Deep Inductive Logic Programming meets Reinforcement Learning

Andreas Bueff
(University of Edinburgh)
Vaishak Belle
(University of Edinburgh)

One approach to explaining the hierarchical levels of understanding within a machine learning model is the symbolic method of inductive logic programming (ILP), which is data efficient and capable of learning first-order logic rules that can entail data behaviour. A differentiable extension to ILP, so-called differentiable Neural Logic (dNL) networks, are able to learn Boolean functions as their neural architecture includes symbolic reasoning. We propose an application of dNL in the field of Relational Reinforcement Learning (RRL) to address dynamic continuous environments. This represents an extension of previous work in applying dNL-based ILP in RRL settings, as our proposed model updates the architecture to enable it to solve problems in continuous RL environments. The goal of this research is to improve upon current ILP methods for use in RRL by incorporating non-linear continuous predicates, allowing RRL agents to reason and make decisions in dynamic and continuous environments.

In Enrico Pontelli, Stefania Costantini, Carmine Dodaro, Sarah Gaggl, Roberta Calegari, Artur D'Avila Garcez, Francesco Fabiano, Alessandra Mileo, Alessandra Russo and Francesca Toni: Proceedings 39th International Conference on Logic Programming (ICLP 2023), Imperial College London, UK, 9th July 2023 - 15th July 2023, Electronic Proceedings in Theoretical Computer Science 385, pp. 339–352.
Published: 12th September 2023.

ArXived at: https://dx.doi.org/10.4204/EPTCS.385.37 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org