| nter section typesfor unbind and rebind*

Mariangiola Dezani-Ciancaglini Paola Giannini
Dip. di Informatica, Univ. di Torino, Italy Dip. di Informatica, Univ. del Piemonte Orientale, Italy

Elena Zucca
DISI, Univ. di Genova, Italy

We define a type system with intersection types for an exterddilambda-calculus with unbind and
rebind operators. In this calculus, a termuith free variablexy, . .., Xn, representing open code, can
be packed into annboundterm (x;,...,%, | t), and passed around as a value. In order to execute
inside code, an unbound term should be expliai#lyoundat the point where it is used. Unbinding
and rebinding are hierarchical, that is, the téman contain arbitrarily nested unbound terms, whose
inside code can only be executed after a sequence of rebawdbden applied. Correspondingly,
types are decorated with levels, and a term has typié it needsk rebinds in order to reduce to

a value of typer. With intersection types we model the fact that a term candssl differently in
contexts providing different numbers of unbinds. In paitée, top-level terms, that is, terms not
requiring unbinds to reduce to values, should havalaetype, that is, an intersection type where
at least one element has level 0. With the proposed intéosegipe system we get soundness under
the call-by-value strategy, an issue which was not resdbygatrevious type systems.

I ntroduction

In previous work([[12], 13] we introduced an extension of laaedlculus with unbind and rebind opera-
tors, providing a simple unifying foundation for dynamiopmg, rebinding and delegation mechanisms.
This extension relies on the following ideas:
e Aterm (I |t), wherel is a set of typed variables calleshbinders is a value, of a special type
code, representing “open code” which may contain free varialsidbe domain of".

e To be used, open code shouldreboundthrough the operatdir], wherer is a (typed) substitution
(a map from typed variables to terms). Variables in the dono&r are calledrebinders When
the rebind operator is applied to a tef | t), a dynamic check is performed: if all unbinders are
rebound with values of the required types, then the sulistitis performed, otherwise a dynamic
error is raised.

For instance, the te@r(XY | x+y)[x— 1y— 2] reduces to ¥ 2, whereas bothix,y | X +y)[X+— 1]
and(xint | X+ 1)[x:int — int — Ay.y + 1] reduce tcerror.

Unbinding and rebinding are hierarchical, that is, the tean contain arbitrarily nested unbound
terms, whose inside code can only be executed after a sezjuérrebinds has been app@ed For
instancetwo rebinds must be applied to the tefm | x+ (x| X)) in order to get an integer:

(X|X+ (x| x))x—=1x—=2 — Q1+ (x|x))[x—2]
— (Ax—=2)+ (x| x)[x—2))
—* 142

*This work has been partially supported by MIUR DISCO - Dhatition, Interaction, Specification, Composition for Objec
Systems, and IPODS - Interacting Processes in Open-endédbDied Systems.

1in the examples we omit type annotations when they are iaiate

2See the Conclusion for more comments on this choice.

E. Pimentel, B. Venneri and J. Wells (Eds.): Workshop on © Dezani, Giannini and Zucca
Intersection Types and Related Systems 2010 (ITRS 2010). This work is licensed under the
EPTCS 45, 2011, pp. 45658, d0i:10.4204/EPTCS|45.4 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.45.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

46 Intersection types for unbind and rebind

Correspondingly, types are decorated with levels, andna tiers typer if it needsk rebinds in order
to reduce to a value of type With intersection types we model the fact that a term carsked differently
in contexts which provide a different numbeof unbinds. For instance, the tefm | x+ (x| x)) above
has typeint? A code?, since it can be safely used in two ways: either in a contexthvprovides two
rebinds, as shown above, or as a value of typée, as, e.g., in:

(Ay.yx= 1 [x = 2]) (x| x+ (x| x))
On the other side, the terfx | x+ (x| x)) doesnot have typeint!, since by applying only one rebind
with [x — 1] we get the term % (x| x) which is stuck.
The use of intersection types allows us to get soundneds the. call-by-value strategy. This issue
was not resolved by previous type systems [12, 13] wherghfsreason, we only considered the call-

by-name reduction strategy. To see the problem, considdptlowing example.
The term
(Ay.yx—=2]) (1+ (x| x))
is stuck in the call-by-value strategy, since the argumemiot a value, hence should be ill typed, even
though the argument has typet?, which is a correct type for the argument of the function. Bing
intersection types, this can be enforced by requiring agnimof functions to havealue typesthat is,
intersections where (at least) one of the conjuncts is adypevel 0. In this way, the above term is ill
typed. Note that a call-by-name evaluation of the above wgues
(Ayyx—=2) 1+ (x[x)) — 1+ (x][x))x—2]
— (Ax—=2)+ (x| x)[x—2))
—* 1+2
Instead, the termAy.y[x — 2]) (x| 1+ x) is well typed, and it reduces as follows in both call-by-ealu
and call-by-name strategies:
Ayyx—2))(x]1+x) — (X]1+x)[X—2]
— 142

It is interesting to note that this phenomenon is due to ttssibdity for operators (in our case for
+) of acting on arguments which are unbound terms. This dedigice is quite natural in view of dis-
cussing open code, as in MetaML [23]. In purecalculus there is no closed term which converges when
evaluated by the lazy call-by-name strategy and is stucknveivaluated by the call-by-value strategy.
Instead there are closed terms, lilkex.Ay.y)((Azz2(Azz2), which converge when evaluated by the
lazy call-by-name strategy and diverge when evaluated é\c#il-by-value strategy, and open terms,
like (Ax.Ay.y)z, which converge when evaluated by the lazy call-by-namegegyy and are stuck when
evaluated by the call-by-value strat&y.

In summary, the contribution of this paper is the followinde define a type system for the calculus
of Dezani et al.[[12, 13], where, differently from those papeve omit types on the lambda-binders in
order to get the whole expressivity of the intersection tgpestructor[[25]. The type system shows, in
our opinion, an interesting and novel application of intetn types. Indeed, they handle in a uniform
way the three following issues.

e Functions may be applied to arguments of (a finite set ofpcfiit types.

e A term can be used differently in contexts providing difftreumbers of unbinds. Indeed, an
intersection type for a term includes a type of forfif the term needs rebinds in order to
reduce to a value of type

3Note that following Pierce [18] we consider onlyabstractions as values, while for Plotkin [19] also vaeatare values.

Dezani, Giannini and Zucca 47

e Most notably, the type system guarantees soundness folathbyevalue strategy, by requiring
that top-level terms, that is, terms which do not requireitntib to reduce to values, should have
value types.

Paper Structure. In Sectior[1 we introduce the syntax and the operational séosaof the language.
In Section 2 we define the type system and prove its soundneSsdtior 8. In Sectionl 4 we discuss
related and further work.

1 Calculus

The syntax and reduction rules of the calculus are givengnrie[1.

t o= x|n|tp+ta|Axt|taty| (T |t)]|t[r]|error term

Moo= XTey, .o XmiTm type context

r o= xxTi—=t,. . X Tm—=tn (typed) substitution

v = Axt[(l|t)|n value

rV o= x¢Ti—= V.o, Xm Tm = Vim value substitution

& = []|E+tn+& | EL|VvE |t xT— & evaluation context

O = X1+ Vi,...,Xn+ Vm (untyped) substitution
np+nN——nN if h= ﬁ1—|—Z flo (Sum)
(Axt)Vv— t{X+> v} (APP)
(r '] — t{SUbS(rV)mon»(r)} if [Ctenr¥) (ResINDUNBINDYES)
(| t)[rV] — error if [Zten(r¥Y) (ResiNDUNBINDNO)
n[r"] —nN (REBINDNUM)
(ty +t2)[rV] — ta[rV] + to[rV] (REBINDSUM)
(AX)[rY] — Axt[rY] (REBINDABS)
(tato)[rV] — ta[rV] to[rY] (REBINDAPP)
t[r][rV] — t'[rY] if tr]—t (REBINDREBIND)
error[r¥] — error (REBINDERROR)

t—t &£ t—eror & #|]
(C1x) (CTXERROR)
Et] — &[t] &[t] — error

Figure 1: Syntax and reduction rules

Terms of the calculus are the-calculus terms, the unbind and rebind constructs, andyhardic
error. Moreover, we include integers with addition to shawhunbind and rebind behave on primitive
data types. Unbinders and rebinders are annotated witk Typehich will be described in the following
section. Here it is enough to assume that they include stdrida and functional types. Type contexts
and substitutions are assumed to be maps, that is, ordemiatgnial and variables cannot appear twice.

48 Intersection types for unbind and rebind

Free variables and application of a substitution to a terendafined in Figurél2. Note that an
unbinder behaves like &-binder: for instance, in a term of shape |t), the unbindex introduces a
local scope, that is, binds free occurrences iof t. Hence, a substitution focis not propagated inside
t. Moreover, a condition, which prevents capture of freealgds similar to the\ -abstraction case is
needed. For instance, the tefiy.(x|y))(Azx) reduces td x|y){y — Azx} which is stuck, i.e., it
does not reduce tpx | Azx), which would be wrong.

However, A -binders and unbinders behave differently w.atequivalence. AA-binder can be re-
named, as usual, together with all its bound variable oecaes, whereas thisnst safe for an unbinder:
for instance,(x| x+ 1)[x — 2] is not equivalent td y | y + 1)[x — 2]. Only aglobal renaming, e.g.,
leading to(y | y + 1)[y — 2], would be saféd

t)) = FV(t)\ dom(r)
[r]) = FV(t) UFV(substr))
X111, Xm— tm) = Uiel..m FV(ti)

x{o}=vif o(x)=v

x{o} =xif x¢ domo)

n{og}=n

(i+t2){o} =t1{o} + {0}

(Axt){o} =Axt{o\ } if xZFV(0)

(htx){o} =ti{o} {0}

(Ft){o} = (T [{O\gomr)}) if dom")NFV(0) =0

txe Ty =t X T tm){0} =t{o}x0:T1 = ti{o}, ... X Tm = tm{0}]

Figure 2: Free variables and application of substitution

The call-by-value operational semantics is described by¢duction rules and the definition of the
evaluation contexts’. We denote byrthe integer represented by the constarity teny(r) andsubstr)
the type context and the untyped substitution, respegtiegtracted from a typed substitutionby dom
removing variables in s€ix;, ..., X, }, respectively.

Rules for sum and application (of a lambda to a value) aredatain The(resino.) rules determine
what happens when a rebind is applied to a term. There areules for the rebinding of an unbound
term. Rule(resinoUneinoYes) is applied when the unbound variables are all present (atiteafequired
types), in which case the associated values are substitiieerwise rulgRresinouneinoNo) produces a

4A more sophisticated solution][5] allows local renaming bbinders by a “precompilation” step annotating variablés w
indexes which can bex-renamed, but are not taken into account by the rebindinchemeésm. Indeed, variable occurrences
which are unbinders, rebinders, or bound to an unbindeualfigtplay the role ohamesrather than standard variables. Note
that variables in a rebinder, e.g.in [x— 2], are not bindings, andis neither a free, nor a bound variable. See the Conclusion
for more comments on this difference.

Dezani, Giannini and Zucca 49

dynamic error. This is formally expressed by the side caonlit C tenVr). Note that a rebind applied to

a term may be stuck even though the variables are all presdrdfdahe right type, when the substitution
is not defined. This may be caused by the fact that when apmiesh unbound term, a substitution
could cause capture of free variables (see the examplersrlihis section). Rebinding a term which
is a number oerror does not affect the term. On sum, abstraction and applitati@ rebind is simply
propagated to subterms, and if a rebind is applied to a rebternm, (ResinoResinD), the inner rebind is
applied first. The evaluation order is specified by nate) and the definition of contextss, that gives
the call-by-value strategy. Finally rulerxerror) propagates errors. To make rule selection deterministic,
rules(crx) and(ctxError) are applicable only whe# # []. As usual—* is the reflexive and transitive
closure of—s.

When a rebind is applied, only variables which were expjigpecified as unbinders are replaced.
For instance, the termix | x+y)[x — 1,y — 2] reduces to % y rather than to 2. In other words, the
unbinding/rebinding mechanism is explicitly controllegithe programmer.

Looking at the rules we can see that there is no rule for thiadéig of a variable. Indeed, it will be
resolved only when the variable is substituted as effectsthadard application. For instance, the term
(Ay.y[x+—2]) (x| x+1) reduces td x | x+ 1)[x+— 2].

Note that in ruleresinoars), the binderx of the A-abstraction does not interfere with the rebind,
even in case& € dom(r). Indeed, rebind has no effect on the free occurrencesrothe body of theA -
abstraction. For instanc@) x.x+ (X | X))[x+— 1] 2, which isa-equivalent toAy.y+ (x | x))[x — 1] 2,
reduces in some steps ter2l. On the other hand, both-binders and unbinders prevent a substitution
for the corresponding variable from being propagated iir s@pe, for instance:

(XY | XFAXX+Y)+ (X X+Yy)) [X—= 2,y 3 — 24+ (AXX+3)+ (X| X+ 3)

A standard (static) binder can also affect code to be dyraliyiebound, when it binds free variables
in a substitutiorr, as shown by the following example:

AXAYYX =X +X)L(X|X+2) — (Ay.yx— 1 +1) (x| x+2)
— (X X+2)[x—=1+1—1+2+1

Note that in[x — X] the two occurrences ofrefer to different variables. Indeed, the second is bound by
the external lambda whereas the first one is a rebinder.

2 Typesystem

We have three kinds of typeprimitive typesr, value types Yandterm types Tsee Figurél3.

T == ™|T;AT, (keN) termtype
V = 10|VAT value type
T 1= int|code|T—>T primitive type

Figure 3: Types

Primitive types characterise the shape of values. In o e&shave integersifit), functions [—
T’), andcode, which is the type of a termil" | t), that is, (possibly) open code.

Term types are primitive types decorated witlewel kor intersection of types. If a term has type
then by applyingk rebind operators to the term we get a value of primitive typeé/e abbreviate a type
7% by 1. Terms have the intersection tyfieA T, when they have both typdg andT,. On intersection

50 Intersection types for unbind and rebind

we have the usual congruence due to idempotence, comniytedissociativity, and distributivity over
arrow type, defined in the first four clauses of Figure 4.

Value types characterise terms that reduce to values, g@tkantersections in which (at least) one
of the conjuncts must be a primitive type of level 0. For inst the term{ x: int | (y:int |[X+Yy))
has typecode® A code! A int?, since it is code that applying one rebinding produces cbdg in turn,
applying another rebinding produces an integer. The termint | X+ (y:int|y+ 1)) has type
code® A int? since it is code that applying one rebinding produces tha tef (y: int |y+1), for
somen. Both code® A code® A int? and code® A int? are value types, whereasit!, which is the
type of termn+ (y:int |y+1), is not a value type. Indeed, in order to produce an integelevée
term must be rebound (at least) once. The typing rule foriegidn enforces the restriction that a term
may be applied only to terms reducing to values, that is tHebgavalue strategy. Similar for the terms
associated with variables in a substitution.

Letl = {1,...,m}. We write Aigy T and Ajc; m T to denoteri® A --- A Tkr. Note that any typd
is such thafl = Ajc1 m Tik‘, for somer; andk; (i € 1..m). Given a typeT = Aic1 m ri'“, with (T)®" we
denote the typé\;c; m T,

T=TAT TiINT=ToATy T1/\(T2/\T3)E(T1/\T2)/\T3

(T— Tl)k AT — T2)k =(T—-T /\Tz)k (T = (T)@h)kJrl = (T' > (T)@(*Hl))k

Figure 4: Congruence on types

Figure[4 defines congruence on types. In addition to the atdnproperties of intersection, the
last clause says that the level of function types can be Badtavith the one of their results. That is,
unbinding and lambda-abstraction commute. So rebindingbmapplied to lambda-abstractions, since
reduction rule(rReeinoAss) pushes rebinding inside. For instance, the teffig Ax.t) andAx.(I |t)
may be used interchangeably.

intk < intktl TiINT,<Ty
To.<Ty T1<T Ti<Ty T,<Ty
(T = THK< (To—= THK TIAT,<TIATS
T,.<T, To<T3 T1=T,
T4 <T3 T1<T,

Figure 5: Subtyping on types

Subtyping, defined in Figuiid 5, expresses subsumptionjghiita term has typd;, then it can be
used also in a context requiring a typgwith Ty < T,. For integer types it is justified by the reduction
rule (ReeinoNum), Since once we obtain an integer value any number of relgsdinay be applieE.
For intersections, it is intersection elimination. Theasthules are the standard extension of subtyping

5Note that the generalisation ofitX < intkt? to TK < T¢*1 s sound but useless.

Dezani, Giannini and Zucca 51

to function and intersection types, transitivity, and thetfthat congruent types are in the subtyping
relation.

o MF=t:T, THE: T, s FrM=t:T7T T<T v rx)=T
TN =t mar, % T e T TET
o) s)rl—tliintk Mty intK (T-Exron
-NUM) ————— -SuMm -ERROR) ——————
MFn:intO M-t +ty: intkK Ferror:T
A rxTHE:T A Mt (V—=T)0 THt:V
A Pt T 1o (A% Mtatp:T
g EET iy M-t
(e) T 1) s coae® T (T [ty - (T)et
e THUGMO Thriok Fet:Vi Vi<T, (iel.m)
-REBIND -REBINDING
() Feg:T (Xt =t X T T oK

Figure 6: Typing rules

Typing rules are defined in Figuré 6. We denotelh¥’ the concatenation of the two type contexts
I andl™” with disjoint domains, which turns out to be a type contexanas well.

A number has the value typmt®. With rule (1-sue), however, it can be given the typatX for any
k. Rule(T-sum) requires that both operands of a sum have the same type,ulétit4sus) the term can be
given as level the biggest level of the operands. Rulkror) permits the use ofrror in any context.
In rule (T-aBs) the initial level of a lambda abstraction is 0 since the tesra value. With rulgT-sus) we
may decrease the level of the return type by increasing, dgdime amount, the level of the whole arrow
type. This is useful since, for example, we can derive

FAXX+ (y:int |y+(zint|z)): (int — intl)?

by first deriving the typgint — int?)? for the term, and then applying-sus). Therefore, we can give
type to the rebinding of the term, by applying rgteresinoine) that requires that the term to be rebound
has level bigger than 0, and whose resulting type is dealdasene. For example,

F (Axx+ (y:int |y+(zint |Zz)))[y:int — 5] : (int — int1)°

which means that the term reduces to a lambda abstractonta.a value, which applied to an integer
needs one rebind in order to produce an integer or error. UllegmArF) assumes that the type of the
function be a level 0 type. This is not a restriction, sincegisule (1-sus), if the term has any function
type it is possible to assign it a level O type. The type of thgument must be a value type. This
condition is justified by the example given in the introdanti

The two rules for unbinds reflect the fact that code is bothlaeyaand as such has typede®,
and also a term that needs one more rebinding than its bodgder to produce a value. Taking the
intersection of the types derived for the same unbind widséhtwo rules we can derive a value type for
the unbind and use it as argument of an application. For ebatyping (y: int |y) by code® A int!
we can derive typent® for the term

52 Intersection types for unbind and rebind

(AX24+X[y: int — 3])(y:int|y).

The present type system only takes into account the numbeabaidings which are applied to a
term, whereas no check is performed on the name and the tyjhe ofariables to be rebound. This
check is performed at runtime by rulggsinounsinoY es) and(ResinoUneinDNo). [N papers introducing the
calculus[12| 13] we have also provided an alternative tyséesn (for the call-by-name calculus) such
that this check is statically perfomed, see the Conclusiommiore comments.

Note that terms which are stuck since application of suligiit is undefined, such as the previous
example(Ay.(x|y))(Azx), are ill typed. Indeed, in the typing rules for unbinding,binders are
required to be disjoint from outer binders, and there is nakeaing rule. Hence, a type context for the
example should simultaneously include a typexfand not include a type forin order to typeA zx and
Ay.(x]y), respectively. For the same reason, a peculiarity of thergiype system is that weakening
does not hold, in spite of the fact that no notion of lineaistgnforced.

3 Soundness of thetype system

The type system isafesince types are preserved by reduction and a closed termvalitie type is
a value orerror or can be reduced. In other words the system has botkubgect reductiorand the
progressproperties. Note that a term that may not be assigned a vwgdeecain be stuck, as for example
1+ (xint |x), which has typeint?®.

The proof of subject reduction (Theorér 5) is standard. \&e stith a lemma (Lemmal 1) on the
properties of the equivalence and pre-order relation oesywhich can be easily shown by induction on
their definitions. Then we give an Inversion Lemma (LenithaaZJubstitution Lemma (Lemnia 3) and
a Context Lemma (Lemnid 4). Lemnids 2 and 3 can be easily showrdbgtion on type derivations.
The proof of Lemmal4 is by structural induction on contexts.

Lemmal
1L IfAgT—=T)P=(T—-T) thenT=Tforallicland \i, T/ =T

2. If Aiy (Ti = T/)? < T, then there are LTy, T/, (I € L), such that T= A, (T) — T)°, and for all
| € Lthereis J C | with

o Ty<Tjforall jcJ,and
o /\H?J{gT{.
Lemma 2 (Inversion Lemma)
1. fr=x:T,thenl(x) <T.
2. frn:T,thenint® < T.
3. Ifrty+t: T, thenint® < TandlHt,: TandlM -ty : T.
4

. IfT = Axt: T, then there are m,;TT/ (i € 1..m) such that B= Ajcq m(Ti — T/)°, andl, xTi -t T/
(ic1.m).

5. IfM-tytp: T, then there is V such that-ty : (V — T)?andlM -t : V.
CHTE(T 1) Ajerm T, then

o I,I"Ht: 7/ *forall ki >0, and

e Tj = code for all ki = 0.

(o)}

Dezani, Giannini and Zucca 53

When m=1and k = Owe also have ,["" -t : T’, for some T.
7. FT] Aieem T, thenl Ft: Aicy mTF andl F 12 ok.
8. fMEXu:Tr—=t1,... . Xn: Tm — tm : 0k, then there are V< T; for i € 1..m such thaf” -t : V.

Proof By induction on typing derivations. We only consider sonmtetiasting cases.

For Point[(4), if the last applied rule {$-sus), then the result follows by induction from Leminiafi(2).
For the same Point ifAtheAIast applied rulgisnTer), then letl = Ax.t: T AT’. By induction hypothesis
there arem, m', T;, TJf, T, TJf (iel.m, je€1.m)such that:

o T= /\ielum(Ti - fi)o-

o M xTiHt:Ti(icl.m),

o T'= /\jel..m((Tj — -,I\—J()O, and

o M xTjHt:T](jel.m).

ThereforeT AT = Ay m(Ti = T)? A Ajerm (T) = T))°.

For Point [5) if the last applied rule {s-inter), then letl" Ft;t, : T1 A T,. By induction hypothesis
we havel -t;:V; — T, andl -ty : V;, for someV,, i = 1,2. We derivel Ft1: (V1 — T1) A (Vo — T2)
andrl -ty : V3 A V3 by rule (T-inTer). Since(Vi — T1) A (Vo — T2) < Vi AV — T1 A To, applying rule
(T-sus)we getl' Ft1: V1AV — T A To.

Lemma 3 (Substitution Lemma) If I, xTHt: T/, andll -v: T, thenl -t{x— v}: T
Lemma4 (Context Lemma) Letl - &[t]: T, then

e [Ht:T forsome T, and

o ifTHt:T thenl - &[t']: T, forallt.
Theorem 5 (Subject Reduction) If M'~t: T andt—t/, thenl —t': T.

Proof By induction on reduction derivations. We only consider sdnieresting cases.

If the applied rule igarp), then
(AXt)V— t{X+> v}

FromT F (Axt)v: T by Lemma2, casd|5) we have that: ther&/isuch thatl - Ax.t: (V — T)°

andrl i v:V. By Lemmd2, casd [4) we have that there md;, T/ (i € 1..m) such thatV — T)° =

Nier m(Ti = TH0, andlM,x:Ti -t : T/ (i € 1..m). From LemmadlL{ll) we g€k, = V for all i € 1..mand

Aict.mT{ =T. Then we can derivE,x:V I t: T using rulegT-sue) and(T-inTer). By Lemm&B we con-
clude that” - t{x~— v} : T.

If the applied rule igresinoUNBINDYES), then
("1 1)[rY] — t{substr")gomr) } I Ctenyr)

Let rfﬁom(r/) = X1:T1 — Vi,.. ., Xm:Tm — Vm. Sincel” C tenr") we have thal’ = x;:T1,...,.Xn:Tm.
Froml - (7| t)[rY] : T by Lemmd2, cas€l(7), we g&t= Aicy o T andl - (I t) : A n 71 L and

[rY:ok. From LemmaR, casgl(6), we have thaf’ -t: Aicq ri'“. Moreover, by Lemmal2, cade (8),
and rule(t-sus) we have thaf FrV: ok implies thatl I v; : T for i € 1..m. Applying mtimes Lemma,
we derivel” - t{subs{r") gomr} : T

54 Intersection types for unbind and rebind

In order to show the Progress Theorem (Theokém 9), we staus@a with a Canonical Forms
Lemma (Lemmal6). Then we state the standard relation bettyperrontexts and free variables (Lemma
[7), and lastly we prove that all closed terms which are reddarms always reduce (Lemink 8).

Lemma 6 (Canonical Forms)
1. Ifv:intP, then v=n.
2. If-v:code®, thenv= (T |t).
3. If-v: (T —T)°, then v=Axt.
Proof By case analysis on the shape of values.
Lemma7 If I+1t: T, then F\t) C domT).
Proof By induction on type derivations.
Lemma8 Ift =t'[rV] for sometand I, and F\Ut) = 0, then t— t” for some t.

Proof Lett=t'[r]]---[ry] for somet’, r}, ..., r} (n > 1), wheret’ is not a rebind. The proof is by
mathematical induction on.

If n=1, then one of the reduction rules is applicablet’fd]]. Note that, ift’ = (I |t1), then rule
(ReeinoUneinDYEs) IS applicable in cask is a subset of the type environment associated kitbtherwise
rule (ResinoUnsINDNO) iS applicable.

Lett=t'[ry]---[ry, 4]. W FV(Y'[rY]---[ry,4]) = O, then alsd=V(t'[r}] - - - [r}]) = ©. By induction hypothesis
t'[ry]--- [ri] — t”, thereforet'[rY]--- [ry. ;] — t”[r}, ;] with rule (ResinoResinD).

Theorem 9 (Progress) If -t:V, then either tis a value, or error, or t — t’ for somet

Proof By induction on the derivation of t : V with case analysis on the last typing rule used.

If tis not a value oerror, then the last applied rule in the type derivation canngtrbesm), (T-ErroR),
(T-Ass), (T-UNBIND-0), OF (T-Unsinp). Moreover the typing environment for the expression is etmpnce
by LemmdY the last applied rule cannot(bear).

If the last applied rule igT-sus), note thatT <V implies thatT is a value type, and therefore the
theorem holds by induction.

If the last applied rule ist-Arp), thent = t; t, and taking into account that the resulting type must be
a value type:
Fti:V =V Ft:V
Ftiito:V
If t1 is not a value oerror, then, by induction hypothesitg, — t}. Sot; t, = &'[t1] with & = []t2, and by
rule (crx), t1t; — t] to. If ty is error, we can apply rulecontError) With the same context. ti is a value
v, andty is not a value oerror, then, by induction hypothesit, — t5. Sotit, = &'[to] with & = v|[],
and by rulecrx), vt, — vt,. If ty is error, we can apply rulecontError) with the same context. If both
t; andt; are values, then by Lemrha 6, calsk (3)= Ax.t' and, therefore, we can apply rulees.

If the last applied rule igr-sum), thent = t; + t; and taking into account that the resulting type must
be a value type:
Ft;:int® Fty:int©
Fty+ty:int©

Dezani, Giannini and Zucca 55

If t; is not a value oeerror, then, by induction hypothesi$; — t;. So by rule(crx), with context

& =[] +tz, we havety +t; — t] + to. If tg iserror, we can apply rulecontError) With the same context.
If t; is a value, then, by Lemnia 6, caké 1)~ n;. Now, if t5 is not a value oerror, then, by induction
hypothesist, — t5. So by rulecrx), with contexté” = ny + [], we gett; +t, — ty +t5,. If tp is error,
we can apply rulecontError) With the same context. Finally, #f is a value, then by Lemnia 6, ca&é (1),
t, = np. Therefore rulasuwm) is applicable.

If the last applied rule igt-Resinp), thent = t'[r]. If some ternt; in r is not a value, then by Lemma
[2(7) and [(8)t; is typed with a value type, and therefdre— t{ by induction, sat reduces using rule
(ctx). Otherwiset = t'[rV]. Sincett'[rV] : V, we have thaFV(t'[rV]) = 0 by Lemmd¥. From Lemnid 8
we get that'[rV] — t” for somet”.

4 Conclusion

We have defined a type system with intersection types for tansjon of lambda-calculus with unbind
and rebind operators introduced in previous work [12, 13&siBes the traditional use of intersection
types for typing (finitely) polymorphic functions, this tysystem shows two novel applications:

e Anintersection type expresses that a term can be used iextsenthich provide a different number
of unbinds.

e In particular, an unbound term can be used both as a valupettde and in a context providing
an unbind.

This type system could be used for call-by-name with minodifications. However, the call-by-
value case is more significant since the condition that tharaent of an application must reduce to a
value can be nicely expressed by the notion of value type.

Moreover, only the number of rebindings which are applied term is taken into account, whereas
no check is performed on the name and the type of the variables rebound; this check is performed
at runtime. This solution is convenient, e.g., in distrdzliscenarios where code is not all available at
compile time, or in combination with delegation mechanismhere, in case of dynamic error due to an
absent/wrong binding, an alternative action is taken. pepaintroducing the calculus [12,]13] we have
also provided an alternative type system (for the call-bBgra calculus) which ensures a stronger form
of safety, that is, that rebinding always succeeds. Thedey is to decorate types with the names of the
variables which need to be rebound, as done also by NanewdkPfenning[[17]. In this way run-time
errors arising from absence (or mismatch) in rebind aregmed by a purely static type system, at the
price of quite sophisticated types. A similar system coddlbveloped for the present calculus. Also the
type system of Dezani et al. [112,113] could be enriched witarsection types to get the stronger safety
for the call-by-value calculus.

Intersection types have been originally introduced [6] darguage for describing and capturing
properties ofA -terms, which had escaped all previous typing disciplirfes. instance, they were used
in order to give the first type theoretic characterisatiorstaingly normalisingerms [20], and later in
order to capturépersistently) normalising ternig].

Very early it was realised that intersection types had aldstnctive semantical flavour. Namely,
they expressed at a syntactical level the fact that a terongel to suitable compact open sets in a
Scott domain[[4]. Since then, intersection types have bsed as a powerful tool both for the analysis
and the synthesis df-models. On the one hand, intersection type disciplinesigedinitary inductive

56 Intersection types for unbind and rebind

definitions of interpretation of -terms in models 7], and they are suggestive for the shapéeadmain
model has to have in order to exhibit specific properties.[10]

More recently, systems with both intersection and unioms$ylpave been proposed for various aims
[3,[14], but we do not see any gain in adding union types in thegnt setting.

Ever since the accidental discovery of dynamic scoping irCkfithy’s Lisp 1.0, there has been
extensive work in explaining and integrating mechanismsljmamic and static binding. The classical
reference for dynamic scoping is Moreau’s paper [16], whitfoduces a\ -calculus with two distinct
kinds of variables:sstaticanddynamic The semantics can be (equivalently) given either by tediusi
in the standard\-calculus or directly. In the translation semantidsabstractions have an additional
parameter corresponding to the application-time contexhe direct semantics, roughly, an application
(Ax.t)v, wherex is a dynamic variable, reduces talgnamic letdlet x = v int. In this construct, free
occurrences of in t are not immediately replaced byas in the standard static let, but rather reduction
of tis started. When, during this reduction, an occurrenceisffound in redex position, it is replaced
by the value ok in the innermost enclosingflet, so that dynamic scoping is obtained.

In our calculus, the behaviour of the dynamic let is obtaibgdhe unbind and rebind constructs.
However, there are at least two important differences.tligithie unbind construct allows the program-
mer to explicitly control the program portions where a vialgashould be dynamically bound. In particu-
lar, occurrences of the same variable can be bound eith&raditaor dynamically, whereas Moreau [16]
assumes two distinct sets. Secondly, our rebind behavelierarchical way, whereas, taking Moreau’s
approachl[[16] where the innermost binding is selected, arabimd for the same variable would rewrite
the previous one, as also in work by Dezani etlall [11]. Faaimse,(X | X) [x— 1][Xx+— 2] would reduce
to 2 rather than to 1. The advantage of our semantics, at ibe @ra more complicated type system, is
again more control. In other words, when the programmerg teamse “open code”, they must explic-
itly specify the desired binding, whereas in Moreau’s pdité code containing dynamic variables is
automatically rebound with the binding which accidentakists when it is used. This semantics, when
desired, can be recovered in our calculi by using rebindh@fshapd|x; — X, ..., X, — Xn|, Where
X1,..., X%y are all the dynamic variables which occurtin

Other calculi for dynamic binding and/or rebinding haverbpeoposed([9, 15./5]. We refer to our
previous papers introducing the calculus! [12, 13] for aus®on and comparison.

As already mentioned, an interesting feature of our cafciguthat elements of the same set can
play the double role oftandard variableswhich can bex-renamed, andiames which cannot bex-
renamed (if not globally in a program)![2,117]. The crucidfefience is that in the case of standard
variables the matching betweeen parameter and argumemnésah gpositionalbasis, as demonstrated
by the de Bruijn notation, whereas in the case of names it me ¢ anominalbasis. An analogous
difference holds between tuples and records, and betwestiopal and name-based parameter passing
in languages, as recently discussed by Rytz and Odersky [21]

Distributed process calculi provide rebinding of hameg feg instance the work of Sewell [22].
Moreover, rebinding for distributed calculi has been stddil], where, however, the problem of inte-
grating rebinding with standard computation is not addresso there is no interaction between static
and dynamic binding.

Finally, an important source of inspiration has been nsiige programming as, e.g., in MetaML
[23], notably for the idea of allowing (open) code as a spegddue, the hierarchical nature of the
unbind/rebind mechanism and, correspondingly, of the syisgem. The type system of Taha and Sheard
[23] is more expressive than the present one, since bothuthestyle and the types are decorated with
integers. A deeper comparison will be subject of furtherkwor

Dezani, Giannini and Zucca 57

In order to model different behaviours according to the gmes (and type concordance) of variables
in the rebinding environment, we plan to add a construct émddional execution of rebind [11]. With
this construct we could model a variety of object modelsagigms and language features.

Future investigation will also deal with the general formbafding discussed by Tantér [24], which
subsumes both static and dynamic binding and also allowsyfimieed bindings which can depend on
contexts and environments.

Acknowledgments. We warmly thank the anonymous referees for their useful centm In partic-
ular, one referee warned us about the problem of avoidinigislar capture when applying substitution
to an unbound term. We also thank Davide Ancona for pointimgtive work by Rytz and Odersky [21]
and the analogy among the pairs variable/name, tupleftepoisitional/nominal, any misinterpretation
is, of course, our responsibility.

References

[1] Davide Ancona, Sonia Fagorzi & Elena Zucca (2008)Parametric Calculus for Mobile Open Codén:
DCM’07. ENTCS192(3), Elsevier, pp. 3-22, doi:10.1016/j.entcs.200824)

[2] Davide Ancona & Eugenio Moggi (2004A Fresh Calculus for Name Managemei: GPCE'04 LNCS
3286, Springer, pp. 206—224, d0i:10.1007/978-3-540-3A T1.

[3] Franco Barbanera, Mariangiola Dezani-Ciancaglini &dJge’ Liguoro (1995): Intersection and Union
Types: Syntax and Semantiésformation and Computatiohl9, pp. 202—230, d0i:10.1006/inc0.1995.1086.

[4] Henk P. Barendregt, Mario Coppo & Maraingiola Dezanaiaglini (1983)A filter lambda model and the
completeness of type assignmertte Journal of Symbolic Logié8(4), pp. 931-940, doi:10.2307/2273659.

[5] Gavin Bierman, Michael W. Hicks, Peter Sewell, Garety® & Keith Wansbrough (2003)Dynamic
Rebinding for Marshalling and Update, with Destruct-Tithke In: ICFP'03 ACM Press, pp. 99-110,
doi{10.1145/944705.944715.

[6] Mario Coppo & Mariangiola Dezani-Ciancaglini (1980n extension of the basic functionality theory for
the A -calculus Notre Dame Journal of Formal Logd (4), pp. 685-693, doi:10.1305/ndjfl/1093883253.

[7] Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio hiell & Giuseppe Longo (1984):Extended
type structures and filter lambda modelsin: Logic colloquium '82 North-Holland, pp. 241-262,
doi{10.1016/S0049-237X(08)71819-6.

[8] Mario Coppo, Mariangiola Dezani-Ciancaglini & Maddake Zacchi (1987): Type theories,
normal forms, and R-lambda-models Information and Computation72(2), pp. 85-116,
doi{10.1016/0890-5401(87)90042-3.

[9] Laurent Dami (1997)A Lambda-Calculus for Dynamic Binding@ heoretical Computer Scien@®2(2), pp.
201-231, doi:10.1016/S0304-3975(97)00150-3.

[10] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan &I8a Likavec (2004): Behavioural Inverse Limit
lambda-modelsTheoretical Computer Scien8a6(1-3), pp. 49-74, dbi:10.1016/].tcs.2004.01.023.

[11] Mariangiola Dezani-Ciancaglini, Paola Giannini & @sdierstrasz (2008)A Calculus of Evolving Objects
Scientific Annals of Computer Scient8, pp. 63-98.

[12] Mariangiola Dezani-Ciancaglini, Paola Giannini & BeZucca (2009)The essence of static and dynamic
bindings In: ICTCS’09
http://www.disi.unige.it/person/Zuccak/Research/papers/ICTCS09-DGZ.pdf.

[13] Mariangiola Dezani-Ciancaglini, Paola Giannini & Bk Zucca (2010): Extending lambda-
calculus with unbind and rebind RAIRO - Theoretical Informatics and Applicatiorio appear.
http://www.disi.unige.it/person/ZuccaE/Research/papers/ITA10.pdf.

http://dx.doi.org/10.1016/j.entcs.2008.10.024
http://dx.doi.org/10.1007/978-3-540-30175-2_11
http://dx.doi.org/10.1006/inco.1995.1086
http://dx.doi.org/10.2307/2273659
http://dx.doi.org/10.1145/944705.944715
http://dx.doi.org/10.1305/ndjfl/1093883253
http://dx.doi.org/10.1016/S0049-237X(08)71819-6
http://dx.doi.org/10.1016/0890-5401(87)90042-3
http://dx.doi.org/10.1016/S0304-3975(97)00150-3
http://dx.doi.org/10.1016/j.tcs.2004.01.023
http://www.disi.unige.it/person/ZuccaE/Research/papers/ICTCS09-DGZ.pdf
http://www.disi.unige.it/person/ZuccaE/Research/papers/ITA10.pdf

58

[14]

[15]
[16]
[17]

[18]
[19]

[20]
[21]

[22]

(23]
[24]

[25]

Intersection types for unbind and rebind

Alain Frisch, Giuseppe Castagna & Veronique Benzak2®08): Semantic Subtyping: dealing set-
theoretically with function, union, intersection, and aégn types Journal of the ACMb5(4), pp. 1-64,
doi{10.1145/1391289.1391293. Extends and supersedé&s@2@nd ICALP/PPDP’05 articles.

Oleg Kiselyov, Chung-chieh Shan & Amr Sabry (2008)elimited dynamic binding In: ICFP’06 ACM
Press, pp. 26—-37, doi:10.1145/1159803.1159808.

Luc Moreau (1998):A Syntactic Theory of Dynamic BindingHigher Order and Symbolic Computation
11(3), pp. 233-279, d0i:10.1023/A:1010087314987.

Aleksandar Nanevski & Frank Pfenning (2005taged computation with names and necesslournal of
Functional Programming5(5), pp. 893-939, d0i:10.1017/S095679680500568X.
Benjamin C. Pierce (2002)ypes and Programming Languag®sIT Press.

Gordon Plotkin (1977)LCF considered as a programming languageheoretical Computer Scienée pp.
225-255, doi:10.1016/0304-3975(77)90044-5.

Garrel Pottinger (19804 type assignment for the strongly normalizableerms In: To H. B. Curry: essays
on combinatory logic, lambda calculus and formaligtmademic Press, pp. 561-577.

Lukas Rytz & Martin Odersky (2010Named and default arguments for polymorphic object-oadnian-
guages In: OOPS’10 ACM Press, pp. 2090-2095, doi:10.1145/1774088.1774529.

Peter Sewell, James J. Leifer, Keith Wansbrough, MdlierAWilliams, Francesco Zappa Nardelli, Pierre
Habouzit & Viktor Vafeiadis (2007)Acute: High-level programming language design for disitéd compu-
tation: Design rationale and language definitiafournal of Functional Programmiig (4-5), pp. 547-612,
doi{10.1017/S0956796807006442.

Walid Taha & Tim Sheard (2000MetaML and multi-stage programming with explicit annotas Theo-
retical Computer Scien@48(1-2), pp. 211-242, dpi:10.1016/S0304-3975(00)0aD53

Eric Tanter (2009)Beyond Static and Dynamic Scope: Dynamic Languages Symposium’08CM Press,
pp. 3—14, doi:10.1145/1640134.1640137.

Betti Venneri (1994)iIntersection Types as Logical Formuladournal of Logic and Computatiai2), pp.
109-124, doi:10.1093/logcom/4.2.109.

http://dx.doi.org/10.1145/1391289.1391293
http://dx.doi.org/10.1145/1159803.1159808
http://dx.doi.org/10.1023/A:1010087314987
http://dx.doi.org/10.1017/S095679680500568X
http://dx.doi.org/10.1016/0304-3975(77)90044-5
http://dx.doi.org/10.1145/1774088.1774529
http://dx.doi.org/10.1017/S0956796807006442
http://dx.doi.org/10.1016/S0304-3975(00)00053-0
http://dx.doi.org/10.1145/1640134.1640137
http://dx.doi.org/10.1093/logcom/4.2.109

	1 Calculus
	2 Type system
	3 Soundness of the type system
	4 Conclusion

