
Y. Lierler, J.F. Morales, C. Dodaro, V. Dahl, M. Gebser, T. Tekle (Eds.):
International Conference on Logic Programming 2022 (ICLP’22).
EPTCS 364, 2022, pp. 236–242, doi:10.4204/EPTCS.364.39

© M. M. S. El-Kholany
This work is licensed under the
Creative Commons Attribution License.

Decomposition Strategies for Solving Scheduling Problems in
Industrial Applications

Mohammed M. S. El-Kholany
University of Klagenfurt

Klagenfurt, Austria
Cairo University

Cairo, Egypt
mohammed.el-kholany@aau.at

This article presents an overview of a research study of a crucial optimization problem in the Com-
puter Science/Operations research field: The Job-shop Scheduling Problem (JSP). The JSP is a chal-
lenging task in which a set of operations must be processed using a set of scarce machines to opti-
mize a particular objective. The main purpose of the JSP is to determine the execution order of the
processes assigned to each machine to optimize an objective. Our main interest in this study is to
investigate developing decomposition strategies using logic programming to solve the JSP. We split
our goal into two main phases. The first phase is to apply the decomposition approach and evaluate
the proposed model by solving a set of known benchmark instances. The second phase is to apply
the successful decomposition methods obtained from the first phase to solve a scheduling problem
in the real-life application. In the current state, we finished the first phase and started the second one
aiming to have a model that can provide a schedule of a factory for a short-time period.

1 Introduction

Real-life scheduling problems are very complex because of the combinatorial nature and constraints
dictated by different production environments. The classical JSP has been known as a complex and
combinatorial optimization problem since the 1950s and it was shown to be NP-hard in [12]. Therefore,
it is not easy to obtain the optimal solution. Until now, the optimal solution of some benchmark instances
with medium size is unknown. In reality, the scheduling problems are much more complicated than the
classical ones because many jobs should be scheduled and it may be up to 10000 in some mechanical
workshops [21]. In addition, there are a lot of integrated factors that make the problem more complex.
The general overview of the scheduling is to find the sequence of the tasks assigned to a scarce resource
while optimizing an objective. Our study focuses on the Job-shop Scheduling Problem (JSP). The JSP
is defined as a set of n jobs J1, ...,Jn that have to be executed by a set of m machines M1, ...Mm while
finishing all of these jobs as early as possible. Each job has a series of m operations with a predefined
order and must visit each machine one time. Each machine can process an operation at a time. A machine
cannot be interrupted once it starts processing an operation. The processing time of each operation is
fixed. The naive objective of the JSP is to complete all jobs in the shortest time, which is called makespan.
The main goal of solving such a problem is to find the sequence of operations assigned to each machine
that completes all the jobs in the shortest possible time while satisfying the precedence constraint. Since
the problem is complex and developing a model that provides an efficient schedule is challenging, many
researchers have studied the JSP and proposed several techniques to solve it. The following section
summarizes the previous work that tackled the JSP.

http://dx.doi.org/10.4204/EPTCS.364.39
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


M. M. S. El-Kholany 237

2 Literature Review

This section summarizes the work studied on solving scheduling problems, particularly the JSP. The
scheduling problem has been addressed using exact and/or heuristics techniques. Several researchers
have developed and proposed different dispatching rules to order the operations stated in front of each
machine to obtain an efficient schedule in a reasonable time. Many dispatching rules have been proposed
in [7, 8, 15] for solving different scheduling problems. These studies focused on minimizing either the
total tardiness or makespan. However, the main issue with the dispatching rule is that there is no opti-
mization process behind it. It aims to define combined rules based on the information of the problem
and evaluate the obtained schedule w.r.t the performance measures. Other researchers have applied data
mining techniques that study the sequence pattern of the operations assigned to each machine and de-
velop some rules to order the operations in front of each machine [17, 9]. Another group of researchers
has presented exact methods such as Mixed-integer Programming models or constraint programming for
solving small benchmark instances of the JSP while minimizing the tardiness [11, 14]. The drawback
of the exact methods is that they fail to obtain a good solution in a reasonable time for large instances.
This leads many researchers to follow another decomposition approach that aims to partition the problem
into subparts, optimize each separately, and merge all sub-solutions to solve the main problem. Different
decomposition strategies have been proposed during the last two decades. Most of the previous work
decomposed the problem based on different criteria and applied heuristics/metaheuristics to solve the
problem [18, 20, 3]. This study aims to introduce new decomposition strategies to split the problem
efficiently into parts (time windows) and solve them to obtain good solutions reasonably. The decom-
position optimization processes are applied using a Logic Programming language called Answer Set
Programming.

3 Research Goal

The main goal of our research is to build a model that can provide an efficient schedule for manufactur-
ing industrial systems for a short period using Answer Set Programming (ASP). ASP is a programming
methodology rooted in artificial intelligence and computational logic research [13]. The main reason
for selecting ASP as a solver is because it showed its effectiveness for solving different combinatorial
optimization problems in several fields [2, 16, 1]. Since the scheduling problem is very complex and
increasing the number of operations to a schedule makes the problem much harder. We aim to use the
decomposition approach to obtain a good schedule in a reasonable time. We can split our main goal into
two main steps. The first is to develop different decomposition strategies and investigate their effective-
ness. Therefore, we can determine the most critical factors that significantly impact the solution quality.
Secondly is to build the scheduling model using ASP, which optimizes each time window separately by
applying a multi-shot ASP solving technique[6].

3.1 Accomplished work

In order to accomplish our goal, we decided to build a scheduling model using ASP and assess its per-
formance by solving a set of known benchmark instances. Firstly, we have built a basic model of ASP
to solve the classical JSP and we found that it cannot find good solutions for the instances with more
than 500 operations. So, we investigated applying the decomposition approach in which the problem
is cut into sub-parts called (time windows) and the ASP optimizer solves each dynamically using the
multi-shot solving technique [6] and get the solution of the original problem. The main contribution of



238 Decomposition Strategies for Solving Scheduling Problems in Industrial Applications

this approach is to find a smart way to split the problem into time windows. More specifically, determin-
ing which operations are assigned in which time window with considering the precedence constraint and
obtaining a near-optimal solution in a reasonable time. We have developed/proposed different decompo-
sition methods based on different techniques and tested them on a set of benchmark instances generated
in [19, 4]. Firstly, we applied a constrained k-Means clustering algorithm for the decomposition pro-
cess. This work depends on collecting information from the problem itself and the solutions obtained by
heuristics like FIFO/MTWR to define the similar operations and assign them to the same cluster where
a cluster is a time window and apply multi-shot ASP for the optimization. This work has been published
in PADL 2022 [5]. Secondly, We have developed other decomposition strategies that depend on ranking
the operations. Our two main decomposition ideas in that work are time/machine-based methods. The
time-based approach ranks the operations based on the Earliest possible Starting Time (EST) or the Most
Total Work Remaining (MTWR) and the operation with a smaller rank will be assigned to an earlier time
window. For simplicity, we will describe only the EST strategy. In the EST (time-based), the EST of first
operations of all jobs is 0 because they have no predecessors. The EST of the successors is the sum of
processing times for the predecessor operations belonging to the same job. The operation with smaller
EST will be assigned to an earlier time window. If the EST of two or more operations is similar, the op-
eration with a shorter processing time will be assigned to an earlier time window. However, in the EST
(machine-based), the first step is to rank the operations based on EST. Secondly, we determine the bottle-
neck machines with the longest processing time to execute. Thirdly, we select the operation assigned to
a bottleneck machine with the smallest EST; if the predecessor of that operation is not assigned to a time
window, it will be assigned to that time window to satisfy the precedence constraint. This work has been
accepted and will be presented in ICLP 2022. In addition, we applied different techniques to improve
the solution quality. Firstly, we applied the overlapping between the time windows. This process aims
to overcome the mistakes due to the decomposition. Secondly, we performed a post-processing phase
(compression) after optimizing each time window. In this phase, we check the possibility of executing
an operation earlier without violating the precedence constraint.

4 Results

This section shows a summary of the obtained results with a set of benchmark instances created in [19].
We selected the sets with the largest size which are 50×15, 50×20 and 100×20. We will focus only in
this article on the size 50×15 to avoid presenting too many results of our experiments. We performed the
experiments on our selected instances with different time windows (2−10) to determine the number of
time windows that provide a good makespan with a timeout of 1000 seconds. Figure 1 shows the aver-
age makespan of the instances set 50×15 with different time windows while applying EST Time-based
and Machine-based decomposition methods. The results show that the Machine-based decomposition
method is more effective than the Time-based method throughtout all the time windows. The best num-
ber of time windows for such a set is 3. After determining the best number of time windows for the
instances, we applied the overlapping technique with different percentages. The overlapping percentage
represents the number of operations assigned to the previous time window and will be rescheduled with
the current time window. Increasing the percentage could provide better results; however, the compu-
tational time will increase. So, we run the experiments with overlapping percentages to determine the
best percentage for the selected set, which provides a good result in a reasonable time. Figure 2 shows
the makespan of each instance when the EST Time-based is applied with 03 time windows with/without
overlapping. The horizontal line shows the selected instances and the vertical shows the gap to the op-



M. M. S. El-Kholany 239

TW 02 TW 03 TW 04 TW 05 TW 06 TW 07 TW 08 TW 09 TW 10
0

1,000

2,000

3,000

4,000
A

ve
ra

ge
m

ak
es

pa
n

EST Time-based
EST Machine-based

Figure 1: Comparison between (Time and Machine)-based decomposition strategy

timality. Each line represents a particular overlapping percentage where 0% means no overlapping. We
can see from the figure that increasing the overlapping percentage improves the solution quality. When
we set the overlapping percentage to 40% and 50%, the results were worse than the obtained with smaller
percentages. The last step we applied to improve the solution quality is compression. The main goal of
this phase is to check after optimizing the current window if it is possible to execute some operations
earlier without violating the precedence constraint. Figure 3 shows the average makespan throughtout
the time windows when we applied the compression and compares the results without compression. As
shown in the figure, the compression improves the solution quality for all time windows. We can con-
clude from the obtained results in this section that considering the bottleneck machines (has the highest
processing time to finish) during the decomposition process is beneficial. In addition, the overlapping
plays a significant role in improving the solution quality because it overcomes the decomposition mis-
takes. Also, applying the compression phase after optimizing each time window has a positive impact.

5 Expected Achievement

The classical JSP is limited and has many assumptions which make the problem unrealistic. We currently
aim to apply the successful (Machine-based) decomposition strategies, overlapping and compression, to
semiconductor manufacturing systems. In order to accomplish this, we are currently working on a dataset
generated from a simulator called SMT2020 [10]. The advantage of this dataset is that it links between
the academic and industrial perspectives. Since the SMT2020 data set is quite big, it is not possible to
provide a schedule with a simulator that simulates the system for 2 years, as has been presented in [10]
using ASP. We aim to develop a scheduler model that could provide a schedule in the manufacturing
system for a short period, like one week. The given dataset is completely different from the classical
JSP, where there is a set of lots instead of jobs. Each lot belongs to a particular product, consists of
steps (operations in the JSP), and is released at a particular time. Each step can be executed by different
machines Flexible scheduling problem (FSB); however, in the JSP, each operation is executed by only
one machine. Since the problem is FSB, it is required to find a criterion to assign each step to a machine



240 Decomposition Strategies for Solving Scheduling Problems in Industrial Applications

ta51 ta52 ta53 ta54 ta55 ta56 ta57 ta58 ta59 ta60

16

18

20

22

24

26

28

30

32

34

36

G
ap

to
op

tim
al

ity
(%

)

0%
10%
20%
30%

Figure 2: EST Time-based with overlapping (03 TW)

TW 02 TW 03 TW 04 TW 05 TW 06 TW 07 TW 08 TW 09 TW 10
0

1,000

2,000

3,000

4,000

A
ve

ra
ge

m
ak

es
pa

n

No-compression
Compression

Figure 3: Makespan EST Time-based with/without compression



M. M. S. El-Kholany 241

before starting to schedule. In addition, the optimization criterion is to minimize the total tardiness of
the lots while considering other factors such as machine maintenance, cascading, and batching. Given
that information, our plan is:

1. Firstly, we aim to build a basic ASP model that assigns each step to a machine and then schedules
the lots considering only the machine maintenance.

2. Secondly, develop decomposition strategies (machine-based) and apply the multi-shot solving
ASP.

3. Thirdly, we will consider the other mentioned factors.

In order to assess our model, we will compare our obtained results with the results of colleagues (in
our research group) who are working on the same dataset and applying Deep Learning and dispatching
rules.

References

[1] Dirk Abels, Julian Jordi, Max Ostrowski, Torsten Schaub, Ambra Toletti & Philipp Wanko (2019): Train
scheduling with hybrid ASP. In: International Conference on Logic Programming and Nonmonotonic Rea-
soning, Springer, pp. 3–17, doi:10.1007/978-3-030-20528-7 1.

[2] Michael Abseher, Martin Gebser, Nysret Musliu, Torsten Schaub & Stefan Woltran (2016): Shift design with
answer set programming. Fundamenta Informaticae 147(1), pp. 1–25, doi:10.3233/FI-2016-1396.

[3] Eni-Seok Byeon, S David Wu & Robert H Storer (1998): Decomposition heuristics for robust job-shop
scheduling. IEEE Transactions on Robotics and Automation 14(2), pp. 303–313, doi:10.1109/70.681248.

[4] Ebru Demirkol, Sanjay Mehta & Reha Uzsoy (1998): Benchmarks for shop scheduling problems. European
Journal of Operational Research 109(1), pp. 137–141, doi:10.1016/S0377-2217(97)00019-2.

[5] Mohammed El-Kholany, Konstantin Schekotihin & Martin Gebser (2022): Decomposition-Based Job-Shop
Scheduling with Constrained Clustering. In: International Symposium on Practical Aspects of Declarative
Languages, Springer, pp. 165–180, doi:10.1007/978-3-030-94479-7 11.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2019): Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming 19(1), pp. 27–82, doi:10.1017/S1471068418000054.

[7] Oliver Holthaus & Chandrasekharan Rajendran (1997): Efficient dispatching rules for scheduling in a job
shop. International Journal of Production Economics 48(1), pp. 87–105, doi:10.1016/S0925-5273(96)00068-
0.

[8] AK Kaban, Z Othman & DS Rohmah (2012): Comparison of dispatching rules in job-shop scheduling
problem using simulation: a case study. International Journal of Simulation Modelling 11(3), pp. 129–140,
doi:10.2507/IJSIMM11(3)2.201.

[9] DA Koonce & S-C Tsai (2000): Using data mining to find patterns in genetic algorithm solutions to a job
shop schedule. Computers & Industrial Engineering 38(3), pp. 361–374, doi:10.1016/S0360-8352(00)00050-
4.

[10] Denny Kopp, Michael Hassoun, Adar Kalir & Lars Mönch (2020): SMT2020—A semiconductor
manufacturing testbed. IEEE Transactions on Semiconductor Manufacturing 33(4), pp. 522–531,
doi:10.1109/TSM.2020.3001933.

[11] Wen-Yang Ku & J Christopher Beck (2016): Mixed integer programming models for job shop scheduling: A
computational analysis. Computers & Operations Research 73, pp. 165–173, doi:10.1016/j.cor.2016.04.006.

[12] Jan Karel Lenstra, AHG Rinnooy Kan & Peter Brucker (1977): Complexity of machine scheduling problems.
In: Annals of discrete mathematics, 1, Elsevier, pp. 343–362, doi:10.1016/S0167-5060(08)70743-X.

https://doi.org/10.1007/978-3-030-20528-7_1
https://doi.org/10.3233/FI-2016-1396
https://doi.org/10.1109/70.681248
https://doi.org/10.1016/S0377-2217(97)00019-2
https://doi.org/10.1007/978-3-030-94479-7_11
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1016/S0925-5273(96)00068-0
https://doi.org/10.1016/S0925-5273(96)00068-0
https://doi.org/10.2507/IJSIMM11(3)2.201
https://doi.org/10.1016/S0360-8352(00)00050-4
https://doi.org/10.1016/S0360-8352(00)00050-4
https://doi.org/10.1109/TSM.2020.3001933
https://doi.org/10.1016/j.cor.2016.04.006
https://doi.org/10.1016/S0167-5060(08)70743-X


242 Decomposition Strategies for Solving Scheduling Problems in Industrial Applications

[13] Vladimir Lifschitz (2002): Answer set programming and plan generation. Artificial Intelligence 138(1-2),
pp. 39–54, doi:10.1016/S0004-3702(02)00186-8.

[14] Leilei Meng, Chaoyong Zhang, Yaping Ren, Biao Zhang & Chang Lv (2020): Mixed-integer linear program-
ming and constraint programming formulations for solving distributed flexible job shop scheduling problem.
Computers & Industrial Engineering 142, p. 106347, doi:10.1016/j.cie.2020.106347.

[15] Midhun Paul, R Sridharan & T Radha Ramanan (2015): An investigation of order review/release policies
and dispatching rules for assembly job shops with multi objective criteria. Procedia-Social and Behavioral
Sciences 189, pp. 376–384, doi:10.1016/j.sbspro.2015.03.234.

[16] Francesco Ricca, Giovanni Grasso, Mario Alviano, Marco Manna, Vincenzino Lio, Salvatore Iiritano &
Nicola Leone (2012): Team-building with answer set programming in the Gioia-Tauro seaport. Theory and
Practice of Logic Programming 12(3), pp. 361–381, doi:10.1017/S147106841100007X.

[17] Atif Shahzad, Nasser Mebarki & IRCCyN IRCCyN (2010): Discovering dispatching rules for job shop
scheduling problem through data mining. In: 8th International Conference of Modeling and Simulation-
MOSIM, pp. 10–12.

[18] Marcos Singer (2001): Decomposition methods for large job shops. Computers & Operations Research
28(3), pp. 193–207, doi:10.1016/S0305-0548(99)00098-2.

[19] Eric Taillard (1993): Benchmarks for basic scheduling problems. european journal of operational research
64(2), pp. 278–285, doi:10.1016/0377-2217(93)90182-M.

[20] Yingni Zhai, Changjun Liu, Wei Chu, Ruifeng Guo & Cunliang Liu (2014): A decomposition heuristics based
on multi-bottleneck machines for large-scale job shop scheduling problems. Journal of Industrial Engineering
and Management (JIEM) 7(5), pp. 1397–1414, doi:10.3926/jiem.1206.

[21] Rui Zhang & Cheng Wu (2010): A hybrid approach to large-scale job shop scheduling. Applied intelligence
32(1), pp. 47–59, doi:10.1007/s10489-008-0134-y.

https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.1016/j.cie.2020.106347
https://doi.org/10.1016/j.sbspro.2015.03.234
https://doi.org/10.1017/S147106841100007X
https://doi.org/10.1016/S0305-0548(99)00098-2
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.3926/jiem.1206
https://doi.org/10.1007/s10489-008-0134-y

	1 Introduction
	2 Literature Review
	3 Research Goal
	3.1 Accomplished work

	4 Results
	5 Expected Achievement

