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Type theories with higher-order subtyping or singleton types are examples of systems where compu-
tation rules for variables are affected by type information in the context. A complication for these
systems is that bounds declared in the context do not interact well with the logical relation proof of
completeness or termination. This paper proposes a natural modification to the type syntax for Fω

≤ ,
adding a variable’s bound to the variable type constructor, thereby separating the computational be-
havior of the variable from the context. The algorithm for subtyping in Fω

≤ can then be given on types
without context or kind information. As a consequence, the metatheory follows the general approach
for type systems without computational information in the context, including a simple logical relation
definition without Kripke-style indexing by context. This new presentation of the system is shown to
be equivalent to the traditional presentation without bounds on the variable type constructor.

1 Introduction

Logical relations are a powerful technique for proving metatheoretic properties of type theories. The
traditional approach to the metatheory of type theories, for example that of Pure Type Systems [2],
studies properties of untyped reduction and conversion, and then completes the study of type-checking
by proving strong normalization with a logical relation construction.

This approach has been difficult to adapt to systems where variables may behave differently accord-
ing to context information. Examples where this may occur are type systems with singleton types, where
a variable of a singleton type is equal to the unique element of the type, or subtyping, where a type
variable may be replaced by its bound in a derivation of subtyping. The key difficulty is that strong
normalization of a term or termination of subtyping on higher-order types depends on information in the
context, but that normalization or termination also needs to be closed under replacement by equal con-
texts, in order to model the constructors that introduce the computational information into the context.

For example, in Fω
≤ , consider a putative proof of strong normalization in the case of a derivation of

X ≤ A : ?→ ? ` X(C) : ?. Such a proof would have a hypothesis that A(C) is strongly normalizing, since
the model must allow a variable to be replaced by its bound, referred to as promotion. However, to model
the rule that ` ∀X ≤ A : ?→ ?.X(C) = ∀X ≤ B : ?→ ?.X(C) : ?, we would need that B(C) is strongly
normalizing for arbitrary B such that ` A = B : ?→ ? before constructing the model; the behavior of
X(C) varies according to its context.

Several papers have addressed systems of this type, but each of these approaches differs from the
usual approach to metatheory of type theories. Compagnoni and Goguen [7, 6] use an algorithm where
a variable’s bound is normalized before promoting the variable. This allows context replacement to be
proved before the completeness proof, but it seems to be an odd requirement and was only introduced
to get the proof to work. Furthermore, the algorithm is less efficient than an algorithm that postpones
normalization of the bound. Stone and Harper [13] prove termination for an algorithm for singletons
using the unnormalized singleton rather than normalizing it first. Their Kripke-style proof indexes the

http://dx.doi.org/10.4204/EPTCS.45.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Relating Church-Style and Curry-Style Subtyping

model with sets of possible contexts in which a term is well-typed. In the example above, the possible B
are limited by considering contexts that arise from bounds introduced by the ∀ constructor. This differs
from the standard Kripke-style proof of strong normalization, which is relative to a single context.

In this paper we propose separating the computational behavior of variables from the context. We
introduce a modified type structure for Fω

≤ [3, 4, 11], where the type constructor for variables is XA with
the variable’s bound A explicitly mentioned. We call this presentation “à la Church” for its obvious
similarity to type labels on λ -abstractions, and we call the traditional presentation “à la Curry”. With
this change, the term structure tells us how promotion will be used without reference to the context.

This presentation allows us to give a kind- and context-free definition of the algorithm for subtyping,
since the only use of the context in the traditional algorithm is when a variable is replaced with its
bound. This in turn leads to an approach to the metatheory consistent with the usual approach for type
theories, since promoting a variable to a type convertible with its bound, the cause of the difficulties in
the system without bounded variables, is never necessary. In our example above, the terms would be
∀X ≤ A : ?→ ?.XA(C) = ∀X ≤ B : ?→ ?.XB(C): the behavior of XA(C) and XB(C) is fixed regardless of
context.

While changing the term structure could be considered a syntactic trick, in our opinion our presen-
tation points to a deficiency in the syntax of the traditional term structure of Fω

≤ . In general, model
constructions work best when there is a close relationship between terms and derivations: this is best
illustrated by Streicher’s extended term structure and partial interpretation for the Calculus of Construc-
tions [14]. The inability to construct traditional models to show decidability of higher-order subtyping
for the expected algorithm suggests that the type structure of Fω

≤ is inappropriate. We believe that the
trick is that the syntax without bounded type variables works at all. The equivalence of the two pre-
sentations shows that the additional information necessary for the model construction can be ignored in
programs.

The system Full Fω
≤ , with contravariance in the bounds of quantified types, further illustrates our

point. Surprisingly, in contrast to the system with unlabeled type variables, the algorithm for subtyping
for Full Fω

≤ with bounded variables cannot be defined. Essentially, when the implicit contravariant
type information in the unlabeled types is made explicit, the side conditions distinguishing variable
reflexivity from promotion cannot be expressed in a valid inductive definition. We shall discuss the
technical reasons that the definition fails in more detail when we define the algorithm for Kernel Fω

≤ .
However, the inability to define the algorithm for Full Fω

≤ over the explicit type structure gives a strong
indication that the unlabeled type structure is an inadequate representation of types for Fω

≤ , rather than
the addition of bound information to the type being a trick.

The correctness of the traditional system à la Curry is a consequence of the equivalence of the two
presentations. There are two substantial differences in the treatment of the new system. First, because
variables mention their bound explicitly, the new presentation exposes the difference between the opera-
tions of renaming [X ← Y ], which changes variable names but does not change the bound, and substitu-
tion of a variable, [YB/X ], which replaces the bound of X . Secondly, the subtyping judgement is needed
in the formulation of the inference rules for the kinding judgement, for example in the rule TVAR for
kinding a type variable: this is not necessary in the traditional presentation.

In this paper we address all of the complications listed above. We first study the properties of the
subtyping relation, including completeness and correctness, anti-symmetry, transitivity elimination and
decidability. We complete our development by showing that our system is equivalent to the traditional
one without bounds. We ignore completely the term language, since its metatheory is standard once
decidability of subtyping has been proved. As such, we do not treat substitution for bounded variables
as occur in ∀, since this substitution only occurs in the reduction relation for terms.
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2 Syntax

We now present the term constructors, judgements and rules of inference for kinding and subtyping in
Fω
≤ .

2.1 Syntactic Categories

The kinds of Fω
≤ are the kind ? of proper types and the kinds K → K′ of functions on types and type

operators. We assume an infinite collection of type variable names X ,Y,Z, .... The types include variables
with explicit bounds XA; the top type T?; function types A→ B; and types ∀X ≤ A : K.B of polymorphic
functions, in which the bound type variable X ranges over all subtypes of the upper bound A. Moreover,
like Fω , we allow types to be abstracted on types, of the form ΛX : K.A, and we can apply types to
argument types A(B). Contexts Γ,∆ are either the empty context () or extended contexts Γ,X ≤ A : K.

We identify types that differ only in the names of bound variables. We write A(B1, ...,Bn) for
(A(B1))...(Bn). If A ≡ XC(B1, ...,Bn) then A has head variable XC; we write HV(−) for the partial
function returning the head variable of a type. We also extend the top type T? to any kind K by defining
inductively TK→K′ = ΛX : K.TK′ . We use X : K as an abbreviation for X ≤ TK : K in contexts; in this
case we say X is a variable without a bound.

Because type variables are decorated with their bounds, we need to be careful with our definition of
substitution: specifically, a renaming should be restricted to renaming the variables in the bound A of
a variable XA, as opposed to changing the bound as may occur in a substitution of YB for X in XA. We
therefore define parallel substitutions γ,δ as either the empty substitution (); the extension of a parallel
substitution γ with a renaming of a variable X by another variable Y , written γ[X ← Y ]; or the extension
of a parallel substitution γ with a substitution of a variable X by a type A, written γ[A/X ]. We say γ is a
renaming if γ = () or if γ = γ0[X ←Y ] with γ0 a renaming. We write idΓ for the identity renaming of the
type variables declared in Γ.

We write B[γ] for the capture-avoiding simultaneous replacement of each of the variables by its
corresponding value, defined as follows on variables and lifted in the usual way to arbitrary types:

• XA[()] = XA.

• XA[γ[X ← Y ]] = YA[γ[X←Y ]].

• XA[γ[Y ← Z]] = XA[γ[Y←Z]], if X 6= Y .

• XA[γ[B/X ]] = B.

• XA[γ[B/Y ]] = XA[γ[B/Y ]], if X 6= Y .

Observe that B cannot be a variable Y or Z in the last two equations, but must instead be a bounded type
variable YC or ZD.

We also write B[A/X ] for the parallel substitution that is the identity renaming on the free variables
in B other than X , and the substitution of X by A. We have standard properties of parallel substitution, for
example that A[γ][δ ]≡ A[γ ◦δ ] and (γ[A/X ])◦δ = (γ ◦δ )[Aδ/X ]. We also write A�B for the standard
notion of one-step β -reduction. We have the standard property of Church–Rosser for reduction.

2.2 Judgements and Rules of Inference

The judgement forms are Γ ` A : K for well-kinded types and Γ ` A≤ B : K for subtyping. We sometimes
write Γ ` ok for Γ ` T? : ?, formalizing the well-formedness of Γ, and Γ ` A = B : K for Γ ` A ≤ B : K
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and Γ ` B ≤ A : K. We may also use the metavariable J to range over statements (right-hand sides of
judgements) of any of these judgement forms.

The rules of inference are presented as simultaneously defined inductive relations over the judge-
ments. We start with several admissible structural rules, and follow with the kinding and subtyping
rules.

2.2.1 Kinding Rules

The following rules formalize the judgement Γ ` A : K, stating that the type A is well-formed and of kind
K in context Γ.

() ` T? : ? (TOPEMP)

Γ ` A : K X /∈ dom(Γ)

Γ,X ≤ A : K ` T? : ?
(TOPEXT)

Γ ` B : K Γ ` A≤ B : K X ≤ A : K ∈ Γ

Γ ` XB : K
(TVAR)

Γ,X : K ` A : K′

Γ ` ΛX : K.A : K→ K′
(TABS)

Γ ` A : K→ K′ Γ ` B : K
Γ ` A(B) : K′

(TAPP)

Γ ` A : ? Γ ` B : ?
Γ ` A→ B : ?

(ARROW)

Γ,X ≤ A : K ` B : ?
Γ ` ∀X ≤ A : K.B : ?

(ALL)

Notice that in rule TVAR it is possible that X ∈ FV(B) when Γ ` XB : K. The premise that Γ ` B : K
in this rule ensures that Subject Reduction goes through smoothly, without needing to refer to subtyping.

2.2.2 Subtyping Rules

Finally, the following rules formalize the judgement Γ ` A ≤ B : K, stating that type A is a subtype of
type B and both are well-formed of kind K in context Γ.

Γ ` A : K
Γ ` A≤ A : K

(S-REFL)

Γ ` A≤ B : K Γ ` B≤C : K
Γ ` A≤C : K

(S-TRANS)

Γ ` A : K
Γ ` A≤ TK : K

(S-TOP)

Γ ` A≤ B : K Γ ` B =C : K X ≤ A : K ∈ Γ

Γ ` XB ≤ XC : K
(S-TVAR)

Γ ` A≤ B : K Γ ` B : K X ≤ A : K ∈ Γ

Γ ` XB ≤ B : K
(S-PROMOTE)

Γ,X : K ` A≤ B : K′

Γ ` ΛX : K.A≤ ΛX : K.B : K→ K′
(S-TABS)
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Γ ` A≤C : K→ K′ Γ ` B = D : K
Γ ` A(B)≤C(D) : K′

(S-TAPP)

Γ ` B1 ≤ A1 : ? Γ ` A2 ≤ B2 : ?
Γ ` A1→ A2 ≤ B1→ B2 : ?

(S-ARROW)

Γ ` A =C : K Γ,X ≤ A : K ` B≤ D : ?
Γ ` ∀X ≤ A : K.B≤ ∀X ≤C : K.D : ?

(S-ALL)

Γ,X : K ` A : K′ Γ ` B : K
Γ ` (ΛX : K.A)(B)≤ A[B/X ] : K′

(S-BETAL)

Γ,X : K ` A : K′ Γ ` B : K
Γ ` A[B/X ]≤ (ΛX : K.A)(B) : K′

(S-BETAR)

3 The Algorithm

In this section we define the algorithm for kinding and subtyping.
First, we define the relations→w for weak-head reduction and �n for reduction to normal form.

Definition 3.1 • (ΛX : K.A)(B)→w A[B/X ].

• A(B)→w C(B) if A→w C.

• T? �n T?.

• XA(B1, ...,Bn)�n XC(D1, ...,Dn) if A �n C and Bi �n Di for 1≤ i≤ n.

• ΛX : K.A �n ΛX : K.B if A �n B.

• A→ B �n C→ D if A �n C and B �n D.

• ∀X ≤ A : K.B �n ∀X ≤C : K.D if A �n C and B �n D.

• A �n C if A→w B and B �n C.
We also write A ↓n B iff there is a C such that A �n C and B �n C, and A ↓n iff there is a C such that
A �n C.

Lemma 3.2 If A �n C and A�B then B �n C.

The algorithm has a judgement for kinding, Γ`A A : K, and two judgements for subtyping, `A A≤W B
for subtyping weak-head normal forms, and `A A ≤ B for subtyping arbitrary types. The judgement
Γ `A A : K corresponds to type inference: the context Γ and type A are inputs, and the kind K is an
output. The algorithm for subtyping is analogous to untyped conversion in the λ -calculus: it is purely
a computational relation, without reference to kind information. Furthermore, the algorithm for kinding
does not refer to subtyping, because subtyping is used for the term language of Fω

≤ and not for types.
The algorithm is defined by the following rules of inference. It is syntax-directed, and it will be shown

to be terminating on well-formed types. Clearly types do not need to be well-formed to be subjects of
the algorithmic subtyping judgement. Since algorithmic subtyping incorporates weak-head reduction, it
is also clearly not terminating in general.

Γ `A T? : ? (AT-TOP)

X ≤ A : K ∈ Γ

Γ `A XA : K
(AT-TVAR)

Γ,X : K `A A : K′ X /∈ dom(Γ)

Γ `A ΛX : K.A : K→ K′
(AT-TABS)
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Γ `A A : K→ K′ Γ `A B : K
Γ `A A(B) : K′

(AT-TAPP)

Γ `A A : ? Γ `A B : ?
Γ `A A→ B : ?

(AT-ARROW)

Γ `A A1 : K
Γ,X ≤ A1 : K `A A2 : ? X /∈ dom(Γ)

Γ `A ∀X ≤ A1 : K.A2 : ?
(AT-ALL)

HV(A) undefined and A is not an abstraction
`A A≤W T?

(AWS-TOP)

XA(B1, ...,Bn) ↓n XC(D1, ...,Dn)

`A XA(B1, ...,Bn)≤W XC(D1, ...,Dn)
(AWS-TVAR)

`A A(B1, ...,Bn)≤C C 6↓n XA(B1, ...,Bn)

`A XA(B1, ...,Bn)≤W C
(AWS-PROMOTE)

`A A≤ B
`A ΛX : K.A≤W ΛX : K.B

(AWS-TABS)

`A B1 ≤ A1 `A A2 ≤ B2

`A A1→ A2 ≤W B1→ B2
(AWS-ARROW)

A1 ↓n B1 `A A2 ≤ B2

`A ∀X ≤ A1 : K.A2 ≤W ∀X ≤ B1 : K.B2
(AWS-ALL)

A �w C B �w D `A C ≤W D
`A A≤ B

(AS-INC)

The rule for subtyping of bounded variables, S-TVAR, states that XA is less than XB if A and B are
equal. The algorithmic presentation of this system needs a side condition, independent of the algorithm,
to determine whether to apply rule AWS-TVAR or rule AWS-PROMOTE: in our presentation of Kernel
Fω
≤ , this is whether the left- and right-hand sides are convertible. On the other hand, a translation of

Full Fω
≤ with bounded variables requires the premise Γ ` B ≤ A : K in AWS-TVAR to demonstrate the

equivalence of the explicit and unlabeled type presentations. However, the algorithm cannot be defined
with this premise, because the negation of this premise in AWS-PROMOTE requires a negative occurrence
of the judgement being defined, which is not a valid inductive definition.

Also, observe that while the comparison A 6↓n XA(B1, ...,Bn) in AWS-PROMOTE might hold if either
side diverges, in practice the algorithm will always be applied to well-formed terms, which will be shown
to be terminating.

4 Metatheory

In this section we develop the basic metatheory for the algorithm.
We begin with the relations A >P B, formalizing a use of promotion, and A >S B, formalizing B an

immediate subterm of A, both for A weak-head normal.

Definition 4.1

• XA(B1, ...,Bn)>P A(B1, ...,Bn).

• – ΛX : K.A >S A.
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– A1→ A2 >S A1 and A1→ A2 >S A2.
– ∀X ≤ A1 : K.A2 >S A2.

Definition 4.2 (Strong Normalization, Termination) We define the following predicates inductively:

• SN(A) iff SN(B) for all B such that A�B.

• T (A) iff T (B) for all B such that A�B, A >P B or A >S B.

The predicate T (A), or A is terminating, formalizes the possible types that the algorithm may en-
counter when invoked on a judgement containing A. As for strong normalization, a base case for T (A)
would be a type with no reducts.

Lemma 4.3 We have the following properties of T (−) and SN(−):

1. T (A) implies SN(A).

2. T (A) implies A ↓n.

3. If T (A) and A�B then T (B).

4. T (T?).

5. T (A) iff T (ΛX : K.A).

6. T (TK).

7. T (A) and T (B) iff T (A→ B).

8. SN(A) and T (B) iff T (∀X ≤ A : K.B).

9. If A >P B then T (A) iff T (B).

10. SN(Ai) for 1≤ i≤ n iff T (XTK (A1, ...,An)).

11. If T (A), T (B), A(B)→w C and T (C) then T (A(B)).

Proof The only case that is difficult is Case 11, which follows by standard λ -calculus properties.

Proposition 4.4 (Decidability) If T (A) and T (B) then `A A≤ B and `A A≤W B terminate.

Proof By induction on the sum of the length of the derivations of T (A) and T (B).
There are two cases: either A or B has a weak-head reduct or they are both weak-head normal. In the

first case the result follows by induction hypothesis. Otherwise, by inspection:

• A≡ T?. If B≡ T? then `A A≤ B succeeds, otherwise it fails.

• A ≡ XC(D1, ...,Dn). If B ≡ XE(F1, ...,Fn) then C ↓n E and Di ↓n Fi terminate, since T (A) implies
A ↓n and T (B) implies B ↓n, so if these conditions hold then `A A≤ B succeeds.

Otherwise, XC(D1, ...,Dn) >P C(D1, ...,Dn), so `A C(D1, ...,Dn) ≤ B terminates by induction hy-
pothesis, so `A A≤ B succeeds or fails as `A C(D1, ...,Dn)≤ B does.

• A≡ A1→ A2. If B≡ T? then `A A≤ B succeeds. If B≡ B1→ B2 then `A B1 ≤ A1 and `A A2 ≤ B2
terminate by induction hypothesis, since A1 → A2 >S Ai for i ∈ {1,2} and similarly for B, so
`A A1→ A2 ≤ B1→ B2 terminates.

Otherwise, `A A≤ B fails.
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• A ≡ ∀X ≤ A1 : K.A2. If B ≡ T? then `A A ≤ T? succeeds. If B ≡ ∀X ≤ B1 : K.B2 then A1 ↓n B1
terminates because T (A1) and T (B1) imply A1 ↓n and B1 ↓n. Furthermore, ∀X ≤ A1 : K.A2 >S A2
and ∀X ≤ B1 : K.B2 >S B2, so `A A2 ≤ B2 terminates by induction hypothesis, and `A ∀X ≤ A1 :
K.A2 ≤ ∀X ≤ B1 : K.B2 succeeds or fails as `A A2 ≤ B2 does.
Otherwise, `A A≤ B fails.

• A ≡ ΛX : K.A1. If B ≡ ΛX : K.B1 then ΛX : K.A0 >S A0 and ΛX : K.B0 >S B0, so `A A1 ≤ B1
terminates by induction hypothesis, and `A ∀X : K.A0 ≤ ∀X : K.B0 succeeds or fails as `A A1 ≤ B1
does.
Otherwise, `A A≤ B fails.

Lemma 4.5 (Reflexivity) If T (A) then `A A≤ A.

Proof We show `A A≤W A for weak-head normal A and `A A≤ A for all A, by induction on T (A).
If A is weak-head normal then the proof proceeds by case analysis. For example, suppose A ≡

XB(C1, ...,Cn). Then SN(B) and SN(Ci) for 1 ≤ i ≤ n, so B ↓n B and Ci ↓n Ci, so `A XB(C1, ...,Cn) ≤W

XB(C1, ...,Cn).
For arbitrary A, A �w B and `A B ≤W B immediately if A is weak-head normal or otherwise by

induction hypothesis.

Lemma 4.6 (Subject Conversion) If `A A≤ B, A ↓n A′, and B ↓n B′ then `A A′ ≤ B′.

Proof By induction on derivations of `A A≤ B, using Church–Rosser for AWS-PROMOTE.

Lemma 4.7 (Normalization) If `A A≤ B then there are A′ and B′ such that A �n A′ and B �n B′.

The following lemma simply states that promotion is always valid, even if the side condition of AWS-
PROMOTE is not satisfied. This is true because if the side condition is not satisfied then AWS-TVAR can
be applied.

Lemma 4.8 (Promotion) If `A B≤C, A >P B and there is a D such that A �n D then `A A≤C.

Proof By Normalization there is a D such that C �n D. If C ↓n A then `A A ≤C by AWS-TVAR, and
otherwise `A A≤C by AWS-PROMOTE.

Lemma 4.9 (Transitivity) If `A A≤ B and `A B≤C then `A A≤C.

Proof By induction on derivations, using Normalization and Subject Conversion in AWS-TVAR and
Promotion in AWS-PROMOTE.

The length of a derivation T (A) includes uses of reduction. To prove Anti-Symmetry, we need a
measure that is invariant under reduction but respects >P.

Definition 4.10 We define an alternative length measure |T (A)| of a derivation of T (A) inductively as:

max({|T (B)| for B such that A�B}∪{|T (C)|+1 for C such that A >P C})

Observe that |T (A)| does not depend on >S.

Lemma 4.11 We have the following properties of the predicate T (A) and the measure |T (A)| of deriva-
tions of T (−):

1. If T (A) and A �n B then |T (A)|= |T (B)|.
2. If T (A), T (B) and A ↓n B then |T (A)|= |T (B)|.
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3. If T (A) and A�B then |T (A)|= |T (B)|.
4. |T (T?)|= 0.

5. If T (ΛX : K.A) then |T (ΛX : K.A)|= 0.

6. If T (A1→ A2) then |T (A1→ A2)|= 0.

7. If T (∀X ≤ A1 : K.A2) then |T (∀X ≤ A1 : K.A2)|= 0.

Lemma 4.12 (Key Lemma) If T (A), T (B) and `A A≤ B then |T (A)| ≥ |T (B)|.

Proof By induction on `A A≤ B, using Lemma 4.11.
Specifically, notice that the Key Lemma allows us to prove directly that `A A(B1, ...,Bn)≤XA(B1, ...,Bn)

is impossible, since |T (XA(B1, ...,Bn))| > |T (A(B1, ...,Bn))| by definition. We use this fact in the proof
of Anti-Symmetry.

Lemma 4.13 (Anti-Symmetry) If `A A≤ B, `A B≤ A, T (A) and T (B), then A ↓n B.

Proof By induction on derivations `A A≤ B and `A B≤ A.
We consider two cases:

• AWS-PROMOTE is used in deriving `A A ≤ B. This is a base case with no use of the induction
hypothesis. By the Key Lemma |T (A(B1, ...,Bn))| ≥ |T (C)|, and |T (C)| ≥ |T (XA(B1, ...,Bn))|,
so |T (A(B1, ...,Bn))| ≥ |T (XA(B1, ...,Bn))|. However, |T (XA(B1, ...,Bn))| > |T (A(B1, ...,Bn))| by
definition, which is a contradiction by trichotomy.

• AWS-TABS is used in deriving `A A≤ B and `A B≤ A. Then A≡ ΛX : K.A1 and B≡ ΛX : K.B1
for some A1 and B1, with `A A1 ≤ B1 and `A B1 ≤ A1. By definition ΛX : K.A1 >S A1 implies
T (A1) and similarly T (B1), so by induction hypothesis A1 ↓n B1, and so ΛX : K.A1 ↓n ΛX : K.B1.

5 Completeness of the Algorithm

We now perform the logical relation proof to show completeness and decidability of the algorithm.

Definition 5.1 (Semantic Object) A type A is a semantic object at kind K, written SOK(A), iff T (A) and
`A A≤ TK .

As for typical strong normalization proofs, this notion of semantic object does not require well-
formedness.

Definition 5.2 (Interpretation) The interpretations of a kind K, |= A ∈K and |= A≤ B ∈K, are defined
by induction on K:

• |= A ∈ ? iff SO?(A).

• |= A≤ B ∈ ? iff SO?(A), SO?(B) and `A A≤ B.

• |= A ∈ K→ K′ iff SOK→K′(A) and |= A(B) ∈ K′ for all B such that |= B ∈ K.

• |= A≤ B ∈ K→ K′ iff SOK→K′(A), SOK→K′(B), `A A≤ B and |= A(C)≤ B(C) ∈ K′ for all C such
that |=C ∈ K.

The interpretation extends to parallel substitutions |= γ ∈ Γ as follows:

• |= () ∈ ().
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• |= γ[X ← Y ] ∈ Γ,X ≤ A : K iff |= γ ∈ Γ.

• |= γ[A/X ] ∈ Γ,X : K iff |= γ ∈ Γ and |= A ∈ K.

Observe that variables in the context of the form X ≤ A : K where A 6≡ TK can only take renamings
[X ← Y ]. These variables are never subject to substitution, since they cannot become the bound variable
of an abstraction.

Lemma 5.3 (Saturated Sets) The following properties hold for |= A ∈ K and |= A≤ B ∈ K:

1. If |= A≤ B ∈ K then |= A ∈ K and |= B ∈ K.

2. If |= A ∈ K then SOK(A).

3. If |= A≤ B ∈ K then `A A≤ B.

4. If |= A ∈ K then |= A≤ A ∈ K.

5. |= TK ∈ K.

6. If |= A ∈ K then |= A≤ TK ∈ K.

7. If |= B ∈ K and A >P B then |= A ∈ K, and similarly for the left- and right-hand sides of |= A ≤
B ∈ K.

8. If |= B ∈ K, T (A) and A→w B then |= A ∈ K, and similarly for the left-hand side of |= A≤ B ∈ K.

9. If |= A′ ≤ B′ ∈ K, A ↓n A′, B ↓n B′, T (A) and T (B) then |= A≤ B ∈ K.

10. If |= A≤ B ∈ K and |= B≤C ∈ K then |= A≤C ∈ K.

Proof By induction on K, using for example Reflexivity for Case 4, Cases 2 and 4 for Case 6, Lemma 4.3
Case 9 and Promotion for Case 7, and Transitivity for Case 10.

Theorem 5.4 (Completeness) Suppose |= γ ∈ Γ. Then:

• If Γ ` A : K then ` A[γ] ∈ K.

• If Γ ` A≤ B : K and |= A[γ]≤ B[γ] ∈ K.

Proof By induction on derivations. We consider several cases.

• TOPEMP. By Lemma 5.3 Case 5.

• TVAR. If γ = γ0[X←Y ] then by induction hypothesis |=B[γ]∈K, and XB[γ] >P B[γ], so |=XB[γ] ∈K
by Lemma 5.3 Case 7.
If γ = γ0[A/X ] then |= A ∈ K by definition.

• TABS. By definition |= γ[X ← Y ] ∈ Γ,X : K, so by induction hypothesis |= A[γ[X ← Y ]] ∈ K′, so
T (A[γ[X ← Y ]]) implies T ((ΛX : K.A)[γ]≡ ΛY : K.A[γ[X ← Y ]]) by Lemma 4.3.
Furthermore, if |= B ∈ K then |= γ[B/X ] ∈ Γ,X : K by definition. We have |= A[γ[B/X ]] ∈ K′ by
induction hypothesis and T (A[γ[B/X ]]) by definition. Then T ((ΛX : K.A)[γ]) above and T (B) by
Lemma 5.3, and (ΛX : K.A)[γ](B)→w A[γ[B/X ]], so T ((ΛX : K.A)[γ](B)) by Lemma 4.3 Case 11.
Therefore, |= (ΛX : K.A)[γ](B) ∈ K′, and so |= (ΛX : K.A)[γ] ∈ K→ K′.

• ∀. By induction hypothesis |= A[γ]∈K, and |= γ[X←Y ]∈ Γ,X ≤ A : K implies |= B[γ[X←Y ]]∈ ?
by induction hypothesis, so T (A[γ]) and T (B[γ[X ← Y ]]) by Lemma 5.3. Then T ((∀X ≤ A :
K.B)[γ]≡ ∀X ≤ A[γ] : K.B[γ[X ← Y ]]) by Lemma 4.3, so |= (∀X ≤ A : K.B)[γ] ∈ ? by definition.

• S-REFL. By induction hypothesis |= A ∈ K, so by Lemma 5.3 Case 4 |= A≤ A ∈ K.
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• S-TRANS. By induction hypothesis and Lemma 5.3 Case 10.

• S-TOP. By induction hypothesis and Lemma 5.3 Case 6.

• S-TAPP. By induction hypothesis |= A[γ]≤C[γ] ∈ K→ K′ and |= B[γ]≤ D[γ] ∈ K and |= D[γ]≤
B[γ] ∈ K. Then B[γ] ↓n D[γ] by Lemma 5.3 Case 2 and Anti-Symmetry, and by definition |=
(A(B))[γ] ≡ (A[γ])(B[γ]) ≤ (C[γ])(B[γ]) ≡ (C(B))[γ] ∈ K′. We also know |= C[γ] ∈ K → K′ by
Lemma 5.3 and |=D[γ]∈K, so |=(C(D))[γ]≡ (C[γ])(D[γ])∈K′ by definition and SOK′((C(D))[γ])
by Lemma 5.3 Case 2. Therefore (C[γ])(B[γ]) ↓n (C[γ])(D[γ]) implies |= (A(B))[γ]≤ (C(D))[γ] ∈
K′ by Lemma 5.3 Case 9.

Lemma 5.5 |= idΓ ∈ Γ.

Proof By induction on Γ.

Corollary 5.6 (Termination) If Γ ` A≤ B : K then T (A) and T (B), and `A A≤ B.

Corollary 5.7 (Anti-Symmetry) If Γ ` A≤ B : K and Γ ` B≤ A : K then A ↓n B.

Corollary 5.8 If Γ ` TK ≤ A : K then A ↓n TK .

6 Correctness

So far we have not needed any properties of the judgements Γ ` J. We now develop some metatheory
for those judgements and use the results to prove the correctness of the algorithm.

Lemma 6.1 (Context) 1. If Γ ` J then FV(J)⊆ dom(Γ).

2. If X ≤ A : K ∈ Γ and Γ ` ok then X /∈ FV(A).

3. If Γ ` J then Γ ` ok as a sub-derivation.

4. If Γ,Γ′ ` ok then Γ ` ok.

Definition 6.2 (Renaming) γ is a renaming for Γ in ∆ if ∆` ok, γ is a renaming, and γ(X)≤A[γ] : K ∈Γ

for each X ≤ A : K ∈ Γ.

Lemma 6.3 (Renaming) If Γ ` J and γ is a renaming for Γ in ∆ then ∆ ` J[γ].

Lemma 6.4 If Γ,Γ′ ` ok, Γ ` A : K and X /∈ dom(Γ,Γ′) then Γ,X ≤ A : K,Γ′ ` ok.

Proposition 6.5 (Replacement) If Γ,X ≤ B : K,Γ′ ` J, Γ ` A ≤ B : K and Γ ` A : K then Γ,X ≤ A :
K,Γ′ ` J.

Proposition 6.6 (Thinning) If Γ,Γ′ ` J, Γ ` A : K and X /∈ dom(Γ,Γ′) then Γ,X ≤ A : K,Γ′ ` J.

Proof By Lemmas 6.1 and 6.4 Γ,X ≤ A : K,Γ′ ` ok. Observe that idΓ is a renaming for Γ,Γ′ in Γ,X ≤
A : K,Γ′. Then Γ,X ≤ A : K,Γ′ ` J by Renaming.

Proposition 6.7 (Substitution) If Γ,X : K,Γ′ ` J and Γ ` A : K then Γ,Γ′[A/X ] ` J[A/X ].

Lemma 6.8 (Subject Reduction) If Γ ` A : K and A�B then Γ ` A = B : K.

Proof By induction on derivations.
Add generation.
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Proposition 6.9 (Correctness) The algorithm is correct for the declarative judgements:

• If Γ ` ok and Γ `A A : K then Γ ` A : K.

• If Γ ` A,B : K and `A A≤W B then Γ ` A≤ B : K.

• If Γ ` A,B : K and `A A≤ B then Γ ` A≤ B : K.

Proof By induction on derivations, using Context and Renaming in AT-TVAR; the generation prop-
erty and Subject Reduction for AWS-TVAR; the generation property for AWS-TOP and AWS-PROMOTE;
Subject Reduction and Context Replacement in AWS-ALL, and Subject Reduction for AS-INC.

Corollary 6.10 (Decidability of Subtyping) Subtyping is decidable.

Proof Suppose Γ ` A,B : K. By Corollary 5.6 T (A) and T (B), and so `A A≤ B is decidable by Propo-
sition 4.4, and so by Correctness, Γ ` A≤ B : K is also decidable.

7 Relationship with Traditional Fω
≤

We now show that the system with the bounded variable constructor is equivalent to the traditional
presentation of the system, without bounds in the variable constructor.

Explicitly, we take the syntax of traditional Fω
≤ [5, 12], which differs from the syntax presented here

only by having a type constructor X instead of the bounded type constructor XA. We write judgements in
this system as Γ `T J, with the decoration T for traditional. The rules of inference are also standard: we
include two rules here but refer the reader to the standard references for the complete system.1

Γ `T A,B : K A =β B
Γ `T A≤ B

(TS-CONV)

Γ `T A≤ B Γ `T A(C) : K
Γ `T A(C)≤ B(C)

(TS-TAPP)

Definition 7.1 (Decoration) Decoration of a type, AΓ, where Γ is a context in the system with bounded
variables, is a partial function that maps types from the Curry-style presentation to the more explicit
structure à la Church:

• XΓ = XB, if X ≤ B : K ∈ Γ.

• (A→ B)Γ = AΓ→ BΓ.

• (∀X ≤ A : K.B)Γ = ∀X ≤ AΓ : K.BΓ,X≤A:K .

• (ΛX : K.A)Γ = ΛX : K.AΓ,X :K .

• (A(B))Γ = AΓ(BΓ).

• (T?)
Γ = T∗.

The extension to contexts, Γd , is defined in the obvious way:

• ()d = ().

• (Γ,X ≤ A : K)d = Γd ,X ≤ AΓd
: K.

1However, [5] has intersection types rather than an explicit rule for T?.
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Definition 7.2 (Erasure) The erasure map is simply the homomorphic extension of the stripping of the
bound from the variable constructor:

|XA| = X

The extension to contexts is also the homomorphic extension.

Decoration and erasure have some simple properties, most important of which is that both preserve
β -equality:

Lemma 7.3 • If A =β B then |A|=β |B|.
• If A =β B and AΓ, BΓ defined then AΓ =β BΓ.

Now, we can relate the Curry and Church presentations of Fω
≤ . The proofs rely on standard properties

of the traditional presentation, for example Church–Rosser for untyped reduction, Generation properties,
well-formedness of contexts, well-kindedness of subtyping, and uniqueness of kinds.

Lemma 7.4 (Soundness) • If Γ `T A : K then Γd and AΓd
are defined and Γd ` AΓd

: K.

• If Γ `T A≤ B and Γ `T A,B : K then Γd , AΓd
, BΓd

are well-formed and Γd ` AΓd ≤ BΓd
: K.

Proof We consider the rule TS-CONV. By Church–Rosser, there exists a C such that A�∗C and B�∗C.
By Lemma 7.3, AΓd

�∗CΓd
and BΓd

�∗CΓd
. By the induction hypothesis, Γd ` AΓd

: K and Γd ` BΓd
: K.

By Subject Reduction, Γd ` AΓd
=CΓd

: K and Γd ` BΓd
=CΓd

: K, and we have Γd ` AΓd ≤CΓd
: K and

Γd `CΓd ≤ BΓd
: K by definition. Finally, by S-TRANS, Γd ` AΓd ≤ BΓd

: K.

Lemma 7.5 (Completeness) • If Γ ` A : K then |Γ| `T |A| : K.

• If Γ ` A≤ B : K then |Γ| `T |A| ≤ |B| and |Γ| `T |A|, |B| : K.

Proof We consider the rule S-TAPP. By the induction hypothesis, |Γ| `T |A| ≤ |C|, |Γ| `T |A|, |C| : K→
K′, |Γ| `T |B| ≤ |D|, and |Γ| `T |B|, |D| : K. By the kinding rule for type application in the traditional
presentation and the definition of erasure, we have |Γ| `T |AB|, |CB|, |CD| : K′, and by TS-TAPP |Γ| `T

|AB| ≤ |CB|. By Anti-Symmetry B =β D, and |B|=β |D| by Lemma 7.3, so |CB|=β |CD|. By TS-CONV

|Γ| `T |CB| ≤ |CD|, and finally, by Transitivity, |Γ| `T |AB| ≤ |CD|.
The important metatheoretic results for subtyping now transfer straightforwardly to the traditional

one.

Corollary 7.6 • If Γ `T A : K then A is strongly normalizing.

• Typechecking Γ `T A : K and subtyping Γ `T A≤ B : K are decidable.

• If Γ `T A≤ B, Γ `T B≤ A, Γ `T A : K and Γ `T B : K then A =β B.

8 Related and Future Work

An earlier version of this article was published in the unrefereed proceedings of Henk Barendregt’s
Festschrift [9]. The current paper extends the results of the earlier version by showing the equivalence
with the traditional presentation of the system.

In an earlier paper [7], we considered an algorithm that reduces types to normal form before invoking
the promotion rule in the algorithm. This makes context replacement trivial for equal types, since they
have the same normal form and so altering the context does not alter the path of types considered by the
algorithm. However, this algorithm is not optimal, since it normalizes the head earlier than necessary.
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That earlier paper also used a typed operational semantics to show termination of the algorithm. This
gave a more extensive treatment of the metatheory, and the admissibility of thinning, substitution and
context replacement were consequences of the model. Furthermore, Subject Reduction was straightfor-
ward in the typed operational semantics. In the current paper, finding the exact formulation necessary to
show these results in the declarative system Γ ` J turned out to be somewhat subtle, since the kinding
judgement uses the subtyping judgement for the bounded variable rule. However, the approach using
typed operational semantics was also longer and less approachable, and involved Kripke models for the
proof of completeness. We hope that the current paper is clearer by not defining an intermediate system.

In separate work [8], we also proved anti-symmetry of higher-order subtyping using the typed opera-
tional semantics. The basic idea of that paper was to include the sub-derivation of replacing the variable
in a bounded head variable expression XA(B1, ...,Bn) with its bound, A(B1, ...,Bn). This idea is captured
in the current paper by the T (−) predicate. The T (−) predicate is also similar to Compagnoni’s approach
with +-reduction [5], but we do not need to develop the metatheory of a new reduction relation.

As mentioned in the introduction, Stone and Harper [13] use a logical relation defined over sets
of contexts, instead of the standard logical relations over single contexts, to show termination of an
algorithm for a type theory with singleton types, Σ and Π types, and all of the η rules. Their work does
not normalize the singleton types. This is an elegant solution to the problem of varying contexts, but
it raises the question of why singletons or Fω

≤ should have different requirements on the Kripke-style
relation than other type systems.

Abel [1] has shown equivalence of a subtyping algorithm for higher kinds with polarity by direct
induction on kinds rather than using a logical relation.

There are several directions for future work. We would like to show that a Harper–Pfenning-style
algorithm [10] is correct and complete for the type system. Furthermore, it would be nice to be able
to prove context conversion and Church–Rosser in the model, as can be done for logical relations for
equality, rather than proving them for the algorithm and lifting to the model. However, properties that
follow straightforwardly for equality, such as that |= A = B ∈ K implies |= A = A ∈ K, cannot be shown
so easily for subtyping. Finally, another candidate type construct that we might study with our technique
of explicit type information is singleton types, which also have computational behavior expressed in the
context.

9 Conclusions

We have introduced a natural and powerful extension of the syntax of Fω
≤ and showed that the devel-

opment of the metatheory is similar to the standard metatheory for type theories, specifically without a
Kripke-style model and with a simple inductive definition capturing termination of the algorithm. We
have shown all of the important results for the system, including anti-symmetry, transitivity elimination
and decidability of subtyping.
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