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We consider here systems with piecewise linear dynamics that are periodically sampled with a given
period τ . At each sampling time, the mode of the system, i.e., the parameters of the linear dynamics,
can be switched, according to a switching rule. Such systems can be modelled as a special form of
hybrid automata, called “switched systems”, that are automata with an infinite real state space. The
problem is to find a switching rule that guarantees the system to still be in a given area V at the next
sampling time, and so on indefinitely. In this paper, we will consider two approaches: the indirect
one that abstracts the system under the form of a finite discrete event system, and the direct one that
works on the continuous state space.
Our methods rely on previous works, but we specialize them to a simplified context (linearity, periodic
switching instants, absence of control input), which is motivated by the features of a focused case
study: a DC-DC boost converter built by electronics laboratory SATIE (ENS Cachan). Our enhanced
methods allow us to treat successfully this real-life example.

1 Introduction

We are interested here in finding rules for switching the modes of (piecewise) linear systems in order to
make the variables of the system stay within the limits of given area V . The systems that we consider
are periodically sampled with a given period τ . Between two sampling times, the variables follow a
certain system of linear differential equations, corresponding to a mode among several other ones. At
each sampling time, the mode of the system can be switched. Such systems can be modelled as a special
form of hybrid automata, called “switched systems”, that are automata with an infinite real state space.
The problem that we consider here is to find a switching rule that selects a mode ensuring that the system
will still be in V at the next sampling time, and so on indefinitely.

Note that, here, we do not impose that the systems always lies within V between two sampling times,
only at sampling times: if the system goes out of V between two sampling times, then, due to continuity
reasons and because of the “small” size of τ , it will still stay within the close neighborhood of V , and we
assume that such a small deviation is acceptable for the system. This makes the problem simpler than the
one considered, e.g. in [2], where the system is forced to always stay within V .

Note also that the problem here is simpler than the one considered in [12], because, here, only the
switching rule has to be determined, since the control input is fixed. (In [12], the dynamics is of the form
ẋ(t) = Ax(t)+Bu(t), where u(t) is not constant, but an input to be synthesized.)

Finally, our problem is much simplified by the fact that, as in [7], the switching instants can only
occur at times of the form iτ with i ∈ N.

As noted in [2], there are two approaches for solving this kind of problem:
- the indirect approach reduces first the system, via abstraction, into a discrete event system (typically,

a finite-state automaton); this is done in, e.g., [7]. One can thus identify cycles in the graph of the abstract
system, thus inferring possible patterns of modes that enforces the system to stay forever within V .
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- the direct approach works directly on the continuous state space; this is done, e.g., in [2]. One can
thus infer a controllable subspace V ′ of V , within which the existence of a switching rule allowing to stay
forever within V ′ is guaranteed (see, e.g., [12, 9]).

Often, in the indirect approach, the switching rule can be computed off line (under, e.g., the form of a
repeated pattern of modes), while the switching rule has to be computed on line in the direct approach.

Our methods basically rely on previous works, but we specialize them to the simplified context (lin-
earity, periodic switching instants, absence of control input), which is motivated by the features of a
focused case study: a DC-DC boost converter built by electronics laboratory SATIE (ENS Cachan) for
the automative industry. Our enhanced methods allow us to treat successfully this real-life example.

2 Indirect Approach: Approximately Bisimular Methods

2.1 Sampled Switched Systems

In this paper, we consider a subclass of hybrid systems [8], called “switched systems” in [7].

Definition 1 A switched system Σ is a quadruple (Rn,P,P,F) where:

• Rn is the state space

• P = {1, . . . ,m} is a finite set of modes,

• P is a subset of S (R≥0,P) which denotes the set of piecewise constant functions from R≥0 to P,
continuous from the right and with a finite number of discontinuities on every bounded interval of
R>0

• F = { fp | p ∈ P} is a collection of functions indexed by P.

For all p ∈ P, we denote by Σp the continuous subsystem of Σ defined by the differential equation:

ẋ(t) = fp(x(t)).

A switching signal of Σ is a function p ∈P , the discontinuities of p are called switching times. A
piecewise C 1 function x : R>0→ Rn is said to be a trajectory of Σ if it is continuous and there exists a
switching signal p ∈P such that, at each t ∈ R>0, x is continuously differentiable and satisfies:

ẋ(t) = fp(t)(x(t)).

We will use x(t,x,p) to denote the point reached at time t ∈ R>0 from the initial condition x under the
swiching signal x. Let us remark that a trajectory of Σp is a trajectory of Σ associated with the constant
signal x(t) = p, for all t ∈ R>0.

In this paper, we focus on the case of linear switched systems: for all p∈ P, the function fp is defined
by fp(x) = Apx+ bp where Ap is a (n× n)-matrix of constant elements (ai, j)p and bp is a n-vector of
constant elements (bk)p.

In the following, as in [7], we will work with trajectories of duration τ for some chosen τ ∈ R≥0,
called “time sampling parameter”. This can be seen as a sampling process. Particularly, we suppose that
switching instants can only occur at times of the form iτ with i ∈ N. In the following, we will consider
transition systems that describe trajectories of duration τ , for some given time sampling parameter τ ∈
R≥0.

Definition 2 Let Σ = (Rn,P,P,F) be a switched system and τ ∈ R≥0 a time sampling parameter. The
τ-sampled transition system associated to Σ, denoted by Tτ(Σ) , is the transition system (Q,→p

τ ) defined
by:

• the set of states is Q = Rn
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• the transition relation is given by

x→p
τ x′ iff x(τ,x, p) = x′

Let us define: Posti(X) = {x′ | x→i
τ x′ for some x ∈ X}, and

Prei(X) = {x′ | x′→i
τ x for some x ∈ X}. For the sake of brevity, we will use Posti(x) instead of Posti({x})

and Prei(x) instead of Prei({x}).

Example 1 This example is a boost DC-DC converter with one switching cell (see Fig. 1) that is taken
from [7] (see also, e.g., [3, 5, 11]). The boost converter has two operation modes depending on the
position of the switching cell. The state of the system is x(t) = [il(t),vc(t)]T where il(t) is the inductor
current and vc(t) the capacitor voltage. The dynamics associated with both modes are of the form ẋ(t) =
Apx(t)+bp (p = 1,2) with

A1 =
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It is clear that the boost converter is an example of a switched system. We will use the numerical values
of [7]: xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1, vs = 1. The goal of the boost converter is to regulate
the output voltage across the load r0. This control problem is usually reformulated as a current reference
scheme. Then, the goal is to keep the inductor current il(t) around a reference value ire f

l . This can be
done, for instance, by synthesizing a controller that keeps the state of the switched system in an invariant
set centered around the reference value. An example of switching rule is illustrated on Fig. 2. This rule is
periodic of period Td: the mode is 2 on (0, Td

4 ] and 1 on (Td
4 ,Td ]. A.

Figure 1: Electric scheme of the boost DC-DC converter (1 cell)

Figure 2: A switching rule for the 1-cell boost DC-DC converter on one period of length Td (here, τ = Td
4 ,

and the pattern of the switching rule is (2.1.1.1))
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2.2 Approximate bisimulation

In [7], the authors propose a method for abstracting a switched system under the form of a discrete
symbolic model, that is equivalent to the original one, under certain Lyapunov-based stability conditions.
They use an Euclidian metric ‖.‖, and define the approximation of the set of states Rn as follows:

[Rn]η = {x ∈ Rn | xi = ki
2η√

n
, ki ∈ Z, i = 1, . . . ,n},

where η ∈ R≥0 is a state space discretization parameter. The transition relation Tτ(Σ) is approximated as
follows: Let q ∈ [Rn]η and qe = x(τ,q, p) such that q→Tτ (Σp) qe in the real system, let q′ ∈ [Rn]η with
||qe− q′|| < η . Then we have q→Tτ,η (Σp) q′ for the approximated transition relation. The approximate
transition system Tτ,η(Σ) is defined as follows:

Definition 3 The system Tτ,η(Σ) is the transition system (Q,→p
τ,η) defined by:

• the set of states is Q = [Rn]η

• the transition relation is given by

q→p
τ,η q′ iff ‖x(τ,q, p)−q′‖ ≤ η

where ‖.‖ is any metric on Rn.

The notion of “approximate bisimilarity” between systems Tτ(Σ) and Tτ,η(Σ) is defined as follows:

Definition 4 Systems Tτ(Σ) and Tτ,η(Σ) are ε-bisimilar if:

1. (‖x−q‖ ≤ ε ∧q→p
τ,η q′) ⇒ ‖x′−q′‖ ≤ ε

for some x′ = x(τ,x, p) (i.e. for some x′ : x→p
τ x′), and

2. (‖x−q‖ ≤ ε ∧ x→p
τ x′) ⇒ ‖x′−q′‖ ≤ ε

for some q′ ∈ [Rn]η : ‖x(τ,q, p)−q′‖ ≤ η (i.e. for some q′ : q→p
τ,η q′).

The following theorem is given in [7].

Theorem 1 Consider a switched system Σ = (Rn,P,P,F) with P = S (R+,P), a desired precision ε

and a time sampling value τ . Under certain Lyapunov-based stabilization conditions, there exists a space
sampling value η such that the transition systems Tτ(Σ) and Tτ,η(Σ) are approximately bisimilar with
precision ε .

One can guarantee an arbitrary precision ε by choosing an appropriate η : there exists an explicit algebric
relation between ε and η . Furthermore, under certain conditions (stability of Tτ(Σ)), the symbolic model
Tτ,η(Σ) has a finite number of states. One can then use standard techniques of model checking in order
to synthesize a safe switching rule on Tτ,η(Σ) (e.g., letting the system always in the safe area), see e.g.
[1, 10]. The switching rule on Tτ,η(Σ) can also be used to enforce the real system Tτ(Σ) to behave
correctly.

2.3 Simplification for the Case of Linear Dynamics

By focusing on linear dynamics, we are allowed to simplify the more general method of [7] as follows:

1. We are using the infinity norm in order to remove the overlapping of two adjacents bowls of radius η

(reducing it to a set with a norm 0). This is done to prevent non-determinism. Therefore, [Rn]η has
to be changed according to the use of this norm. From now on, [Rn]η = {x ∈ Rn | xi = 2kη k ∈ Z}
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2. The computation of Lyapunov functions are not necessary in our particular case but can be done
by simply computing the infinite sum of a geometric serie to ensure the ε-bisimulation. Stability
criterion relies simply on the eigenvalues of matrices Ai having negative real part. The proof of
ε-bisimilarity is based on the fact that βτε +η ≤ ε (which is true for some η when βτ < 1) (See
[6] for more details).

3. Due to the presence of the exponential of a matrix, the computation of the image of all the points
could be very costly. By using the linearity of the system, we can compute the same results for a
fraction of the initial cost. This is explained in [6].

Example 2 Our simplified method is applied on the boost converter of Example 1: τ = 0.5, V corre-
sponding to il ∈ [3,3.4] and vc ∈ [1.5,1.8], ε = 3.0, η = 1/40.1. See Fig. 3 for one of the connected
component of the full graph. Each cycle in the graph corresponds to a periodic control of the converter
which ensures that the electric variables lie inside the predefined V up to ε . For example, we consider the
cycle going through the vertices: 159,243,173,257,187,271,201,285,215,299,
229,159. This corresponds to the periodic mode control of pattern 12121212122. The result of a simula-
tion under this periodic switching rule is given in Fig. 4 for a starting point x0 = (3.0,1.79). The box V
is delimited by the red lines. One can see that the system largely exceeds the limits of V (but stays inside
the ε-approximation).

3 Direct Approach: Inference of Controllable Subspace

The direct approach works directly on the continuous state space; this is done, e.g., in [2]. One can
thus infer a controllable subspace V ′ of V , within which the existence of a switching rule allowing to stay
forever within V ′ is guaranteed (see, e.g., [12, 9]). We present here a simplified direct method that exploits
the simple features of our framework: linearity, absence of perturbation u, periodicity of the switching
instants.

Consider a box V ⊂ Rn and a time sampling value τ . The following Algorithm 1 computes a set of
controllable polyhedra. Intuitively, after the kth iteration of the loop, Controli is a set of states satisfying
the following property: there exists a sequence of modes σ of length k starting with mode i such that σ

applied to any state of Controli prevents the system to go out of V at any sampling time; alternatively,
after the kth iteration, Uncontrol is a set of states for which, for all sequence σ , there exists a prefix σ ′

which makes the system go outside V . Note that the termination of the procedure is not guaranteed due
to the fact that there are infinitely many polyhedral sets.

1The values used are not the same as the ones used by the authors of [7] due to a rescaling done in [7]
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Figure 3: Synthesized finite-state automaton for 1-cell converter with η = 1
40 and V corresponding to

il ∈ [3,3.4] and vc ∈ [1.5,1.8]

Figure 4: Projected simulation with il on the abscissa, and vc on the ordinates of 1-cell converter for
switching rule (12121212122)∗ starting point x0 = (3.0,1.79) ; The box V = [3,3.4]× [1.5,1.8] is drawn
in red. (ε = 2.6)
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Algorithm 1: Synthesis of controllable subspace
input : A switched system Σ with m modes
input : A time sampling value τ

input : A box V ⊂ Rn

output: A controllable subspace V ′ = {Controli}i=1..m

1 Uncontrolnew :=V
2 for i = 1..m do
3 Controli :=V

4 repeat
5 Uncontrol :=Uncontrolnew
6 for i = 1..m do
7 Controli :=Controli \Prei(Uncontrol)

8 Uncontrolnew :=V \
⋃m

i=1Controli
9 until Uncontrolnew =Uncontrol;

10 return V ′ =
⋃m

i=1Controli

The correctness of Algorithm 1 relies on the following fact:

Theorem 2 If Algorithm 1 terminates with output V ′, then Posti(V ′)⊆V ′ for all 1≤ i≤ m.

In order to prove Theorem 2, we need the two following propositions.

Proposition 1 Let x,x′ ∈ Rn. Then the three following items are equivalent:

• x = x′

• Posti(x) = Posti(x′) for all 1≤ i≤ m

• Prei(x) 6= Prei(x′) for all 1≤ i≤ m

Proof
We only consider Linear Differential Equations, for any x ∈ Rn Card(Posti(x)) =Card(Prei(x)) = 1.
The proof is immediate from Cauchy-Lipschitz Theorem. �

Proposition 2 Let A,B⊆ Rn. We have:

1. Posti(A\B) = Posti(A)\Posti(B) and similary for Prei for all 1≤ ileqm.

2. Posti(Prei(A)) = Prei(Posti(A)) = A.

Proof
Let A,B⊆ Rn and i ∈ {1..m}. We have:

1. Let y ∈ Posti(A\B). Then x→i
τ y for some x ∈ A\B. Therefore y ∈ Posti(A) since x ∈ A. Let

suppose that y ∈ Posti(B) then x′→i
τ y for some x′ ∈ B. By Proposition 1, x = x′ which raises a

contradiction. Therefore y 6∈ Posti(B) and y ∈ Posti(A)\Posti(B).
Let y ∈ Posti(A)\Posti(B). Therefore, y ∈ Posti(A) and x→τ y for some x ∈ A. However,
y 6∈ Posti(B), therefore ∀x′ ∈ B,x′ 6→τ y. It follows that x ∈ A\B. Therefore y ∈ Posti(A\B) �

2. We know that Card(Posti(Prei(x))) = 1 and it is immediate that x ∈ Posti(Prei(x)) therefore
{x}= Posti(Prei(x)). Therefore Posti(Prei(A)) = A and by the same type of proof
Prei(Posti(A)) = A. �

We can now prove Theorem 2
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Proof of Theorem 2
We will denote by Controlk

i the value of Controli at the kth iteration of the algorithm. Suppose that the
Algorithm terminates at iteration n. Therefore, at iteration n, Uncontrolnew =Uncontrol. Let
x ∈Controln

i for a given i ∈ {1..m}.Suppose that Posti(x) 6∈V ′ then Posti(x) ∈Uncontrolnew. Therefore
Posti(x) ∈Uncontrol. By Proposition 2, x ∈ Prei(Uncontrol), but we have that
Controln

i =Controln−1
i \Prei(Uncontrol). Therefore x does not belong to Controln

i which raises a
contradiction. Therefore Posti(x) ∈V ′ and Posti(V ′)⊆V ′ �
In other words, the output set V ′ of controllable polyhedra is invariant. Let us point out that the system
may temporarily go out of V between two sampling instants.
It immediately follows from Theorem 2 that, at any sampling time iτ , any point in V ′ ⊂V , is
controllable: there exists a mode j that ensures that the point at next sampling time (i+1)τ is still in V ′.
Note that, unlike the indirect method, the appropriate mode cannot be precomputed, but has to be found
on line. On the other hand, the system lies exactly within V ′ ⊂V at each sampling time (instead of lying
within the ε-closeness of V using the indirect method).
Algorithm 1 involves the computation of the Pre-image of (union of) convex polyhedra. We have (see
[6] for a proof):

Lemma 1 Let τ ∈ R>0 and S a convex set of Rn and i a mode of Σ. Then
Prei(S) is a convex set of Rn.

From this Lemma, we can compute the Prei-image of any convex polyhedron by simply computing the
Prei-image of its vertices.
Unfortunately, Algorithm 1 also involves the computation of union, complementation, and test of
equality of polyhedra, that are operations known to be very expensive. To overcome this problem, one
can approximate all the manipulated objects using the notion of griddy polyhedra (see [2, 4]), i.e., sets
that can be written as unions of closed unit hypercubes with integer vertices. The price to be paid is an
underapproximation of the controllability subspace, but this kind of compromise seems unavoidable, as
pointed out in [2].

Example 3 To illustrate this approach, we are computing a control for the boost DC-DC converter with
one cell, see Example 1 for a description of the system. The resulting control presented in Fig. 6 has
been obtained for the following parameters: V corresponding to il ∈ [3.0,3.4] and vc ∈ [1.5,1.8],
τ = 0.5 and x0 = (3.01,1.79). The Fig. 6 can be decomposed into 4 parts:

• Two big vertical polyhedra. The left one represents the zone controllable with mode 1, the right
one with mode 2.

• Two small horizontal polyhedra (upper right and lower left) are the uncontrollable zones of V .2

A trajectory starting from point x0 = (3.01,1.79) belonging to the controllable subset, and using an
on-line computation of the switching rule, has been depicted on Fig. 6. and 5 for a simulation. One can
see that the trajectory always stays within V (not only at the sampling instants).

4 Application to a 3-cells DC-DC Boost Converter

Our method is scalable to bigger systems as we illustrate with the boost DC-DC converter with 3 cells.
This is a real-life system built by the electronics laboratory SATIE (ENS Cachan) for the automative
industry. See Fig. 7 for a picture of the system.

2They are delimited by vertices: (3,1.5);(3.1092,1.5); (3.1110,1.5107);(3.0000,1.5107) and
(3.2611,1.7897);(3.4,1.788); (3.4,1.8);(3.2611,1.8).
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Figure 5: Simulation of the 1-cell boost converter starting from point x0 = (3.01,1.79) that belongs to the
controllable subspace of [3.0,3.4]× [1.5,1.8]. Above: simulation of vc during time; below: simulation of
il

Figure 6: Controllable subspaces of the boost DC-DC converter (1 cell) from x0 = (3.01,1.79) within
V = [3.0,3.4]× [1.5,1.8]
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Figure 7: 3-cells converter built by laboratory SATIE

4.1 Model

The boost DC-DC converter with 3 cells relies on the same principle as the one with one cell. An
advantage of this model is its robustness: even if one switching cell is damaged, the system is still
controllable with the restricted set of modes that remain available. This system is naturally more
complex: There are 4 continuous variables of interest (instead of two), and 23 = 8 modes (instead of
two). The electrical scheme is presented in Fig. 8. An example of pattern of periodic switching rule is
presented in Fig. 9.

Figure 8: Electrical scheme of the DC-DC converter with 3 cells

Figure 9: Switching rule for the 3-cells boost DC-DC converter on one period of length Td (here, α = 1
2 ,

τ = Td
6 , σ1 = (1.05), σ2 = (02.1.03), σ3 = (04.1.0), and the pattern of the corresponding switching rule is

(2.1.3.1.5.1))

The system satisfies the following equations:
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U


σ1
σ2
σ3
0

+


−2r 0 0 −1

0 −2r 0 −1
0 0 −2r −1
1 1 1 −1/R

 .


x1
x2
x3
x4

=


2L −M −M 0
−M 2L −M 0
−M −M 2L 0

0 0 0 C

 .
d
dt


x1
x2
x3
x4


That can be rewritten to fit our framework as:

ẋ = M−1
LC MSx+Bσ

with

MLC =


2L −M −M 0
−M 2L −M 0
−M −M 2L 0

0 0 0 C

, MS =


−2r 0 0 −1

0 −2r 0 −1
0 0 −2r −1
1 1 1 −1/R

, Bσ =UM−1
LC .


σ1
σ2
σ3
0


where U is the input voltage (here U = 100).

4.2 Indirect Method

Here are the parameters that we used: η = 1/5 which corresponds to ε = 21.6, α = 1
2 , Td = 1/10000,

τ = 1/60000. V is defined by: [5.3,5.9]× [5.3,5.9]× [5.3,5.9]× [15.5,16.5].
Over a period Td = 6τ , the switching rule (see Fig. 9) corresponds to: 100000 for σ1, 001000 for σ2 and
000010 for σ3, which can be represented by the global pattern (100,000,010,000,001,000) The abstract
system for box V corresponds to a big graph composed of many repeated pattern: a small part of the full
graph is given in Fig. 10. A typical cycle can be seen through states 290,311,332,353,332,311,290 this

Figure 10: A part of the abstract graph synthesized for the 3-cell converter of the 3-cells boost converter
using the indirect method

corresponds to the pattern modes 444121. The construction of the full graph (including some
optimizations, like the deletion of vertices from which every rule leads to a deadend) took less than 2
minutes.
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From this graph, we extracted several cycles that correspond to different switching rules. We have
simulated the system starting from point x0 = (5.4,5.4,5.4,16) for such various rules. The result of one
simulation for one of them (viz., (444121)∗) is given in Fig. 11. We can see that, under all these

Figure 11: Simulation of the 3-cells Converter under Switching Rule (333010)∗

controls, the system goes out of the initial V . However we can check that the system stays within the
ε-overapproximation of V with ε = 21.6. Let us point out incidentally that such an ε is much too gross
to guarantee a realistic precision. Rather than presenting the results of the indirect approach with a better
precision (using a finer η-grid), we present henceforth the results obtained with the direct approach.

4.3 Direct Method

For V = [4,7]× [4,7]× [4,7]× [15,17], τ = 1/60000, we can extract a controllable subspace V ′ ⊂V . A
simulation of the system starting from x0 = (5,5,5,16) ∈V ′ is presented in Fig. 12 (see also Fig. 13 for
a projected simulation). We can check on the figure that all the simulation lies within V .

4.4 Control on failure

We have also experimented the methods in a case of failure of one switching cell of the 3-cells boost
converter: we have supposed that the cell 1 is stuck on position open (σ1 = 0), which means that only 4
of the 8 modes are still available. The description of our experiments is beyond the scope of this paper.
Let us just point out that we were able to find a switching rule for this downgraded context using the
direct method, but not with the indirect approach.
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Figure 12: Simulation of 3-cells converter starting from x0 = (5,5,5,16) in V = [4,7]× [4,7]× [4,7]×
[15,17] (from top to bottom: x1,x2,x3,x4 in function of time)

Figure 13: Various projections on plans (xi,x j) (for i, j ∈ {1, ...,4}) of simulations of the 3-cells boost
converter starting from x0 = (5,5,5,16) in V = [4,7]× [4,7]× [4,7]× [15,17]
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5 Final Remarks

We have explained how to improve two methods (the direct and indirect ones) for synthesizing control of
a piecewise linear system by exploiting the special features of a framework met in the case of a real-case
example. Our experiments show that the advantage of the indirect method is to allow the user to
precompute a periodic control rule at the price of a certain loss of precision. On the other hand, the direct
method relies on a on-line computation of the switching rule, but allows us to satisfy exact reachability
invariance properties. Furthermore, the direct method seems to be able to treat more easily limit cases
where the system works in a downgraded configuration due to a failure of one its components.
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