. Under a left-to-right (functions first, arguments second) call-by-value semantics, evenf x has three
decompositionsE = [], E = [] x, E = f [], so a straightforward implementation of a system withdirectL

would require far too much backtracking. Compounded with backtracking due to intersection and union
types (e.g., iff : (A1 → A2) ∧ (B1 → B2) we may have to try bothf : A1 → A2 and f : B1 → B2), such an
implementation would be hopelessly impractical.

∗Current address: MPI-SWS, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany.

http://dx.doi.org/10.4204/EPTCS.45.5
http://creativecommons.org/licenses/publicdomain/

60 Untangling Typechecking of Intersections and Unions

This paper reformulates tridirectional typechecking (summarized in Section 2) to work on terms in a
particularlet-normal form, in which steps of computation are sequenced and intermediate computations
are named. The let-normal transformation (Section 3) drastically constrains the decomposition by se-
quencing terms, forcing typechecking to proceed left to right (with an interesting exception). The results
stated in Section 4 guarantee that the let-normal version ofa programe is well typed under the let-normal
version of the type system if and only ife is well typed under the tridirectional system.

The let-normal transformation itself is not complicated, though the motivation for my particular
formulation is somewhat involved. The details of the transformation may be of interest to designers of
advanced type systems, whether their need for a sequential form arises from typechecking itself (as in
this case) or from issues related to compilation.

Unfortunately, the proofs (especially the proof of completeness) are very involved; I couldn’t even fit
all the statements of lemmas in this paper, much less sketch their proofs. I hope only to convey a shadow
of the argument’s structure.

This paper distills part of my dissertation (Dunfield 2007b,chapter 5). To simplify presentation,
I omit tuples, datasort refinements, indexed types (along with universal and existential quantification,
guarded types, and asserting types), and a greatest type⊤.

2 Tridirectional Typechecking

We have functions, products, intersections, unions, and anempty type⊥. We’ll use aunit type and other
base types likeint in examples. In the termse, we have variablesx (which are values) bound byλx.e,
variablesu (not values) bound byfix u.e, and call-by-value applicatione1e2. Note the lack of syntactic
markers for intersections or unions. As usual,E [e′] is the evaluation contextE with its hole replaced by
e′. To replacex with e1, we write[e1/x]e2: “e1 for x in e2”.

Types A,B,C,D ::= A→ B | A∧ B | A∨ B | ⊥

Terms e ::= x | u | λx.e | e1 e2 | fix u.e

Values v ::= x | λx.e

Evaluation contextsE ::= [] | E e | v E

Small-step reduction rules

E [(λx.e)v] 7→ E [[v/x]e]

E [fix u.e] 7→ E [[(fix u.e)/u]e]

We’ll start by looking at the “left tridirectional” (in thispaper, called just “tridirectional”) system.
This system was presented in Dunfield and Pfenning (2004) andDunfield (2007b, chapter 4); space
allows only a cursory description.

The subtyping judgment (Figure 1) isA≤ B. Transitivity is admissible.∧ does not distribute across
→, for reasons explained by Davies and Pfenning (2000).

Figure 2 gives the typing rules. The judgmentΓ;∆ ⊢ e⇑ A is read “e synthesizes typeA”, and
Γ;∆ ⊢ e⇓ A is read “e checks againstA”. When synthesizing,A is output; when checking,A is input.

ContextsΓ ::= · | Γ,x:A

Linear contexts∆ ::= · | ∆,x:A

ContextsΓ have regular variable declarations. Linear contexts∆ ::= · | ∆,x:A have linear variables.
If Γ;∆ ⊢ e. . . is derivable, then “∆ eok”, read “e OK under∆”: eachx declared in∆ appears exactly
once ine, and e contains no other linear variables. Rules that decompose the subject, such as→E
decomposinge1 e2 into e1 ande2, likewise decompose∆.

Most rules follow a formula devised in Dunfield and Pfenning (2004): introduction rules, such as
→I, check; elimination rules, such as→E, synthesize. Introduction forms likeλx.e thus construct

J. Dunfield 61

synthesizing terms, while elimination forms likee1 e2 arechecked terms. Some rules fall outside this
classification. Theassumptionrulesvar, var andfixvar synthesize (an assumptionx:A can be readx⇑A).
The subsumptionrule sub allows a term that synthesizesA to check against a typeB, providedA is
a subtype ofB. The rulectx-anno permitscontextual typing annotations; for example, in(succ x :
(x:odd ⊢ even,x:even ⊢ odd)), the annotated termsucc x is checked againsteven if x:odd ∈ Γ, and
againstodd if x:even ∈ Γ. The premise(Γ0 ⊢ A) . (Γ ⊢ A) is derivable if the assumptions inΓ support
the assumptions inΓ0. For details, see Dunfield and Pfenning (2004).

Finally, we haveleft rules∧L1, ∧L2, ∨L, ⊥L which act on linear assumptionsx:A whereA is
of intersection, union, or empty type. These act as elimination rules—for∨ and⊥, they are theonly
elimination rules.∧L1 and∧L2 are not useful alone (the ordinary eliminations∧E1 and∧E2 would do)
but are needed to expose a nested∨ for ∨L, or a⊥ for ⊥L.

The backtracking required to choose between∧E1 and∧E2, or between∨I1 and∨I2, or between the
related subtyping rules, as well as the need to check a singleterm more than once (∧I, ∨L) suggests that
typechecking is exponential. In fact, Reynolds (1996, pp. 67–68) proved that for a closely related system,
typechecking isPSPACE-hard. We can’t make typechecking polynomial, but “untangling” directL will
remove one additional source of complexity.

A≤ B B1 ≤ A1 A2 ≤ B2

A1→A2 ≤ B1→B2
→≤

A1 ≤ B

A1∧A2 ≤ B
∧L1≤

A2 ≤ B

A1∧A2 ≤ B
∧L2≤

A≤ B1 A≤ B2

A≤ B1∧B2
∧R≤

⊥≤ A
⊥L≤

A1 ≤ B A2 ≤ B

A1∨A2 ≤ B
∨L≤

A≤ B1

A≤ B1∨B2
∨R1≤

A≤ B2

A≤ B1∨B2
∨R2≤

Figure 1: Subtyping

Γ(x) = A

Γ; · ⊢ x⇑ A
var

Γ;x:A ⊢ x ⇑ A
var

Γ,x:A; · ⊢ e⇓ B

Γ; · ⊢ λx.e⇓ A→B
→I

Γ;∆1 ⊢ e1 ⇑ A→B Γ;∆2 ⊢ e2 ⇓ A

Γ;∆1,∆2 ⊢ e1e2 ⇑ B
→E

Γ;∆ ⊢ e⇑ A A≤ B

Γ;∆ ⊢ e⇓ B
sub

Γ(u) = A

Γ; · ⊢ u⇑ A
fixvar

Γ,u:A; · ⊢ e⇓ A

Γ; · ⊢ fix u.e⇓ A
fix

Γ ⊢ eok ∆,x:⊥ eok

Γ;∆,x:⊥ ⊢ e⇓C
⊥L

(Γ0 ⊢ A) . (Γ ⊢ A) Γ;∆ ⊢ e⇓ A

Γ;∆ ⊢ (e : . . . ,(Γ0 ⊢ A), . . .) ⇑ A
ctx-anno

Γ;∆,x:A ⊢ e⇓C

Γ;∆,x:A∧B ⊢ e⇓C
∧L1

Γ;∆,x:B ⊢ e⇓C

Γ;∆,x:A∧B ⊢ e⇓C
∧L2

Γ;∆ ⊢ v⇓ A Γ;∆ ⊢ v⇓ B

Γ;∆ ⊢ v⇓ A∧ B
∧I

Γ;∆ ⊢ e⇑ A∧ B

Γ;∆ ⊢ e⇑ A
∧E1

Γ;∆ ⊢ e⇑ A∧ B

Γ;∆ ⊢ e⇑ B
∧E2

Γ;∆,x:A ⊢ e⇓C Γ;∆,x:B ⊢ e⇓C

Γ;∆,x:A∨ B ⊢ e⇓C
∨L

Γ;∆ ⊢ e⇓ A

Γ;∆ ⊢ e⇓ A∨ B
∨I1

Γ;∆ ⊢ e⇓ B

Γ;∆ ⊢ e⇓ A∨ B
∨I2

Γ;∆1 ⊢ e′ ⇑ A Γ;∆2,x:A ⊢ E [x] ⇓C

Γ;∆1,∆2 ⊢ E [e′] ⇓C
directL

wheree′ is not a linear variable

Figure 2: The left tridirectional system

62 Untangling Typechecking of Intersections and Unions

2.1 Tridirectional typechecking and evaluation contexts

RuledirectL’s use of an evaluation context might give the impression that typechecking simply proceeds
in the order in which terms are actually evaluated. However,this is not the case. The subject ofdirectL

is E [e′] wheree′ synthesizes a type, so certainlye′ must be inan evaluation position, but there may be
several such positions. Even a term as simple asf (x y) has 5 subterms in evaluation position, each
corresponding to a different evaluation contextE :

E = [] (x y) and e′ = f ;
E = f ([] y) and e′ = x;

E = f (x []) and e′ = y; E = f [] and e′ = (x y);
E = [] and e′ = f (x y).

In fact, we may need to repeatedly applydirectL to the same subject term with different choices ofE !
For example, we might useE = [] (x y) to name anf of union type, introducingf:A∨B into the context;
then, case-analyzeA∨B with ∨E; finally, chooseE = f ([] y) to namex (also of union type). Thus we
are faced not with a choice over decompositions, but over many sequencesof decompositions.

Typechecking cannot go strictly left to right. Given an ML-like int option type, containingNone
and some integerSome(n), assumeNone : none andSome(n) : some. Then, ifmap f (Some(n)) returns
Some(f n) andmap f None is none, thenmap : (int → int) → ((some → some) ∧ (none → none)).
Similarly, a function filtering out negative integers couldhave typefilter : int→ (some ∨ none).

Consider the term(map f) (filter n). The term(map f) synthesizes(some → some)∧(none →
none). This is an intersection type—we’ll abbreviate it as(s→s)∧(n→n)—and the intersection must be
eliminated so that rule→E can be applied to(map f) (filter x). However, we cannot commit to one part
of the intersection yet, because we must first case-analyze the union type of the subterm(filter x). We
need to “jump over”(map f) to type(filter x), so applydirectL with evaluation contextE = [] (filter x),
giving (map f) the namex; second, applydirectL with contextE = x [], synthesizingsome ∨ none for
(filter x). Rule∨L splits ony:some∨none; in its left subderivationDsome, we havey:some, so∧E1 on
x ⇑ (some → some) ∧ (none→ none) givesx ⇑ some→ some, while its right subderivationDnone has
y:none, so∧E2 givesx ⇑ none→ none. Writing ∆ for x:((s→s)∧(n→n)), the derivation is

⊢ map f⇑ (s→s)∧(n→n)

∆ ⊢ filter x⇑ some ∨ none

Dsome Dnone

∆,y:(some∨none) ⊢ x y ⇓C
∨L

∆ ⊢ x (filter x) ⇓C
directL

⊢ (map f) (filter x) ⇓C
directL

whereC is some ∨ none, and the derivationsDsome andDnone are

. . . ⊢ x ⇑ (some→some)∧(none→none)

. . . ⊢ x ⇑ some→ some
∧E1

...
∆,y:some ⊢ x y ⇓C

and

. . . ⊢ x ⇑ (some→some)∧(none→none)

. . . ⊢ x ⇑ none→ none
∧E2

...
∆,y:none ⊢ x y ⇓C

On a purely theoretical level, the tridirectional system isacceptable, but the nondeterminism is exces-
sive. Xi approached (very nearly) the same problem by transforming the program so the term of∨
type appears before the term of∧ type. (Actually, Xi had index-level quantifiersΣ and Π instead
of ∨ and∧, but these are analogous.) A standard let-normal translation |e| (Xi 1998, p. 86), where
|e1 e2| = letx1= |e1| in letx2= |e2| inx1x2 suffices for the examples above. (In Xi’s system, existential
variables are unpacked where a term of existential type is let-bound: an existential variableb′ is un-
packed at the binding ofx2, which appears before the applicationx1x2 at which the universal variablea
must be instantiated.) Unfortunately, the translation interacts unpleasantly with bidirectionality: terms

J. Dunfield 63

such asmap (λx.e), in which (λx.e) must be checked, no longer typecheck because theλ becomes the
right hand side of alet, in letx1=map in letx2=λx.einx1x2 and let-bound expressions must synthesize a
type, butλx.e does not. Typechecking becomes incomplete in the sense thatsome programs that were
well typed are not well typed after translation.

Xi ameliorated this incompleteness by treatinge1 v2 as a special case (Xi 1998, p. 139):|e1 v2| =
letx1= |e1| inx1v2. Now v2 (which is λx.e in the above example) is in a checking position. This is
adequate for non-synthesizing values, but terms such asmap (case zof . . .), where a non-synthesizing
non-value is in checking position, remain untypable. It is not clear why Xi did not also have special cases
for case and other non-synthesizing non-values, e.g.|e1 (case eof ms)| = letx1= |e1| inx1 |case eof ms|.
Xi’s translation is also incomplete for terms likef (case x of ms). Supposex synthesizes a union that
must be analyzed to select the appropriate part of an intersection in the type off . Sincex’s scope—and
thus the scope of its union—is entirely within thelet created for thecase, typechecking fails.

| f (case x of ms)| = let f1= f in letx0= |case x of ms| in f1 x0

= let f1= f in letx0=
(
letx1=x in case x1 of |ms|

)
in f1 x0

It could be argued that the cases in which Xi’s translation fails are rare in practice. However, that
may only increase confusion when such a case is encountered.I follow Xi’s general approach of sequen-
tializing the program before typechecking, but no programsare lost in my translation.

Do we need all the freedom thatdirectL provides? No. At the very least, if we do not need to
name a subterm, naming it anyway does no harm. But naming all the subterms only slightly reduces the
nondeterminism. Clearly, a strategy of in-order traversalis sound (we can choose to applydirectL from
left to right if we like). It is tempting to think it is complete. In fact, it holds for many programs, but
fails for a certain class of annotated terms. We will explainwhy as we present the general mechanism
for enforcing a strategy of left-to-right traversal exceptfor certain annotated terms.

3 Let-Normal Typechecking

We’ll briefly mention previous work on let-normal form, thenexplain the ideas behind the variant here,
including why we need aprincipal synthesis of valuesproperty. Because the most universal form of
principality does not hold for a few terms, we introduceslack bindings.

Traditional let-normal or A-normal transformations (Moggi 1988; Flanagan et al. 1993) (1) explicitly
sequence the computation, and (2) name the result of each intermediate computation. (Continuation-
passing style (CPS) (Reynolds 1993) also (3) introduces named continuations. Thus let-normal form is
also known astwo-thirds CPS.) Many compilers for functional languages use some kind of let-normal
form to facilitate optimizations; see, for instance, Tarditi et al. (1996), Reppy (2001), Chlipala et al.
(2005), and Peyton Jones et al. (2006).

Our let-normal form will sequentialize the computation, but it does not only name intermediate
computations, butvaluesas well. In our let-normal type system,directL is replaced by a rulelet that can
only be applied tolet; see Figure 3.Q is a special evaluation context, discussed below.

This let is a syntactic marker with no computational character. In contrast to let-normal translations
for compilation purposes, there is no evaluation step (reduction) corresponding to alet. I won’t even
give a dynamic semantics for terms withlets. It would be easy; it’s simply not useful here. If we insist
on knowing what a let-normal terme means, we can use a standard call-by-value operational semantics
over the term’s reverse translation.

Instead of making explicit the order of computation, our let-normal form makes explicit the order of
typechecking—or rather, the order in whichdirectL names subterms in evaluation position. Thus, to be

64 Untangling Typechecking of Intersections and Unions

Γ;∆1 ⊢ e′ ⇑ A Γ;∆2,x:A ⊢ Q[x] ⇓C

Γ;∆1,∆2 ⊢ letx=e′ inQ[x] ⇓C
let

Γ;∆,∼x=v ⊢ Q[x] ⇓C

Γ;∆ ⊢ let∼x=v inQ[x] ⇓C
let∼

Γ;∆1 ⊢ v⇑ A Γ;∆2,x:A ⊢ e⇓C

Γ;∆1,∆2,∼x=v ⊢ e⇓C
∼var

. . . plus all rules in Figure 2, exceptdirectL

Figure 3: Thelet-normal type systemfor terms containinglet x bindings

complete with respect to the tridirectional system, the transformation must create alet for every subterm
in synthesizing form: if an (untranslated) program contains a subterme′ in synthesizing form, it might
be possible to namee′ with directL, so the let-normal translation must binde′. Otherwise, a chance to
apply∨L is lost. Even variablesx must be named, since they synthesize a type and so can be namedin
directL. This models an “aggressive” strategy of applyingdirectL. On the other hand, checked terms
like λx.e can’t synthesize, so we won’t name them.

Another consequence of the let-normal form following typing, not evaluation, is thatletx=v1 inv2 is
considered a value—after all, the original term[v1/x]v2 was a value, and we transformed a value into a
non-value we could not apply value-restricted typing rulessuch as∧I, leading to incompleteness.

We define the translation by a judgmente →֒ L+e′, read “e translates to a sequence of let-bindings
L with bodye′”. For example, the translation off (x y), which names every synthesizing subterm, is

let f= f in letx=x in lety=y in let z=x y in leta= f z ina

This is expressed by the judgmentf (x y) →֒ f= f ,x=x,y=y,z=x y,a= f z + a. Figure 4 has the defi-
nition. Note thatL+e′ is not a term;+ is punctuation. We writeL in e′ as shorthand: reade →֒ L+e′

as “e →֒ L in e′”. The divergent notations come from the multiple decompositions of a term into a
pair of bindings and a “body”. For example,letx1=e1 in letx2=e2 ine3 can be written three ways:(1)
· in letx1=e1 in letx2=e2 ine3, (2) (x1=e1) in letx2=e2 ine3, or (3) (x1=e1,x2=e2) in e3. The last de-
composition ismaximal: it has the maximum number of bindings (and the smallest ‘body’), which is the
case when the body isn’t alet. If e →֒ L+e′ thenL in e′ is maximal.

Again, to model a complete strategy ofdirectL-application, ine →֒ L+e′ we needL to bind all the
synthesizing subterms that could be in evaluation position(after applyingdirectL zero or more times).

We syntactically partition terms intopre- andanti-values. Apre-valueě is a value, such asx, or a
term that can “become” a value viadirectL, such asx y which “becomes” the valuez in the derivation.
(The háčeǩ above thee is shaped like a ‘v’ for ‘value’.) Ananti-valueê, such asfix u.e (or case eof ms)
is not a value and cannot become a value.

directL can replace any synthesizing subterm with a linear variable, so the pre-values must include
both the values and the synthesizing forms. This leads to thefollowing grammar for pre-values, with
valuesx, x, andλx.e and synthesizing forms(e : As), e1e2, u. (In the full system, the prevalues also
include checking forms that can become values if all their subterms can, such as(e1,e2).)

Pre-values ˇe ::= x | x | (e : As) | λx.e | e1e2 | u
Anti-values ê ::= fix u.e

The distinction matters for terms with sequences of immediate subterms such that at least two subterms
in the sequence may be in evaluation position. Only application e1e2 has this property (and in the full
system, pairs(e1,e2)). λx.e andfix u.ehave no subterms in evaluation position at all.

J. Dunfield 65

e →֒ L+e′ read “e translates to bindingsL with resulte′”

x →֒ (x=x)+x
e →֒ L+e′

λx.e →֒ ·+λx.(L in e′)

u →֒ (x=u)+x
e →֒ L+e′

fix u.e →֒ ·+fix u. (L in e′)

ê1 →֒ L1+e′1 e2 →֒ L2+e′2
ê1e2 →֒ L1,x=e′1(L2 in e′2)+x

ě1 →֒ L1+e′1 e2 →֒ L2+e′2
ě1e2 →֒ L1,L2,x=e′1e′2+x

e →֒ L+e′ enot a value

(e : As) →֒ L,x=(e′ : As)+x
v →֒ L+e′

(v : As) →֒ L,∼x=(e′ : As)+x x →֒ ·+x

Figure 4: The let-normal transformation

A telling example is(fix u.e) (ω x) whereω : . . .→⊥. In the tridirectional system, this term has no
synthesizing subterms in evaluation position. In particular, ω x is not in evaluation position, so however
we translate the term, we must not bindω x outside the outer application; if we did, we would addz:⊥
to the context and could apply rule⊥L to declare the outer application well typed while ignoringe! If
e is ill-typed, this is actually unsound. On the other hand, inthe term(f g) (ω x) the left tridirectional
systemcan bind ω x before checking the pair, by applyingdirectL with E = [] (ω x) (synthesizing a
type for f g, ensuring soundness) to yield a subjectx (ω x) in which ω x is in evaluation position.

The difference is thatfix u.e is an anti-value, whilef g is a pre-value. Therefore, given an application
e1 e2, if e1 is some anti-valuêe1, the translation places the bindings for subterms ofe2 (e.g.z=ω x above)
insidethe argument part. On the other hand, ife1 is a pre-value ˇe1, the translation puts the bindings for
subterms ofe2 outsidethe application. See the shaded rules in Figure 4.

Elongated evaluation contextsQ, unlike ordinary evaluation contextsE , can skip over pre-values.
Q is a sort of transitive closure ofE : if, by repeatedly replacing pre-values in evaluation position with
values, some subterm is then in evaluation position, that subterm is in elongated evaluation position. In
a sequence ofdirectL-applications, subterms in evaluation position are replaced with linear variables,
which are values. For example,z is not in evaluation position in(x y) z, but applyingdirectL with
E = [] z yields a subderivation with subjectx z, in which z is in evaluation position. AQ is thus a
path that can skip pre-values: if every intervening subtermis a pre-value (equivalently, if there is no
intervening anti-value), the hole is in elongated evaluation position. The grammar for let-normal terms
ensures that the bodye2 of letx=e1 ine2 must have the formQ[x].

Elongated Q ::= [] | Qe | ěQ | (Q : As)

evaluation contexts | letx=Q ine | letx= ěinQ | let∼x=Q ine | let∼x=v inQ

Terms e ::= . . . | letx=e1 inQ[x] | let∼x=v1 inQ[x]

Values v ::= x | λx.e | x | letx=v1 inv2 | let∼x=v1 inv2

Eval. contexts E ::= . . . | letx=E ine | letx=v inE | let∼x=E ine | let∼x=v inE

Sequences of bindings L ::= · | L,(x=e) | L,(∼x=v)

66 Untangling Typechecking of Intersections and Unions

3.1 Principal synthesis of values

A key step in completeness is the movement of let-bindings outward. To prove this preserves typing,
we show that principal types (Hindley 1969) exist in certaincases. Consider the judgmentx : (A1→B) ∧
(A2→B),y : A1 ∨ A2; · ⊢ x y⇓ B. To derive this in the left tridirectional system, we needdirectL with
E = x [] to namey as a new linear variabley:A1 ∨ A2. Then we use∨L; we must now derive

x : (A1→B) ∧ (A2→B), . . . ;y:A1 ⊢ x y ⇓ B and x : (A1→B) ∧ (A2→B), . . . ;y:A2 ⊢ x y ⇓ B

Here, the scope ofy is x y, and we synthesize a type forx twice, once in each branch:

. . . ,y : A1 ∨ A2; · ⊢ y⇑ A1 ∨ A2

. . . ; · ⊢ x⇑ A1→B
...

. . . ;y:A1 ⊢ x y ⇓ B
→E

. . . ; · ⊢ x⇑ A2→B
...

. . . ;y:A2 ⊢ x y ⇓ B
→E

. . . ;y : A1 ∨ A2 ⊢ x y ⇓ B
∨L

x : (A1→B) ∧ (A2→B),y : A1 ∨ A2; · ⊢ x y⇓ B
directL

However, when checking the translated termletx=x in lety=y in let z=x y in z againstB, we need to first
namex asx, theny asy, then use∨L to decompose the uniony:A1 ∨ A2 with subjectlet z=x y in z.

. . . ; · ⊢ x⇑ (A1→B) ∧ (A2→B) . . . ;x:(A1→B) ∧ (A2→B) ⊢ lety=y in let z=x y in z ⇓ B

x : (A1→B) ∧ (A2→B),y : A1 ∨ A2; · ⊢ letx=x in lety=y in let z=x y in z ⇓ B
let

But we only get one chance (highlighted above) to synthesizea type forx, so we must take care when
usinglet to namex; if we choose to synthesizex⇑ A1→B in let, we can’t derive

x:A1→B,y:A2 ⊢ (let z=x y in z) ⇓ B

but if we choose to synthesizex⇑ A2→B we can’t get

x:A2→B,y:A1 ⊢ (let z=x y in z) ⇓ B

The only choice that works isΓ(x), which is (A1→B) ∧ (A2→B), since givenx ⇑ (A1→B) ∧ (A2→B)
we can synthesizex ⇑ A1 → B andx ⇑ A2 → B using∧E1 and∧E2, respectively.

In the above situation,e′ = x is a variable, so there is a best typeC—namelyΓ(x)—such that ifx⇑C1

andx⇑C2 thenx⇑C, from which follows (by rules∧E1,2 in the example above)x⇑C1 andx⇑C2. We’ll
say thatx has the property ofprincipal synthesis. Which terms have this property? Variables do: the best
type for somex is Γ(x). On the other hand, it does not hold for many non-values:f x⇑ A1 and f x⇑ A2

donot imply f x⇑A1 ∧A2, since the intersection introduction rule∧I is (1) restricted to values and (2) in
the checking direction. Fortunately, we don’t need it for non-values: Consider(e1 e2) y. Since(e1 e2) is
not a value,y is not in evaluation position in(e1 e2) y, so even in the tridirectional system, to namey we
must first name(e1 e2). Here, the let-normal system is no more restrictive. Moreover, some values, such
as pairs, are checking forms andneversynthesize, so they do not have the principal synthesis property.
But neither system binds values in checking form to linear variables.

Now, do allvalues in synthesizing formhave the principal synthesis property? The only values in
synthesizing form are ordinary variablesx, linear variablesx, and annotated values(v : As). For x or x
the principal type is simplyΓ(x) or ∆(x). Unfortunately, principal types do not always exist for terms of
the form(v : As). For example,((λx.x) : (⊢ unit→ unit),(⊢ bool→ bool)) can synthesizeunit→ unit,
and it can synthesizebool→ bool, but it can’t synthesize their intersection, so it has no principal type.

J. Dunfield 67

3.2 Slack bindings

Rather than restrict the form of annotations, we use a different kind of binding for(v : As)—a slack
binding∼x=v wherev’s type is synthesized not at its binding site, but at any point up to its use (rules
∼var and let∼ in Figure 3). Whereverx is in scope, we can try rule∼var to synthesize a typeA for v
and replace∼x=v with an ordinary linear variable typingx:A. For example,

(
(λx.e) : (⊢ int→int)

)
y

is translated tolet∼x=
(
(λx.e′) : (⊢ int→int)

)
in lety=y inx y. Now, we have several chances to use

∼var to synthesize the type ofx: just before checkinglety=y in x y, or when checkingx y. This is
just like choosing when to applydirectL in the tridirectional system. If all our bindings were slackwe
would have put ourselves in motion to no purpose, but we’ll use slack bindings for(v : As) only. My
experiments suggest that slack bindings are rare in practice (Dunfield 2007b, p. 187), and are certainly
less problematic than the backtracking from intersectionsand unions themselves (∧E1,2, etc.).

4 Results

The two major results aresoundness: if the let-normal translation of a program is well typed in the
let-normal type system, the original program is well typed in the left tridirectional system—andcom-
pleteness: if a program is well typed in the left tridirectional type system, its translation is well typed
in the let-normal type system. Once these are shown, it follows from Dunfield and Pfenning (2004) that
the let-normal system is sound and complete with respect to asystem (Dunfield and Pfenning 2003) for
which preservation and progress hold under a call-by-valuesemantics.

At its heart, the let-normal system merely enforces a particular pattern of linear variable introductions
(via let, instead ofdirectL). So it is no surprise that soundness holds. The proof is syntactic, but not too
involved; see Dunfield (2007b, pp. 132–134).

Corollary (Let-Normal Soundness).
If e →֒ L+e′ and·; · ⊢ L in e′ ⇓C (let-normal system) then·; · ⊢ e⇓C (tridirectional system).

However, completeness—that the let-normal system is notstrictly weaker than the tridirectional
system—is involved. What follows is the roughest sketch of the proof found in Dunfield (2007b, pp.
135–165). We want to show that given a well-typed terme, the let-normal translationL in e′ where
e →֒ L+ e′ is well-typed. To be precise, given a derivationD deriving Γ;∆ ⊢ e⇓ C in the left tridi-
rectional system, we must construct a derivationΓ;∆ ⊢ L in e′ ⇓ C in the let-normal system, where
e →֒ L+e′. My attempts to prove this by straightforward induction on the derivation failed: thanks to
directL, the relationship betweene andD is complex. Nor isL+ e′ compositional ine: for a given
subterm ofe there may not be a corresponding subterm ofL+e′, because translation can insert bindings
inside the translated subterm.

Instead, the completeness proof proceeds as follows:

1. Mark e with lets whereverdirectL is used inD . However, if∧I or another subject-duplicating
rule is used, the subderivations need not applydirectL in the same way, resulting in distinct terms
to which∧I cannot be applied. So we use step 2 inductively to obtain typing derivations for the
canonical version of the subterm (theL+e′ from e →֒ L+e′), to which∧I can be applied.

This step centres on a lemma which produces a term with a let-system typing derivation. This term
might not be canonical. For example, if the original tridirectional derivation forλx.x didn’t use
directL at all, nolet bindings are created, unlike the canonical let-normal termλx. letx=x inx.

68 Untangling Typechecking of Intersections and Unions

2. Transformthe marked term into the canonicalL+ e′ in small steps, adding or moving onelet at
a time. Each small step preserves typing. We’ll define a syntactic measureµ that quantifies how
different a term is fromL+e′; eachlet-manipulating step reduces the measure, bringing the term
closer toL+e′. When the measure is all zeroes, the termis L+e′.

Themeasureof e′ is

µ(e′) = 〈unbound⇑(e
′), brittle(e′), prickly(e′), transposed(e′)〉

where:

• unbound⇑(e′) is the number of subterms ofe′ in synthesizing form (that is, variablesx and u,
annotated terms(e : As), and applicationse1e2) that are not let-bound. The translation→֒ has
let-bindings for all such terms, so ane′ that does not bind such terms is quite far from being in
canonical let-normal form.

• brittle(e′) is the number of let-bindings ine′ of the formletx=(v1 : As) ine2. To correspond to the
translation→֒ , we need to change such let-bindings to slack bindingslet∼x=(v1 : As) ine2. These
terms are “brittle” because they need to be slackened.

• prickly(e′) is the number of let-bindings ine′ that are not properly collected together at aroot. A
root is somewhere that the canonical translation→֒ may place a sequence of let-bindings. In the
proof, we start by reducing the number of unbound synthesizing forms by insertinglets nearby, but
some of these are too deep inside the term. For example, givena termc y, we first put a binding
around they, giving c(let y=y iny). (To simplify the example,c is some constant or primitive
operation that is never let-bound.) Then we bind the application, giving leta=c (lety=y iny) in a.
But the canonical translation would belety=y in leta=c y ina. Thus, a prickly binding needs to be
lifted outward until it is in some sequence of let-bindings at the outside of the body of aλ or fix,
or at the outside of the entire terme′.

• transposed(e′) is the number oftransposed variable pairsin e′. If there are no prickly bindings,
there may still be bindings that are out of order. For a termx y, the original derivation might have
useddirectL first ony (with E = x []) then onx (with E = [] y). In this case, Step 1 above would
producelety=y in letx=x in x y. Supposing this application is the body of someλ , these bindings
are not prickly, but don’t correspond to what→֒ would produce. Variables (and their bindings) are
transposed if they are not used in the same order they were bound. Thus,x andy are transposed
in lety=y in letx=x in x y, becausey is bound beforex but x appears to the left ofy in the body of
the let.

We interpret the quadruples lexicographically. Likewise,the proof of completeness relies on type
preservation lemmas for each part of the quadruple: adding alet-binding preserves typing, changing a
regular let-binding to a slack let-binding preserves typing, lifting a let-binding to a root preserves typing,
and reordering the bindings of transposed variables preserves typing.

Theorem (Let-Normal Completeness).
If ·; · ⊢ e⇓C (tridirectional system) ande →֒ L+e∗ then·; · ⊢ L in e∗ ⇓C (let-normal system).

5 Related Work

The effects of transformation to continuation passing style on the precision of program analyses such as
0-CFA have been studied for some time (Sabry and Felleisen 1994). The effect depends on the specific

J. Dunfield 69

details of the CPS transform and the analysis done (Damian and Danvy 2001; Palsberg and Wand 2003).
The “analysis” in this work is the process of bidirectional checking/synthesis. My soundness and com-
pleteness results show that my let-normal transformation does not affect the analysis. It is not clear if
this means anything for more traditional let-normal transformations and compiler analyses.

6 Conclusion

Transforming programs into a let-normal form removes a major impediment to implementing tridirec-
tional typechecking. The system is soundand completewith respect to a type assignment system for
intersections and unions (Dunfield and Pfenning 2003), in contrast to systems (Xi 1998) in which com-
pleteness is lost. The tridirectional rulecan be turned into something practical. A chain of soundness
results (Dunfield 2007b, p. 165) guarantees that if we run a programe whose let-normal translation
typechecks in the system in this paper, it will not go wrong.

Despite “untangling”directL, typechecking is still very time-consuming in the worst cases, thanks
to checking terms several times in∧I and backtracking in∧E1,2, etc. As implementing (an extended
version of) this system shows (Dunfield 2007a), bad cases do occur in practice!

Parametric polymorphism is absent, but I have extended the tridirectional system and the let-normal
implementation (Dunfield 2009), and the soundness and completeness results should still hold.

The major flaw of this work is its completeness proof, which uses purely syntactic methods, is com-
plicated, and has not been mechanized. Ideally, it would be mechanized and/or proved more simply.

Acknowledgments Many thanks to Frank Pfenning for countless discussions about this research.
Thanks also to the ITRS reviewers. Most of the work was done atCarnegie Mellon University with the
support of the US National Science Foundation.

References

Adam Chlipala, Leaf Petersen, and Robert Harper. Strict bidirectional type checking. InWorkshop on
Types in Language Design and Implementation (TLDI ’05), pages 71–78, 2005.

Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: on the impact of the CPS
transformation. Technical Report BRICS-RS-01-54, University of Aarhus, 2001.

Rowan Davies and Frank Pfenning. Intersection types and computational effects. InICFP, pages 198–
208, 2000.

Joshua Dunfield. Refined typechecking with Stardust. InProgramming Languages meets Programming
Verification (PLPV ’07), 2007a.

Joshua Dunfield. Greedy bidirectional polymorphism. InML Workshop (ML ’09), 2009.

Joshua Dunfield.A Unified System of Type Refinements. PhD thesis, Carnegie Mellon University, 2007b.
CMU-CS-07-129.

Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-by-value
languages. InFound. Software Science and Computation Structures, pages 250–266, 2003.

Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. InPOPL, pages 281–292, 2004.

70 Untangling Typechecking of Intersections and Unions

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling with
continuations. InProgramming Language Design and Implementation, pages 237–247, 1993.

R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. Am. Math. Soc., 146:
29–60, 1969.

Eugenio Moggi. Computational lambda-calculus and monads.Technical Report ECS-LFCS-88-66,
University of Edinburgh, 1988.

Jens Palsberg and Mitchell Wand. CPS transformation of flow information.J. Functional Programming,
13(5):905–923, 2003.

Simon Peyton Jones and the GHC developers. Glasgow Haskell Compiler Commentary.http://
hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe, 2006.

Benjamin C. Pierce and David N. Turner. Local type inference. In POPL, pages 252–265, 1998. Full
version inACM Trans. Programming Languages and Systems, 22(1):1–44, 2000.

John Reppy. Local CPS conversion in a direct-style compiler. In ACM Workshop on Continuations (CW
’01), pages 13–22, 2001.

John C. Reynolds. The discoveries of continuations.LISP and Symbolic Computation, 6(3–4):233–247,
1993.

John C. Reynolds. Design of the programming language Forsythe. Technical Report CMU-CS-96-146,
Carnegie Mellon University, 1996.

Amr Sabry and Matthias Felleisen. Is continuation-passinguseful for data flow analysis? InProgram-
ming Language Design and Implementation, pages 1–12, 1994.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing
compiler for ML. InProgramming Language Design and Implementation, pages 181–192, 1996.

Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon University,
1998.

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe

	1 Introduction
	2 Tridirectional Typechecking
	2.1 Tridirectional typechecking and evaluation contexts

	3 Let-Normal Typechecking
	3.1 Principal synthesis of values
	3.2 Slack bindings

	4 Results
	5 Related Work
	6 Conclusion

