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The logic of hybrid MKNF (minimal knowledge and negation as failure) is a powerful knowledge
representation language that elegantly pairs ASP (answer set programming) with ontologies. Dis-
junctive rules are a desirable extension to normal rule-based reasoning and typically semantic frame-
works designed for normal knowledge bases need substantial restructuring to support disjunctive
rules. Alternatively, one may lift characterizations of normal rules to support disjunctive rules by
inducing a collection of normal knowledge bases, each with the same body and a single atom in its
head. In this work, we refer to a set of such normal knowledge bases as a head-cut of a disjunctive
knowledge base. The question arises as to whether the semantics of disjunctive hybrid MKNF knowl-
edge bases can be characterized using fixpoint constructions with head-cuts. Earlier, we have shown
that head-cuts can be paired with fixpoint operators to capture the two-valued MKNF models of
disjunctive hybrid MKNF knowledge bases. Three-valued semantics extends two-valued semantics
with the ability to express partial information. In this work, we present a fixpoint construction that
leverages head-cuts using an operator that iteratively captures three-valued models of hybrid MKNF
knowledge bases with disjunctive rules. This characterization also captures partial stable models of
disjunctive logic programs since a program can be expressed as a disjunctive hybrid MKNF knowl-
edge base with an empty ontology. We elaborate on a relationship between this characterization and
approximators in AFT (approximation fixpoint theory) for normal hybrid MKNF knowledge bases.

1 Introduction

Lifschitz [13] created MKNF, a modal autoepistemic logic, to unify several nonmonotonic logics includ-
ing answer set programming. This logic was later extended by Motik and Rosati [16] to form hybrid
MKNF knowledge bases. These knowledge bases couple ontologies with rule-based reasoning to enable
highly expressive reasoning. Knorr et al. [12] extended MKNF (and hybrid MKNF) to three-valued
MKNF to enable reasoning with partial information. Disjunctive hybrid MKNF knowledge bases are
more expressive than their normal counterparts, they allow the heads of rules to contain a disjunction.
Three-valued disjunctive hybrid MKNF knowledge bases pose many new, interesting challenges and
problems in the field of knowledge representation and reasoning.

For normal hybrid MKNF knowledge bases, Knorr et al. [12] define alternating fixpoint operators
for the three-values semantics of normal hybrid MKNF knowledge bases and Liu and You [15] show that
these operators can be recast into the framework of AFT. This shows a close relationship between Knorr
et al.’s fixpoint constructions and AFT for normal hybrid MKNF knowledge bases. More interestingly,
Liu and You present a new, richer approximator based on which the well-founded semantics can be
computed tractably for a larger class of these knowledge bases.

Killen and You [10] characterize the two-valued semantics of disjunctive hybrid MKNF knowledge
bases using a collection of induced normal logic programs called head-cuts. They give an operator that
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takes a two-valued partition and computes a fixpoint for a single head-cut. A head-cut is a slice of
a disjunctive logic program, a normal program whose models relate to the models of the disjunctive
program. Killen and You also provide a framework for reducing the size of the set of head-cuts needed
to characterize models for a disjunctive hybrid MKNF knowledge base. They show how their operator
may be integrated into a solver, but the work is limited to two-valued semantics. It remains unanswered
whether this technique of using head-cuts and fixpoint operators can be applied to the three-valued hybrid
MKNF knowledge bases defined by Knorr et al. [12] or partial stable semantics [17].

In Section 2, we give an overview of the motivation for a fixpoint characterization of three-valued
models of disjunctive hybrid MKNF. Section 3 introduces preliminary definitions that are used through-
out this work. In Section 4, we present a fixpoint construction that captures the three-valued semantics
of disjunctive hybrid MKNF knowledge bases. This operator builds upon and subsumes the operator for
two-valued semantics [10]. Next, in Section 5 we outline the relationship between our characterization
and approximators in AFT for normal hybrid MKNF knowledge bases. Finally, we provide discussion
in section 6.

2 Motivation

MKNF [13] is a framework that permits a variety of extensions. The framework can express stable
model semantics without relying on program transformation. One highly desired extension is the ability
to reason with both the closed-world and open-world assumptions. While open-world reasoning, which is
employed by description logics and ontologies, requires proof of falsity, closed-world reasoning, which is
employed by ASP, provides more intuitionistic reasoning. Hybrid MKNF is a framework for combining
answer set programming with ontologies. It is faithful to the underlying semantics of the description logic
and ASP without increasing the combined reasoning complexity if the ontology’s entailment relation
can be computed in polynomial time [16]. Unlike other hybrid reasoning frameworks, hybrid MKNF
constrains external theories to be monotonic which allows for the development of fixpoint operators. This
framework can be leveraged to reframe the semantics of hybrid reasoning with answer set programming
in a variety of ways.

The advent of conflict-driven learning has ushered in efficient answer set solvers. The CDNL algo-
rithm from Gebser et al. [5] offers two methods of capturing stable model semantics. One method relies
on loop formulas and the other on unfounded sets. To construct loop formulas one needs a dependency
graph, however, for hybrid systems that combine standalone ontologies with ASP, this requirement is not
so easy to realize. One would either need to handcraft a method of computing a dependency graph for
their ontology or face the tremendous cost of computing a dependency graph in a way that would suit
any ontology. Computing unfounded sets is intractable for normal hybrid MKNF and this carries over to
disjunctive hybrid MKNF [11]. While an approximation of unfounded sets can be efficiently computed
[11], this approach fails when inconsistencies occur as a result of the ontology. One promising method
of resolving the issues that arise due to these inconsistencies lies in the paraconsistent logic developed
by Kaminski et al. [9] that builds upon the three-valued extension of hybrid MKNF from Knorr et al.
[12]. The benefits of this logic motivate developing characterizations of the three-valued logic as it is
subsumed by the paraconsistent logic.

Fixpoint operators are an attractive alternative to dependency graphs. They implicitly capture depen-
dencies lazily and warrant interest in their own right. Approximation fixpoint theory offers a succinct
and elegant framework for establishing nonmonotonic semantics [2]. However, this framework struggles
with disjunctive knowledge bases. One approach is to lift the framework to support disjunctive knowl-
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edge as was done by Heyninck and Arieli [7]. However, an approach like this creates a new framework
and thus requires each piece of work on normal knowledge bases to be heavily altered to support the
disjunctive case. We desire a way of restructuring disjunctive knowledge bases so that prior work on nor-
mal knowledge bases can be easily lifted to support disjunctive rules. Killen and You define a family of
operators for normal knowledge bases induced by a disjunctive knowledge base [10] and their framework
can be used to promote operators defined on normal knowledge bases automatically to support rules with
disjunctive heads. This approach also allows for the identification of classes of programs and partitions
that can be verified in polynomial time for two-valued semantics.

3 Preliminaries

MKNF is a modal autoepistemic logic defined by Lifschitz [13] which extends first-order logic with two
modal operators, K and not , for minimal knowledge and negation as failure respectively. The logic
was later extended by Motik and Rosati [16] to form hybrid MKNF knowledge bases, which support
reasoning with ontologies. We use Knorr et al.’s [12] definition of three-valued hybrid MKNF knowledge
bases. A (three-valued) MKNF structure is a triple (I,M ,N ) where I is a (two-valued first-order)
interpretation and M = 〈M,M1〉 and N = 〈N,N1〉 are pairs of sets of first-order interpretations and
M ⊇ M1, N ⊇ N1. We use three truth values f, u, and t with the ordering f < u < t. The min and max
functions over truth values respect this ordering. Hybrid MKNF knowledge bases rely on the standard
name assumption under which every first-order interpretation in an MKNF interpretation is required to
be a Herbrand interpretation with a countably infinite number of additional constants [16]. We use ∆ to
denote the set of all these constants. We use φ [α/x] to denote the formula obtained by replacing all free
occurrences of variable x in φ with the term α . Using φ and σ to denote MKNF formulas, the evaluation
of an MKNF structure is defined as follows:

(I,M ,N )(p(t1, . . . , tn)) =
{

t iff p(t1, . . . , tn) is true in I
f iff p(t1, . . . , tn) is false in I

(I,M ,N )(¬φ) =


t iff (I,M ,N )(φ) = f
u iff (I,M ,N )(φ) = u
f iff (I,M ,N )(φ) = t

(I,M ,N )(∃x,φ) = max{(I,M ,N )(φ [α/x]) | α ∈ ∆}
(I,M ,N )(∀x,φ) = min{(I,M ,N )(φ [α/x]) | α ∈ ∆}
(I,M ,N )(φ ∧σ) = min((I,M ,N )(φ),(I,M ,N )(σ))

(I,M ,N )(φ ∨σ) = max((I,M ,N )(φ),(I,M ,N )(σ))

(I,M ,N )(φ ⊂ σ) = t iff (I,M ,N )(φ)≥ (I,M ,N )(σ) and f otherwise

(I,M ,N )(Kφ) =


t iff (J,〈M,M1〉,N )(φ) = t for all J ∈M
f iff (J,〈M,M1〉,N )(φ) = f for some J ∈M1
u otherwise

(I,M ,N )(notφ) =


t iff (J,M ,〈N,N1〉)(φ) = f for some J ∈ N1
f iff (J,M ,〈N,N1〉)(φ) = t for all J ∈ N
u otherwise

Intuitively, this logic leverages two sets of interpretations, one for true knowledge and the other for
possibly-true knowledge. A K-atom Ka is true if a is true in every “true” interpretation, nota holds
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if a is false in some “possibly-true” interpretation. Ka and nota are both undefined otherwise. When
we evaluate formulas in this logic, we use a pair of these sets so that not -atoms may be evaluated
independently from K-atoms when checking knowledge minimality. Note that first-order atoms are
evaluated under two-valued interpretations, this is deliberate as, without modal operators, the semantics
is essentially the same as first-order logic. Also note that under three-valued MKNF, logic implication
φ ⊂ σ may not be logically equivalent to φ ∨¬σ unless both φ and σ are first-order formulas.

Knorr et al. define their three-valued semantics for the entire language of MKNF [12] which sub-
sumes disjunctive hybrid MKNF knowledge bases. A disjunctive hybrid MKNF knowledge base contains
a program and ontology both are restricted MKNF formulas which we will now define.

An (MKNF) program P is a set of (MKNF) rules. A rule r is written as follows:

Kh0, . . . , Khi←K p0, . . . , K p j, notn0, . . . , notnk

In the above, h0, p0,n0, . . . ,hi, p j,nk are function-free first-order atoms of the form p(t0, . . . , tn) where p
is a predicate and t0, . . . , tn are either constants or variables. Such a rule is called normal if i = 0. An
MKNF formula φ is ground if it does not contain variables. The corresponding MKNF formula for a
rule r is as follows:

π(r) = ∀~x, Kh0∨·· ·∨Khi ⊂K p0∧·· ·∧K p j ∧notn0∧·· ·∧notnk

where~x is a vector of all variables appearing in the rule. We will use the following abbreviations:

π(P) =
∧

r∈P
π(r)

head(r) = {Kh0, . . . , Khi} body+(r) = {K p0, . . . , K p j}
body−(r) = {notn0, . . . , notnk} K(body−(r)) = {Ka | nota ∈ body−(r)}

A disjunctive hybrid MKNF knowledge base (or disjunctive knowledge base for short) K = (O,P)
consists of an ontology O , which is a decidable description logic (DL) knowledge base translatable to
first-order logic, and a program P . K is called normal if all rules in P are normal. We use π(O)
to denote the translation of O to first-order logic and write π(K ) to mean π(P)∧Kπ(O). A (three-
valued) MKNF interpretation (pair) (M,N) is a pair of sets of first-order interpretations where /0⊂ N ⊆
M. We say an MKNF interpretation (M,N) satisfies a knowledge base K = (O,P) if for each I ∈M,
(I,〈M,N〉,〈M,N〉)(π(K )) = t.

Definition 3.1. A three-valued MKNF interpretation pair (M,N) is a (three-valued) MKNF model of
a disjunctive hybrid MKNF knowledge base K if (M,N) satisfies π(K ) and for every three-valued
MKNF interpretation pair (M′,N′) where M ⊆M′, N ⊆ N′, and (M,N) 6= (M′,N′) we have some I ∈M′

s.t. (I,〈M′,N′〉,〈M,N〉)(π(K )) 6= t.

Note that the second condition of our definition differs slightly from the original definition from
Knorr et al [12]. They require that M′ = N′ if M = N; we show that this condition is not needed for
disjunctive hybrid MKNF knowledge bases while Knorr et al.’s definition applies to all MKNF formulas.

Proposition 3.1. Let K be a disjunctive hybrid MKNF knowledge base and let (M,N) and (M′,N′) be
MKNF interpretations of K such that M ⊆M′, N ⊆ N′, (M,N) 6= (M′,N′), (M,N) satisfies π(K ), and
∀I ∈M′,(I,〈M′,N′〉,〈M,N〉)(π(K )) = t. We have ∀I ∈M′,(I,〈M′,M′〉,〈M,N〉)(π(K )) = t
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If a knowledge base has an MKNF model, we say it is MKNF-consistent. If it does not have one, then
it is MKNF-inconsistent. In the rest of this paper, we assume that a given hybrid MKNF knowledge base
K = (O,P) is DL-safe, which ensures the decidability by requiring each variable in a rule r ∈P to
appear inside some predicate of body+(r) that does not appear in O . Throughout this work, and without
loss of generality [12], we assume rules in P are ground.

We use KA(K ) to denote the following:

KA(K ) =

{
Ka | r ∈P, Ka ∈ head(r)∪body+(r)∪K(body−(r))

}
and OBO,S to denote the objective knowledge of a set S⊆ KA(K ):

OBO,S =
{

π(O)
}
∪
{

a | Ka ∈ S}

Sometimes it is convenient to restrict our focus to the K-atoms in KA(K ). A (partial) partition
(T,P) of KA(K ) is a pair where P⊇ T . It partitions the K-atoms in KA(K ) to be either true (KA(K )∩
T ), false (KA(K )\P), or undefined (KA(K )∩ (P\T )).

Knorr et al. [12] define that an MKNF interpretation pair (M,N) induces a partition (T,P) if for each
Ka ∈ KA(K ):

• Ka ∈ T if ∀I ∈M,(I,〈M,N〉,〈M,N〉)(Ka) = t,

• Ka 6∈ P if ∀I ∈M,(I,〈M,N〉,〈M,N〉)(Ka) = f, and

• Ka ∈ P\T if ∀I ∈M,(I,〈M,N〉,〈M,N〉)(Ka) = u

While every MKNF interpretation (M,N) induces a unique partition (T,P), in general, an MKNF
interpretation that induces a given partition (T,P) is not guaranteed to exist [14]. We say a partial
partition can be extended to an MKNF interpretation if there exists an MKNF interpretation that induces
it.

4 A Fixpoint Characterization

Before we give our characterization, we identify a subclass of partitions that is consistent with the ontol-
ogy and where no immediate consequences can be derived from the ontology.

Definition 4.1. We call a partition (T,P) saturated if OBO,P is consistent and OBO,T 6|= a for each
Ka ∈ KA(K )\T and OBO,P 6|= a for each Ka ∈ KA(K )\P.

Intuitively, if a partition is saturated, then it is consistent with the ontology and OBO,T cannot derive
additional K-atoms. For an arbitrary partition (T,P), it is either easy to extend (T,P) to a saturated
partition or it is easy to conclude that no MKNF model induces (T,P).

Definition 4.2. Given a program P , a head-cut R is a set R ⊆P ×KA(K ) such that for each pair
(r,Kh) ∈ R we have Kh ∈ head(r) and there is at most one pair (r,Kh) in R for any r ∈P .

Because of the restriction on the number of times a rule may appear in a head-cut, head-cuts can
function as normal logic programs where the head of the rule is the single selected atom. For a head-cut
R, we use head(R) (resp. rule(R)) to denote the set {Kh | (r,Kh) ∈ R} (resp. {r | (r,Kh) ∈ R}). Now
we build upon the definition of a supporting set and its accompanying Q operator as defined by Killen
and You [10].
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Definition 4.3. Given a saturated partition (T,P) of a knowledge base K = (O,P), we define the set
H(T,P)

K to be a set of head-cuts such that for each R ∈ H(T,P)
K , we have (i)

∀r ∈P : (r ∈ rule(R)←→


(

body+(r)⊆ P∧K(body−(r))∩T = /0
)
∧(

head(r)∩T = /0∨
(
body+(r)⊆ T ∧K(body−(r))∩P = /0

))

and (ii) ∀(r,Kh) ∈ R : (Kh ∈ P∧
(

Kh ∈ T ←→ body+(r)⊆ T ∧K(body−(r))∩P = /0
)
)

Note that (i) and (ii) may conflict and it may not be possible to construct a nonempty set H(T,P)
K . We

soon show (Lemma 4.1) how we rely on this property. Intuitively, every head-cut in H(T,P)
K contains every

rule whose body is not false and additionally excludes the rules which contain true atoms in their head
and whose bodies evaluate as undefined. If, w.r.t. (T,P), a rule r’s body is true (resp. undefined), then
r must be in a pair (r,Kh) ∈ R where Kh is true (resp. undefined). By this construction, if a rule is not
satisfied by (T,P), then no valid head-cuts can be formed to meet the criteria of H(T,P)

K . The following
lemma formalizes this property.

Lemma 4.1. For a saturated partition (T,P) of KA(K ) where K = (O,P), the set H(T,P)
K is empty if

and only if for every MKNF interpretation (M,N) that induces (T,P), (M,N) does not satisfy π(P).

Proof. (⇒) Assume there exists an MKNF interpretation (M,N) that induces (T,P) such that (M,N)
satisfies π(P).1 We can construct a head-cut R that includes every rule with a positive body that evalu-
ates as either true or undefined and select a head K-atom from T or P appropriately. By the construction
of H(T,P)

K the negative body of each of these rules also evaluates as true w.r.t. (T,P). We exclude rules
where the body evaluates as undefined while there are true atoms in the head. This head-cut is in H(T,P)

K ,
thus the set is nonempty.

(⇐) Given a head-cut R ∈ H(T,P)
K , let (M,N) be an MKNF interpretation that induces (T,P); We

show (M,N) satisfies π(P). Every rule that is excluded from R was either excluded because its body is
undefined while it has true atoms in its head or it was excluded because its body evaluates as false w.r.t.
(M,N). By the construction of H(T,P)

K , for each rule r ∈ rule(R), we have

(I,〈M,N〉,〈M,N〉)(
∨

head(r))≥ (I,〈M,N〉,〈M,N〉)(
∧

body+(r)∧
∧

body−(r))

Because every rule in P is satisfied by (M,N), we have (M,N) satisfies π(P).

We demonstrate the set H(T,P)
K for a simple knowledge base.

Example 1. Let K = (O,P) where O = /0 and P is defined as follows:

1 : Ka, Kb←Kc 2 : Kx, Ky←K p, notq

Let (T1,P1) = (KA(K ),KA(K )). The partition that assigns every K-atom to be true. Note that there
is no MKNF model that induces (T1,P1). We use the numbers to the left of each rule to identify a rule

1While not needed for this proof, (M,N) will always exist when OBO,P is consistent, which is required for (T,P) to be
saturated.
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in a pair in a head-cut. We have H(T1,P1)
K = {{(1,Ka)},{{(1,Kb)}}. Head-cuts that include rule 2

are not present in H(T1,P1)
K because the body of rule 2 is false w.r.t. (T1,P1). Let (T2,P2) = (KA(K ) \{

Kq
}
,KA(K )). Like (T1,P1), (T2,P2) assigns every K-atom to be true, except Kq, which is assigned

undefined. However, H(T1,P1)
K = H(T2,P2)

K . This time rule 2 is excluded because its body is undefined
w.r.t. (T2,P2) while there are true atoms in its head. Let (T3,P3) = (KA(K )\

{
Kq, Kx, Ky

}
,KA(K )\

{Ky}). (T3,P3) assigns Ka, Kb, Kc, and K p, to be true, Ky to be false, and Kq and Kx to be undefined.
Now rule 2 is included, i.e., H(T3,P3)

K = {{(1,Ka),(2,Kx)},{{(1,Kb),(2,Kx)}}. Finally, let (T4,P4) =

(T3,P3 \{Kx}). We cannot construct a head-cut R ∈ H(T,P)
K because rule 2 must be in R, however, there

is no head atom to select from the head of 2.

Before we show how the set H(T,P)
K relates to MKNF models, we need an operator that justifies atoms

within a head-cut. Intuitively, this operator takes a single induced normal logic program from H(T,P)
K and

iteratively accumulates K-atoms in P. Justification for undefined atoms may come from a rule with an
undefined body or from the ontology whereas justification for true atoms can only come from a rule with
a true body or the ontology paired with other true atoms that have already been derived.

Definition 4.4. We define the following operator for a saturated partition (T,P), a head-cut R and a set
of K-atoms S:

QR
(T,P)(S) =

{
Kh | where either


(r,Kh) ∈ R, body+(r)⊆ S, or
Kh ∈ T, OBO,S∩T |= h, or
Kh ∈ P\T, OBO,S |= h

}

We have OBO,S |= a or OBO,S∩T |= a for each K-atom Ka ∈ S, thus QR
(T,P) is monotonic w.r.t. the ⊆

relation and a least fixpoint exists [18]. Intuitively, this operator cannot use undefined atoms to justify the
derivation of true atoms. Rules that can derive true atoms must have a justified body, and the ontology is
only given other true K-atoms when deriving true atoms. In the following, we demonstrate this operator
with head-cuts from the set H(T,P)

K .

Example 2. Define P as follows:

1 : Ka, Kb← . 2 : Kc, Kd← notz. 3 : Kz← notz.

and let (T,P) = ({Ka,Kb},KA(K )). Given (T,P), one can see that Ka and Kb are true and Kc,
Kd, and Kz are undefined. We first consider the knowledge base K1 = (O1,P) where O1 = c ⊃
(b∧ d). The set H(T,P)

K1
is comprised of several head-cuts. Let us restrict our attention to the head-

cut R ∈ H(T,P)
K1

where R = {(1,Ka),(2,Kc),(3,Kz)}. The positive bodies of rules 1, 2, and 3 are
all empty, therefore QR

(T,P)( /0) = {Ka,Kc,Kz}. On the operator’s second iteration, it reaches the fix-
point QR

(T,P)({Kz,Ka,Kc,Kd}) = {Kz,Ka,Kc,Kd}. Even though the ontology entails c ⊃ b, we
do not derive Kb because it is a true atom whereas Kc is undefined (In the operator Kb ∈ T and
OBO,{a,c,z}∩{a,b} 6|= b). This mirrors our construction of the set H(T,P)

K where rules that have true atoms
in their head while having an undefined body are removed from head-cuts. If we replace the ontology with
O2 = a⊃ (b∧d) s.t. K2 = (O2,P), then we find that QR

(T,P)({Kz,Ka,Kc}) = {Kz,Ka,Kc,Kb,Kd}.
This time Kd is derived because it is an undefined atom whose derivation by the ontology depends on a
true atoms.

We now establish how this operator characterizes three-valued MKNF models of a disjunctive knowl-
edge base.
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Theorem 4.1. Let K be a disjunctive hybrid MKNF knowledge base and (M,N) be a three-valued
MKNF interpretation pair that induces (T,P). (M,N) then is a three-valued MKNF model of K if and
only if (T,P) is a saturated partition s.t. for each R ∈ H(T,P)

K , lfp QR
(T,P) = P, and H(T,P)

K 6= /0.

Proof. (⇒) Assume (M,N) is an MKNF model of K that induces (T,P). The partition (T,P) induced
by (M,N) is unique. We show that (T,P) is saturated. (1) OBO,P is consistent, that is, for each I ∈M,
I |= π(O), for each I ∈ N, I |= {a | Ka ∈ P}, and /0 ⊂ N ⊆ M, thus OBO,P is consistent. (2) For each
Ka ∈ KA(K )\T , OBO,T 6|= a, that is, for each Ka ∈ KA(K )\T , there is an interpretation I ∈M such
that I 6|= a and I |= OBO,T , thus OBO,T 6|= a. (3) For each Ka ∈ KA(K ) \P, OBO,P 6|= a, that is, for
every atom Ka ∈ KA(K )\P, we have I ∈ N where I 6|= a. We have I |= OBO,P, thus OBO,P 6|= a. With
(1), (2), and (3), we’ve shown that (T,P) is saturated. We apply Lemma 4.1 to conclude that H(T,P)

K is
nonempty.

Finally, we show by contrapositive that for each R ∈ H(T,P)
K , lfp QR

(T,P) = P. Let R ∈ H(T,P)
K be a

head-cut such that lfp QR
(T,P) 6= P. We show that (M,N) is not an MKNF model. Because head(R)⊆ P,

the QR
T,P operator cannot compute atoms that are not in P; thus lfp QR

(T,P) ⊆ P. Let S be the set of rules
r ∈P \ rule(R) such that body+(r)⊆ P and K(body−(r))∩T = /0. Intuitively, S includes the rules that
were excluded from R because their bodies are evaluated as undefined while they have true atoms in their
heads. By the definition of H(T,P)

K , for each rule r ∈ S, we have head(r)∩T 6= /0. Extend R with pairs that
contain these rules by selecting h arbitrarily from head(r)∩T . Let R′= R∪{(r,h∈ head(r)∩T ) | r ∈ S}.
Let (T ′,P′) = (T ∩ lfp QR

(T,P), lfp QR′
(T,P)). We have P⊃ lfp QR′

(T,P) ⊇ lfp QR
(T,P), thus T ′ ⊆ T and P′ ⊆ P.

We construct a pair
(M′,N′) = ({I | OBO,T ′ |= I},{I | OBO,P′ |= I})

OBO,P′ is consistent, thus N′ 6= /0 and clearly, M′ ⊆N′, thus (M′,N′) is an MKNF interpretation. (M′,N′)
induces (T ′,P′) and because T ′ ⊆ T and P′ ⊆ P (and (T ′,P′) 6= (T,P)), we have M′ ⊇ M and N′ ⊇ N
(and (M′,N′) 6= (M,N)). We show that for each I ∈M′,

(I,〈M′,N′〉,〈M,N〉)(π(K )) = t

Let I ∈ M′. We divide π(K ) into (1) π(O) and (2) π(P). (1) By the construction of (M′,N′), we
have ∀J ∈ M′, J |= π(O). (2) We show (I,〈M′,N′〉,〈M,N〉)(π(P)) = t, i.e., that for each r ∈P ,
(I,〈M′,N′〉,〈M,N〉)(π(r)) = t. We consider three separate cases for rules r ∈P . (i) body+(r) 6⊆ P′ or
K(body−(r))∩T 6= /0. This rule’s body is false w.r.t. (I,〈M′,N′〉,〈M,N〉), thus the rule is satisfied. (ii)
r ∈ rule(R), body+(r)⊆P′ and K(body−(r))∩T = /0. The negative body of r only contains not atoms so
it is evaluated against (M,N) which induces (T,P). The QR

(T,P) operator selects some atom from head(r)
that will ensure this rule is satisfied. (iii) r ∈ R′ \R, body+(r)⊆ P′, and K(body−(r))∩T ′ = /0. We have
either body+(r) 6⊆T ′⊆T or K(body−(r))∩P. Thus, (I,〈M′,N′〉,〈M,N〉)(body+(r)∧K(body−(r))) = u.
The QR′

(T,P) operator will compute a head-atom h from head(r). We have h ∈ P′ and h 6∈ T ′, thus

(I,〈M′,N′〉,〈M,N〉)(Kh) = u

This is sufficient to show that π(r) is satisfied. The cases above are sufficient to show that (M,N) is not
an MKNF model of K .

(⇐) By contrapositive. Assume that (M,N) is not an MKNF model of K , we show that either there
exists R ∈ H(T,P)

K such that lfp QR
(T,P) 6= P, (T,P) is not a saturated partition, or H(T,P)

K = /0. Assume for

the sake of contradiction, that ∀R ∈ H(T,P)
K , lfp QR

(T,P) = P, (T,P) is saturated and H(T,P)
K 6= /0. We show
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that there exists an R ∈ H(T,P)
K such that lfp QR

T,P ⊂ P, a contradiction. Because (M,N) is not an MKNF
model of KA(K ), either (M,N) does not satisfy π(P), (M,N) does not satisfy π(O), or there exists an
MKNF interpretation (M′,N′) such that M′ ⊇M and N′ ⊇ N (and (M′,N′) 6= (M,N)). Apply Lemma 4.1
with H(T,P)

K 6= /0 to rule out the possibility that (M,N) does not satisfy π(P). That (M,N) does not satisfy
π(O) is also out of the question because (T,P) is stagnant therefore π(O) |= I for each I ∈M. With the
above, we assume that such an MKNF interpretation (M′,N′) exists. We have for each r ∈P and each
I ∈M′, (I,〈M′,N′,〉,〈M,N〉)(π(r)) = t. First, we focus on the MKNF interpretation (M′,N) which has
the following property:

∀I ∈M′,(I,〈M′,N〉,〈M,N〉)(π(K )) = t

We consider the case that M′ 6=M, and derive a contradiction. We can construct a head-cut R∈H(T,P)
K

such that lfp QR
(T,P) =P\S where S contains all the atoms that evaluate as true under (M,N) but undefined

under (M′,N). This is done by avoiding picking atoms in S for head(R) whenever possible. There is a
case where a rule r ∈P has had all of its head atoms changed from true to undefined and therefore we
must include a pair (r,Kh) where h ∈ S. However, the positive body of this rule will not be contained
by lfp QR

(T,P), therefore h will not be computed. We have lfp QR
(T,P) 6= P, a contradiction. We assume

M′ = M and repeat a similar process for all the atoms that are true under (M,N) but false under (M,N′)
and construct a head-cut R such that lfp QR

(T,P) 6= P, a contradiction.

Given a saturated partition (T,P), this theorem states that we can determine whether there is a
three-valued MKNF model that induces it by enumerating all head-cuts in R ∈ H(T,P)

K and checking
that lfp QR

(T,P) = P. We do not need to check K-atoms in T because the construction has no way to de-
rive K-atoms from T as undefined. Because three-valued semantics reduces to two-valued semantics for
MKNF interpretations of the form (M,M) [12], this operator can also check two-valued MKNF models.
Below, we demonstrate Theorem 4.1 in action. Let us first consider the special case where rules in a
hybrid MKNF knowledge base are normal.

Example 3. Consider K = (O,P) where O = a∧b⊃ c and P is defined as follows:

1 : Ka← . 2 : Kb← notb. 3 : Kc←Kc.

Let (T,P) = ({Ka},{Ka,Kb,Kc}). (T,P) is a saturated partition. The QR
(T,P) operator can be used for

model-checking. There exists an MKNF model (M,N) that induces (T,P). We show that Theorem 4.1
agrees. The set H(T,P)

K contains a single head-cut R = {(1,Ka),(2,Kb),(3,Kc)}. We have lfp QR
(T,P) =

{Ka,Kb,Kc}= P.
Theorem 4.1 can also show that there does not exist an MKNF model that induces a partition

(T,P). Let (T ′,P′) = ({Ka,Kc},{Ka,Kb,Kc}). (T ′,P′) cannot be extended to an MKNF model
and H(T ′,P′)

K = H(T,P)
K . We have lfp QR

(T ′,P′) = {Ka,Kb} 6= P. The K-atom Kc is not computed because
OBO,{a,b}∩{a,c} 6|= c.

Now let us consider a disjunctive knowledge base where the ontology is empty, which shows that the
operator can be applied to disjunctive logic programs.

Example 4. Let K = (O,P) where O = /0 and P is defined as follows:

1 : Ka,Kb,← notd 2 : Ka, Ka←Kb 3 : Kb, Kb←Ka

4 : Kd, Kc← 5 : Kd, Kd← notd
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Consider the partition (T,P) = ({Kc},{Kd,Ka,Kb,Kc}). The set H(T,P)
K contains the following

head-cuts:

R1 =
{
(1,Ka), (2,Ka), (3,Kb), (4,Kc), (5,Kd)

}
R2 =

{
(1,Kb), (2,Ka), (3,Kb), (4,Kc), (5,Kd)

}
The pair (4,Kd) does not occur in any head-cut in H(T,P)

K because Kd is undefined while the body
of rule 4 is true. When we apply the operator to each head-cut in H(T,P)

K we get lfp QRi
(T,P) = P for each

Ri, thus we confirm that there is an MKNF model that induces (T,P).

Finally, we provide an example with a disjunctive program and an ontology.

Example 5. Let K = (O,P). where O = (a∨b)∧ (x∨ y)⊃ a∧b∧ x∧ y and P is defined as follows:

1 : Ka, Kb← 2 : Kx, Ky← notx

For both disjunctive rules 1 and 2, there is potential for them to contain multiple non-false K-atoms
in their heads. Let (T1,P1) = (KA(K )\{Kx,Ky},KA(K )) = ({Ka,Kb},{Ka,Kb,Kx,Ky}), the par-
tition that assigns Ka and Kb to be true and Kx and Ky to be undefined. There is no three-valued MKNF
model that induces (T1,P1). The set H(T1,P1)

K contains the following:

R1 =
{
(1,Ka),(2,Kx)

}
R2 =

{
(1,Kb),(2,Kx)

}
R3 =

{
(1,Ka),(2,Ky)

}
R4 =

{
(1,Kb),(2,Ky)

}
When we apply the operator to each head-cut in H(T1,P1)

K we get the following least fixpoints:

lfp QR1
(T1,P1)

=
{

Ka,Kx,Ky
}

lfp QR2
(T1,P1)

=
{

Kb,Kx,Ky
}

lfp QR3
(T1,P1)

=
{

Ka,Kx,Ky
}

lfp QR4
(T1,P1)

=
{

Kb,Kx,Ky
}

None of which is equal to P. If we remove b from the true atoms in (T1,P1) and make it false to form
(T2,P2), i.e., (T2,P2) = (T \{Kb},P\{Kb}) = ({Ka},{Ka,Kx,Ky}). Then we have OBO,P |= b. This
shows that (T2,P2) is not saturated and therefore we cannot apply Theorem 4.1 to it. If (T2,P2) were
induced by an MKNF model (M,N), then there would be an I ∈ N ∩M s.t. I 6|= b. It follows that I 6|= O ,
is a contradiction. Checking whether a partition is saturated is an important step because if applied
to (T2,P2), our operator would compute P2. Instead, lets make b undefined, i.e., lets fix (T3,P3) to be
({Ka},KA(K )). Then we have the following head-cuts in H(T3,P3)

K :

R1 =
{
(1,Ka),(2,Kx)

}
R2 =

{
(1,Ka),(2,Ky)

}
The least fixpoints for each of these head-cuts follow:

lfp QR1
(T3,P3)

=
{

Ka,Kb,Kx,Ky
}

lfp QR2
(T3,P3)

=
{

Ka,Kb,Kx,Ky
}

Each fixpoint is equal to P3 and there is an MKNF model that induces (T3,P3):

(M,N) = ({I | OBO,T3 |= I},{I | OBO,P3 |= I})

Each rule is satisfied by (M,N) and the first-order interpretation that assigns both Kx and Ky to be false
is in M, thus (M,N) does not satisfy K(x∨ y). This shows that (M,N) satisfies π(O).



S. Killen and J-H. You 61

Using Theorem 4.1 we can derive some interesting implications on the relationship between normal
and disjunctive knowledge bases. We say that a head-cut P ′ of a program P is total if it contains every
rule in P , that is, rule(R) =P . Given a disjunctive knowledge base (O,P), we can construct a normal
knowledge base (O,P ′) from a total head-cut P ′ of P . We call such a knowledge base an induced
normal knowledge base of K . We show how the MKNF-consistency of an induced normal knowledge
base of K relates to the MKNF-consistency of K .

Corollary 4.2. Given a disjunctive hybrid MKNF knowledge base K = (O,P), let (M,N) be a three-
valued MKNF model of K that induces the partition (T,P). Let K ′ = (O,P ′) be an induced normal
knowledge base of K . (M,N) is a three-valued MKNF model of K ′ if and only if there is a head-cut
R ∈ H(T,P)

K such that R⊆P ′.

Proof. (⇒) Assume (M,N) is an MKNF model of K ′. Then H(T,P)
K ′ = {R}. We have R ⊆P ′ and

R ∈ H(T,P)
K . (⇐) Assume R ∈ H(T,P)

K s.t. R ⊆P ′. We have lfp QR
(T,P) = P and {R} = H(T,P)

K ′ . By
Theorem 4.1, there exists an MKNF model (M′,N′) of K ′ that induces (T,P). Because the ontologies
are the same in K and K ′, (M,N) = (M′,N′).

We can generalize the previous corollary slightly to make conclusions about MKNF-inconsistent
induced normal knowledge bases.

Corollary 4.3. Let K = (O,P) be a disjunctive hybrid MKNF knowledge base and let K ′ = (O,P ′)
be an induced normal knowledge base of K ′. Let (M,N) be an MKNF interpretation that induces
a saturated partition (T,P). If K ′ is MKNF-inconsistent, and there exists a head-cut R ∈ H(T,P)

K s.t.
rule(R)⊆P ′, then (M,N) is not an MKNF model of K .

These properties add to the theory of disjunctive hybrid MKNF knowledge bases. We can eliminate
some MKNF models by guessing MKNF-inconsistent induced normal knowledge bases of a disjunctive
knowledge base.

5 Relationship with Approximators in AFT

By applying the result obtained in the previous section, we demonstrate a link between three-valued
MKNF models of a disjunctive hybrid MKNF knowledge base and the stable fixpoints of AFT approxi-
mators for induced normal knowledge bases.

Given a complete lattice 〈L,≤〉, AFT is built on the induced product bilattice 〈L2,≤p〉, where ≤p is
called the precision order and defined as for all x,y,x′,y′ ∈ L, (x,y) ≤p (x′,y′) if x ≤ x′ and y′ ≤ y. A
pair (x,y) ∈ L2 is consistent if x ≤ y and inconsistent otherwise. Since the ≤p ordering is a complete
lattice ordering on L2, ≤p-monotone operators on L2 contain fixpoints and a least fixpoint. The original
AFT is restricted to consistent and symmetric approximators [2, 3], and Liu and You generalize it to all
≤p-monotone operators on L2. Working with an ontology, which can result in inconsistencies, warrants
supporting inconsistent pairs.

Definition 5.1 (Liu and You 2021). An operator A : L2→ L2 is an approximator if A is ≤p-monotone on
L2 and for all x ∈ L, and whenever A(x,x) is consistent, A maps (x,x) to an exact pair.

For the study of semantics, we focus on the stable revision operator, which we define below: Given
any pair (u,v) ∈ L2 and an approximator A, we define

StA(u,v) = (lfp (A(·,v)1), lfp (A(u, ·)2)) (1)
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where A(·,v)1 denotes the operator L→ L : z 7→ A(z,v)1 and A(u, ·)2 denotes the operator L→ L : z 7→
A(u,z)2. That is, both A(·,v)1 and A(u, ·)2 are projection operators defined on L. It can be shown that
since A is ≤p-monotone on L2, both projection operators A(·,v)1 and A(u, ·)2 are ≤-monotone on L for
any pair in L2 and thus the least fixpoint exists for each. The stable revision operator is thus well-defined.
It can be shown further that the stable revision operator is ≤p-monotone. The fixpoints of the stable
revision operator StA are called stable fixpoints of A.2

For normal hybrid MKNF knowledge bases, Liu and You define the following approximator.
Definition 5.2 (Liu and You 2021). Let K = (O,P) be a normal hybrid MKNF knowledge base. We
define an operator ΦK on (2KA(K ))2 as follows: ΦK (T,P) = (ΦK (T,P)1,ΦK (T,P)2), where

ΦK (T,P)1 = {Ka ∈ KA(K ) | OBO,T |= a}∪
{Ka | r ∈P : head(r) = {Ka}, body+(r)⊆ T, K(body−(r))∩P = /0}

ΦK (T,P)2 = {Ka ∈ KA(K ) | OBO,P |= a} ∪
{Ka | r ∈P : head(r) = {Ka}, OBO,T 6|= ¬a, body+(r)⊆ P,

K(body−(r))∩T = /0}

Intuitively, given a partition (T,P), the operator ΦK (·,P)1, with P fixed, computes the set of true
modal K-atoms w.r.t. (T,P) and operator ΦK (T, ·)2, with T fixed, computes the set of modal K-atoms
that are possibly true w.r.t. (T,P). The condition OBO,T 6|= ¬a attempts to avoid the generation of a con-
tradiction. Liu and You [15] show that ΦK is an approximator on the bilattice (2KA(K ))2 and preserves
all consistent stable fixpoints when restricted to consistent pairs. Note that operator ΦK is not symmetric
and it can map a consistent pair to an inconsistent one.
Example 6 (Liu and You 2021). Consider a normal hybrid MKNF knowledge base K = (O,P), where
O = a∧ (b⊃ c)∧¬ f and P is

Kb←Ka. Kd←Kc, note. Ke← notd. K f ← notb.

Reasoning with K can be seen as follows: since Kπ(O) implies Ka, by the first rule we derive Kb,
then due to b⊃ c in O we derive Kc. Thus its occurrence in the body of the second rule is true and can
be ignored. For the K-atoms Kd and Ke appearing in the two rules in the middle, without preferring
one over the other, both can be undefined. Because notb is false (due to ¬ f in O), the last rule is also
satisfied. Now consider an MKNF interpretation (M,N) = ({I | I |= π(O)∧b},{I | I |= π(O)∧b∧d∧e}),
which induces the partition (T,P) = ({Ka,Kb,Kc},{Ka,Kb,Kc,Kd,Ke}). One can verify that (T,P)
is a stable fixpoint of ΦK , i.e., StΦK (T,P) = (lfp (ΦK (·,P)1), lfp (ΦK (T, ·)2)).

Theorem 5.1 (Liu and You 2021). Let K = (O,P) be a normal hybrid MKNF knowledge base and
(T,P) be a partition. Also let (M,N)= ({I | I |=OBO,T},{I | I |=OBO,P}). Then, (M,N) is a three-valued
MKNF model of K iff (T,P) is a consistent stable fixpoint of ΦK and OBO,lfp (ΦK (·,T )1) is satisfiable.

In general, a stable fixpoint of operator ΦK may not correspond to an MKNF model. It is guaranteed
under the condition that OBO,lfp (ΦK (·,T )1) is satisfiable, which intuitively says that even if we allow all
non-true K-atoms to be false, we still cannot derive a contradiction.

The following theorem follows from Theorems 4.1 and 5.1 and Corollary 4.2.
Theorem 5.2. Let K = (O,P) be a disjunctive hybrid MKNF knowledge base, (M,N) an MKNF
interpretation of K , and (T,P) be induced from (M,N). We have for each normal knowledge base K ′

induced by K , (T,P) is a stable fixpoint of ΦK ′ and OBO,lfp (ΦK ′ (·,T )1) is satisfiable iff (i) (T,P) is

saturated, (ii) for each R ∈ H(T,P)
K , lfp QR

(T,P) = P, and (iii) H(T,P)
K 6= /0.

2For normal logic programs, for example, it is known [2] that Fitting’s ΨP operator [4] is in fact an approximator whose
least fixpoint corresponds to the well-founded model and stable fixpoints correspond to three-valued stable models.
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Proof. Because (T,P) is induced by an MKNF interpretation, it is consistent. Assuming the left con-
dition, apply Corollary 4.2 and Theorem 5.1 to conclude that (M,N) is an MKNF model of K , apply
Theorem 4.1 to obtain the right side. Assuming the right condition, apply Theorem 4.1. (M,N) is an
MKNF model of K . Apply Theorem 5.1 to obtain show left.

This result applies to disjunctive logic programs since they are a special case of disjunctive hybrid
MKNF knowledge base with an empty ontology. The result also applies to the stable model semantics
for disjunctive logic programs since two-valued stable models are a special case of three-valued stable
models.

6 Discussion

We’ve presented an operator that can be applied to the head-cuts of a disjunctive knowledge base to
characterize its MKNF models. By computing the fixpoint of an operator for every head-cut, we can
confirm that a partition can be extended to an MKNF model. Model-checking normally requires an NP-
oracle when the ontology’s entailment relation can be computed in polynomial time [16]. This suggests
the complexity of using our operator for model-checking. The size of the set H(T,P)

K is directly responsible
for this complexity. The techniques applied by Killen and You [10] to reduce the size of this set can be
applied to our operator for three-valued MKNF models with very little modification. This would allow
model-checking to be performed in polynomial time for a class of partial partitions analogous to the class
Killen and You identified for the two-valued case, however, techniques to efficiently recognize members
of this class of partitions still need to be developed. This class is directly related to the class of head-cycle
free disjunctive logic programs, in which models can be checked in polynomial time [1].

Finally, we have shown the close relationship between the MKNF models of a disjunctive knowledge
base and the MKNF models of its induced normal logic knowledge bases. We can apply existing AFT
theory on induced normal knowledge bases to draw conclusions about MKNF models of the disjunctive
knowledge base. Our construction can also be applied to partial stable semantics [17] because three-
valued MKNF models of disjunctive hybrid MKNF knowledge bases without ontologies coincide with
the partial stable models of disjunctive logic programs.
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