
Y. Lierler, J.F. Morales, C. Dodaro, V. Dahl, M. Gebser, T. Tekle (Eds.):

International Conference on Logic Programming 2022 (ICLP’22).

EPTCS 364, 2022, pp. 107–122, doi:10.4204/EPTCS.364.10

© Wang, Borca-Tasciuc, Goel, Fodor, & Kifer

This work is licensed under the

Creative Commons Attribution License.

Knowledge Authoring with Factual English*

Yuheng Wang Giorgian Borca-Tasciuc Nikhil Goel

Paul Fodor Michael Kifer

Department of Computer Science, Stony Brook University

Stony Brook, NY, USA

{yuhewang,gborcatasciu,nigoel,pfodor,kifer}@cs.stonybrook.edu

Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts

and rules. Like databases, KRR systems contain information about domains of human activities like

industrial enterprises, science, and business. KRRs can represent complex concepts and relations,

and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR tech-

nology has been hindered by the fact that specifying the requisite knowledge requires skills that most

domain experts do not have, and professional knowledge engineers are hard to find. One solution

could be to extract knowledge from English text, and a number of works have attempted to do so

(OpenSesame, Google’s Sling, etc.). Unfortunately, at present, extraction of logical facts from unre-

stricted natural language is still too inaccurate to be used for reasoning, while restricting the grammar

of the language (so-called controlled natural language, or CNL) is hard for the users to learn and use.

Nevertheless, some recent CNL-based approaches, such as the Knowledge Authoring Logic Machine

(KALM), have shown to have very high accuracy compared to others, and a natural question is to

what extent the CNL restrictions can be lifted. In this paper, we address this issue by transplanting

the KALM framework to a neural natural language parser, mSTANZA. Here we limit our attention to

authoring facts and queries and therefore our focus is what we call factual English statements. Au-

thoring other types of knowledge, such as rules, will be considered in our followup work. As it turns

out, neural network based parsers have problems of their own and the mistakes they make range from

part-of-speech tagging to lemmatization to dependency errors. We present a number of techniques

for combating these problems and test the new system, KALMFL (i.e., KALM for factual language),

on a number of benchmarks, which show KALMFL achieves correctness in excess of 95%.

1 Introduction

Much of the human knowledge can be captured in knowledge representation and reasoning (KRR) sys-

tems that are based on logical facts and rules. Unfortunately, translating human knowledge into the logic

form that can be used by KRR systems requires well-trained domain experts who are hard to come by.

One popular idea is to use natural language (NL) to represent knowledge, but current technology (e.g.

OpenSesame [13], SLING [12]) for converting such statements into logic has rather low accuracy. A

possible fix to this problem is to author knowledge via sentences in controlled natural languages (CNLs),

such as ACE used in Attempto [6]. These CNLs are fairly rich and algorithms exist for converting CNL

sentences into logic facts. Unfortunately, CNLs are also very restrictive, hard to extend, and require

significant training to use. Furthermore, both CNLs and the more general NLP systems cannot recognize

sentences with identical meaning but different syntactic forms. For example, “Mary buys a car” and

“Mary makes a purchase of a car” would be translated into totally different logical representations by

*Research partially funded by the NSF Grant 1814457. We would also like to thank Nathanael Payen for his contribution to

software development for this work.

http://dx.doi.org/10.4204/EPTCS.364.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


108 Knowledge Authoring with Factual English

most systems, which renders logical inference mechanisms unreliable at best. This problem is known as

semantic mismatch [7].

Recently, the Knowledge Authoring Logic Machine (KALM) [8] was introduced to solve the above

semantic mismatch problem, but KALM was based on Attempto’s ACE and therefore inherited all the

aforesaid problems with CNLs. In this paper, we address the problems associated with controlled lan-

guages by transplanting the KALM framework to a neural NL parser, mSTANZA, which is a modified

STANZA [11] version with multiple, ranked outputs. Of course, to turn English into an authoring tool for

KR one still needs to impose some restrictions on the language. For instance, “Go fetch more water” is a

command that does not convey any factual information that can be recorded in a knowledge base (except,

perhaps, those based on rather esoteric logics). In this paper, we focus on English sentences suitable for

expressing facts and queries and correspondingly identify a class of English sentences, which we call

factual. These sentences can be translated into logic and the aforesaid semantic mismatch problem is

solved for such sentences. Unlike CNLs, factual sentences need little training as long as the author keeps

focus on knowledge representation rather than fine letters.1

To increase the accuracy, we had to mitigate a slew of issues that are common to neural parsers,

and we describe our solutions. These include the mistakes in part-of-speech and dependency parsing.

The new system, KALMFL (KALM for factual language)2 , is tested on a number of benchmarks, which

show that KALMFL for factual English achieves correctness in excess of 95%, very close to the original

KALM for the Attempto’s CNL.

The paper is organized as follows: Section 2 reviews the KALM framework, Section 3 defines fac-

tual sentences, Section 4 proposes mSTANZA and the new KALMFL framework, Section 5 shows the

evaluation settings and results, Section 7 concludes the paper.

2 The KALM Framework

KALM [7] is a semantic framework for scalable knowledge authoring. KALM users author knowledge

using CNL sentences (Attempto’s ACE, to be specific) and KALM ensures that semantically equiva-

lent sentences have identical logical representations through the use of the frame semantics [4]. The

framework is depicted in Fig. 1.

Figure 1: The KALM framework

Syntactic Parsing. KALM uses Attempto Parsing Engine (APE) to extract the syntactical informa-

tion from sentences, including the part-of-speech (POS) for each word and the grammatical dependency

relations between pairs of words. All extracted information is represented by a set of logical terms known

as Discourse Representation Structure (DRS) [5]. Here is an example of a DRS.

Example 1 DRS for the sentence “Mary buys a car”.

object(A,mary,uncountable,na,eq,1)-1/1. predicate(C,buy,A,B)-1/2.

object(B,car,countable,na,eq,1)-1/4.

1Our followup work will consider more general sentences, such as those suitable for expressing rules.
2https://github.com/yuhengwang1/kalm-fl

https://github.com/yuhengwang1/kalm-fl


Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 109

where A and B are identifiers for the Mary- and car-entities, respectively, and C is the buy-event. The DRS

also relies on the predicates object/6 and predicate/4 (in p/N, N denotes the number of arguments in

predicate p). An object-fact represents an entity—a noun-word with some properties (e.g., countable

or uncountable, quantity). A predicate-fact represents an event—a verb-word and its participating

entities. Additional predicates, property/3, relation/3, modifier_adv/3, modifier_pp/3, and

has_part/2, are also used in DRS for representing other syntactic relations. An expression like 1/4 in

a DRS object-fact indicates the sentence Id (i.e., 1) and the token Id (here 4) described by the object

fact in question.

Logical Valence Pattern. Frame-based parsing requires logical valence patterns (LVPs), which are

constructed from training sentences annotated by knowledge engineers. Inspired by FrameNet [1], the

semantics of each training sentence is represented by a frame. Each frame defines one or more related

semantic relationships among entities, where each entity plays a particular role. A frame can be triggered

by its associated “triggering words,” called lexical units (LU). Below is an example of a training sentence

annotated with frame semantics.

Example 2 The training sentence “Mary buys a car”.

train(’Mary buys a car’,’Commerce_buy’,’LUIndex’=2,

[’Buyer’=1+required,’Goods’=4+required],[[purchase,verb],[acquire,verb]]).

The above says several things. (i) “Mary buys a car” is represented by the Commerce_buy frame, (ii)

the LU is the 2nd word, buy.verb, (iii) the 1st word Mary fills the role Buyer and the 4th word car

fills the role Goods, and (iv) the words purchase.verb and acquire.verb can also trigger this frame.

Combining this and the DRS in Example 1, KALM learns that starting from the LU buy.verb (i.e.,

predicate(C,buy,A,B)), the Buyer Mary (i.e., object(A,mary,uncountable,na,eq,1)) can be

found by locating the subject (i.e., the 3rd argument in predicate/4) of buy.verb. As a result,

the pattern verb->subject for finding the role-filler for Buyer is learned. Similarly, the pattern

verb->object to find Goods can be learned. This allows us to construct the following LVP, where

the first 3 arguments identify the LU, the POS of the LU, and the frame.

lvp(buy,verb,’Commerce_buy’,[pattern(’Buyer’,’verb->subject’,required),

pattern(’Goods’,’verb->object’,required)]).

Frame-based Parsing. Once the LVPs are constructed, they can be used to extract logical relations

from sentences. Namely, when a new sentence comes in, KALM tries to find the triggered LVPs which

are then applied to the sentence to get candidate parses.

Example 3 Consider the sentence “A customer buys a watch,” whose DRS is as follows:

object(A,customer,countable,na,eq,1)-1/2. predicate(C,buy,A,B)-1/3.

object(B,watch,countable,na,eq,1)-1/5.

The word buy.verb triggers the LVP in Example 2. Following the pattern verb->subject that extracts

the roll-filler of Buyer, KALM starts from the LU buy.verb (i.e., predicate(C,buy,A,B)), and then

finds the subject of the LU, which is the 3rd argument of predicate(C,buy,A,B) (i.e., the identifier

A). Finally, the word identified by A (i.e., customer) is extracted as the role-filler for Buyer. In this way,

KALM applies all patterns to all extract role-fillers and finally we have the following candidate parse:

p(’Commerce_buy’,[role(’Buyer’,’customer’),role(’Goods’,’watch’)]).

Role-Filler Disambiguation. Generally, a word is associated with several meanings. The goal of

role-filler disambiguation is to find the most appropriate sense for each role-filler with respect to the

roles in particular logical frames. Role-filler disambiguation is done via a walk through the BabelNet



110 Knowledge Authoring with Factual English

knowledge graph [10]. BabelNet combines the words with similar meanings into synset nodes. Edges

represent semantic relations (hypernym, hyponym, etc.) and strength of the different relationships is

specified via weights.

Consider the candidate parse of “A customer buys a watch” in Example 3. In BabelNet, the role-

filler watch has several meanings like “A small portable timepiece” (bn:00077172n), “A period of time

(4 or 2 hours) during which some of a ship’s crew are on duty” (bn:00080550n), and more. Since

Goods (with the synset bn:00021045n) is much more semantically related to a timepiece than to a

period of time, watch should be disambiguated with the synset bn:00077172n denoting a timepiece.

Starting from Goods’s synset bn:00021045n, KALM uses breadth first search to reach watch’s synsets

bn:00077172n and bn:00080550n respectively, computes the costs based on the edge weights, and

ends up with the synset that has the lowest cost, which is bn:00077172n (“A small portable timepiece”)

in this case.

Constructing Logic Representation. Ultimately, the disambiguated candidate parses are translated

into unique logical representation (ULR), which gives the true meaning to the original CNL sentence

and is suitable for querying. ULR uses the predicates frame/2 and role/2 for representing instances

of the frames and the roles. The predicates synset/2 and text/2 are used to specify synset and textual

information. For example, “A customer buys a watch” will be converted into the ULR shown below:

frame(id_1,’Commerce_buy’).

role(id_1,’Buyer’,id_2). synset(id_2,’bn:00019763n’). text(id_2,’customer’).

role(id_1,’Goods’,id_3). synset(id_3,’bn:00077172n’). text(id_3,’watch’).

3 Factual Sentences

In knowledge authoring, we are not interested in fine letters but rather in sentences that express or query

knowledge, such as facts, queries, rules, modalities. In this paper we limit ourselves to facts and queries

and more advanced types of knowledge is left to followup papers. Consequently, here we focus on

sentences for specifying and querying sets of facts, which we call factual sentences. Non-factual sen-

tences, like “Go fetch more water,” do not express any factual information and can be thus excluded from

consideration.

Before defining factual sentences, we first remind some key grammatical concepts. A clause is a

unit of grammatical organization that contains a verb and usually other components. A main clause3 is

a clause that can form a complete sentence standing alone and having a subject and a predicate. A sub-

ordinate clause depends on a main clause for its meaning. Together with the main clause, a subordinate

clause forms part of a complex sentence. There are 4 types of subordinate clauses including adnominal

clauses, adverbial clauses, clausal complements and clausal subjects. A coordination is a syntactic struc-

ture that links together two or more elements with connectives such as “and” and “or” (e.g., a car and a

watch). When the elements are main clauses, a compound sentence is formed (e.g., “Mary wants the car

and the car is available”).

Examination of various datasets shows that main clauses, compound sentences, and sentences with

adnominal clauses (e.g. “Mary bought a car made in USA”) are by far the most common constructs in

datasets that contain data and queries. In contrast, clausal complements and other types of subordinate

clauses are typically non-factual or they are used to describe other kinds of logical statements, such as

rules, which will be the subject of our followup work. For the same reason, connectives other than “and”

3https://www.lexico.com/en/definition/main_clause

https://www.lexico.com/en/definition/main_clause


Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 111

and “or” are also eliminated. We then define factual sentence for knowledge authoring as follows:

Definition 1 A factual sentence is

1. a factual main clause with subordinate adnominal clauses (if any), and no other subordinate

clauses; or

2. a compound sentence where the connectives connect only the clauses of the kind described in 1.

Definition 2 A main clause is factual4 if

• it has a verb with a subject (e.g., “Mary bought a car”); or

• it has a nominal word (or an adjective) with a subject and a linking verb (e.g., “Mary is rich,”

where an adjective rich has a subject Mary and linking verb is)

3.1 Grammatical Properties of Factual Sentences

We now use POS tags (part of speech) and universal dependencies to describe six grammatical properties

for factual sentences that follow from the aforesaid factual restriction on the English sentences, and thus

are necessary conditions for sentences to be factual. We then use these properties to discover and correct

errors made by the STANZA parser. We use the superscripts U and X to refer to universal POS5 (UPOS)

tags, Penn Treebank extended POS6 tags (XPOS), and UD will refer to universal dependency7 labels.

Property 1 If the main clause is factual, then

• the main clause has a verb with a subject. That is, the clause has a word with an incoming rootUD

edge tagged with VERBU and an outgoing nsubjUD edge); or

• the main clause has a nominal word (or an adjective) with a subject and a linking verb. Thus, the

clause has a word with an incoming rootUD edge that is (i) tagged with NOUNU, PRONU, PROPNU, or

ADJU; (ii) has an outgoing nsubjUD edge; and (iii) has an outgoing copUD edge (copula).

Property 2 If a word W is the last element of a coordination (e.g., “watch” in “a car or a watch”), then

this coordination must be an and- or an or-coordination. That is, W has an incoming conjUD edge and a

outgoing ccUD edge pointing to “and” or “or.”

Property 3 If a verb V has one or more auxiliary verbs V a
1 , ...,V

a
n , and V a

n (tagged with AUXU) is the

closest auxiliary verb to V (e.g., in the sentence “A car has been bought by Mary,” V a
1 = has, V a

n =V a
2 =

been, V = bought), then

• continuous tense (V a
n is be – V is a present participle): V a

n has an incoming auxUD edge starting

from V , and V is tagged with VBGX; or

• perfect tense (V a
n is have – V is a past participle): V a

n has an incoming auxUD edge starting from V ,

and V is tagged with VBNX; or

• past, present, and future tense (V a
n is can/do/may/must/ought/should/will – V in base form): V a

n has

an incoming auxUD starting at V , and V is tagged with VBX; or

• passive voice (V a
n is be/get – V is a past participle): V a

n has an incoming aux:passUD edge starting

from V , and V is tagged with VBNX

Property 4 For a verb V without auxiliary verbs (no outgoing auxUD/aux:passUD edges):

4According to https://www.lexico.com/en/definition/main_clause, all main clauses are factual.
5https://universaldependencies.org/u/pos/
6https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
7https://universaldependencies.org/u/dep/

https://www.lexico.com/en/definition/main_clause
https://universaldependencies.org/u/pos/
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://universaldependencies.org/u/dep/


112 Knowledge Authoring with Factual English

1. if V is a present or past participle (i.e., tagged with VBGX/VBNX), then

• V occurs in a coordination (i.e., has an incoming conjUD edge); or

• V occurs in adnominal clauses (i.e., has an incoming aclUD edge)

2. if V is in present or past tense (i.e., tagged with VBPX/VBZX/VBDX), then

• V occurs in a coordination (i.e., has an incoming conjUD edge); or

• V occurs in main/adnominal clauses (i.e., has an incoming rootUD/aclUD/ acl:relclUD

edge) and have a subject (i.e., an outgoing nsubjUD edge)

3. if V is in the base form (i.e., tagged with VBX), then

• V occurs in a coordination (i.e., has an incoming conjUD edge); or

• V occurs in adnominal clauses with infinitive form (i.e., has an incoming aclUD edge and an

outgoing markUD edge pointing to “to”)

Property 5 If a non-verb word W has one or more auxiliary verbs V a
1 , ...,V

a
n , where V a

n is the closest

auxiliary verb to W (e.g., in the sentence “Mary has been rich,” V a
1 =has, V a

2 = been,” W = rich, and

been is the closest auxiliary verb to rich), then V a
n and W must satisfy these properties:

1. W is a nominal word or an adjective (i.e., tagged with NOUNU/PRONU/PROPNU/ADJU)

2. V a
n is the copula of W (i.e., V a

n has an incoming copUD edge starting from W )

3. W has a subject (i.e., has an outgoing nsubjUD edge)

Property 6 The sentence must be projective. Given a parse, if there are crossing edges (e.g., the incoming

edges for “of ” and “Winston” in Fig. 2), the sentence is called non-projective, otherwise it is projective.

Property 6 expresses the belief held by linguists that well-constructed English sentences are typically

projective, and so are factual sentences.

Figure 2: A example of a non-projective parse

4 KALM for Factual Language

We now briefly describe a neural parser multi-STANZA (mSTANZA) that generates several ranked parses

for input sentences and is a modification of the original STANZA. Then we describe KALMFL, a product

of adaptation of the KALM framework to factual English sentences—a language that is significantly less

restricted than any known CNL, and is much easier to learn. The KALMFL framework is shown in Fig. 3.

4.1 Multi-STANZA

STANZA [11] is a pipelined neural parser with state-of-the-art performance, which was designed to return

only the top parse for each sentence. Unfortunately, we found that it frequently errs in POS tagging, and

these errors then propagate to universal dependencies. We then noticed that nearly top parses often

give correct POS tags where the top parses err and so we modified STANZA to return also some non-

top-ranked parses. We called the result mSTANZA. Figure 4 shows the architecture. Each stage adds

multiple sets of annotations, creating a new Document object for each set. These Document objects

are then passed downstream. Unlike STANZA, the output of mSTANZA is a list of annotated Document

objects ranked in the order of decreasing confidence.



Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 113

Figure 3: The KALMFL framework

Figure 4: The architecture of mSTANZA

4.1.1 POS Tagger and Dependency Parser

The Part-of-Speech (POS) tagger adds POS tags to each word. As each POS tag has a finite number of

categories, it is straightforward to extract the k-best POS tags for each word, along with their confidences.

mSTANZA allows a user to provide a function to dynamically modify the list of k-best POS tags according

to their needs. In terms of dependency parsing, mSTANZA generates a dependency parse by generating

a fully connected directed graph, and generating the weights of the edges using a neural network. The

neural network learns to assign the weight of the edge based on the type of edge and the relationship

between the vertices. Then, the minimum spanning arborescence is found and used as the dependency

parse. Multiple possible dependency parses for each sentence are combined in order to generate the

next-best parse for the entire document.

4.1.2 Error Detection and Correction Based on Multi-STANZA

KALMFL checks STANZA parses for being factual using the necessary conditions of Section 3.1. If any

of the checks don’t pass, KALMFL attempts to correct the parse by conjecturing that some of the POS

tags are wrong (a fairly common problem with STANZA in our experience). This is done by using other

nearly top parses provided by mSTANZA. If the correction attempt fails, the user is asked to rephrase the

sentence. Details of the error correction algorithm are given in A.

4.2 Paraparsing

Paraparsing is a set of corrective steps that modify the original parse (see Appendix A). The aim here

is to eliminate possible semantic mismatches that were the original motivation for KALM, as explained

in the introduction. The mismatches handled here arise from the possibility that the same information

may be described via passive or active voice, via a different order of elements in a coordination, via the

different ways to attach adnominal clauses, and more. Note that all these corrections became possible in

KALMFL due to the use of dependency parsing and were not possible in the original CNL-based KALM.

4.2.1 Passive Voice

mSTANZA handles the active and passive voices separately. For a pair of active/passive voice sentences

with the same meaning, such as “Mary buys a car” and “A car is bought by Mary,” STANZA gives



114 Knowledge Authoring with Factual English

two completely different parses shown in Fig. 5; it does not attempt to reconcile the semantic mis-

match between them so that they would yield the same logical representation. To address this problem,

KALMFL first recognizes passive voice by the aux:passUD edge in the parse, then modifies the edges

of passive voice parses to make the parses equivalent to their active voice counterparts. If the sentence

is in active voice, keep the parse unchanged. Otherwise, convert it into n parses in active voice (n is the

number of by-phrases in the clause, since every by-phrase could be the subject of the real active voice

counterpart of this passive voice sentence) by modifying (i) nsubj:passUD to obl:by and (ii) n obl:by

edges to nsubjUD one by one.

(a) Active voice (b) Passive voice

Figure 5: Semantic mismatch caused by passive voice

4.2.2 Coordination

Elements in STANZA coordinations are not treated equally. For example, in the parse of “KFC is a cheap,

clean, and delicious restaurant” shown in Fig. 6a, cheap directly depends on restaurant, but clean and

delicious mutually depend on cheap instead of restaurant. In this case, if cheap and clean are swapped,

the meaning of the sentence stays unchanged, but the parse will be different as shown in Fig. 6b. This

phenomenon will lead to a semantic mismatch.

(a) (b)

Figure 6: Semantic mismatch caused by coordination

KALMFL treats coordination elements equally by modifying their edges. The procedure is shown

below, and all examples refer to Fig. 6a.

1. Locate the root element elroot of the coordination. It is a word that has outgoing conjUD edges to

other elements, which have incoming conjUD edges (e.g. elroot is cheap, while clean and delicious

are the other two elements)

2. Copy the incoming edge of elroot to each non-root element and delete the edge conjUD (e.g. copy

amodUD to replace conjUD that goes to clean and delicious)

3. Copy the outgoing edges of elroot (other than the deleted conjUD) to each non-root element (in our

example, cheap has no outgoing edges, so no need to copy anything)

4.2.3 Adnominal Clause

An adnominal clause describes a fact about the nominal word it modifies. For example, “Mary bought a

car that was made in USA” represents two facts: “Mary bought a car,” and “The car was made in USA”.

However, the second fact is parsed differently when it is in an adnominal clause than when it is in a



Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 115

sentence by itself, and such phenomena lead to semantic mismatch. As shown in Fig. 7a, the subject of

“a car that was made in USA” is “that” whereas the real subject should be “car” like the parse in Fig. 7b.

(a) (b)

Figure 7: Semantic mismatch caused by adnominal clause

KALMFL recognizes the real roles (e.g., subject, object, etc.) that the modified word plays in the

adnominal clause, so that the adnominal clause can be seen as a complete sentence all by itself. This is

done via the following transformation.

• if a word V1 has an incoming aclUD edge e1 that starts at V2 and has no outgoing nsubjUD or

nsubj:passUD edges, then

– if V1 is a present participle or a base-form verb tagged with VBGX or VBX, flip the direction of

e1 and change the label to nsubjUD

– if V1 is a past participle tagged with VBNX, flip the direction of e1 and change the label to

nsubj:passUD

• if a word V1 has an incoming acl:relclUD edge e1 that starts at V2, then

– if V1 has an outgoing nsubjUD, nsubj:passUD or objUD edge pointing to an introductory

word Wintro “that/who/which,” replace Wintro with V2

– if V1 has an outgoing markUD edge pointing to an introductory word Wintro where/when/why/

which replace Wintro with V2 and modify markUD to oblUD

4.2.4 Other Semantic Mismatches

Besides the most frequent semantic mismatch issues solved above, KALMFL also tackles other types of

semantic mismatch caused by lemmatization, particle verbs, prepositional phrases, named entities, indi-

rect objects, and so forth. As shown in Fig. 3, after the Paraparsing step, the ultimate parse is delivered

to Frame-based Parsing and undergoes further processing to ultimately yield a unique disambiguated

logical representation.

4.3 Representing Dependencies in Logic Programming Systems

The original KALM used DRS to represent extracted information. In this paper, the parses are repre-

sented by much more general graphs, so we introduce an appropriate logical representation for them.

Here is an example shown below:

Example 4 The KALMFL representation for the sentence “Mary buys a car”.

token(index(1,1,1),mary,[edge(index(1,2),jbusn)],edge(index(1,2),nsubj),

propn,nnp,index(1,2),s_person,accepted).

token(index(1,2,1),buy,[edge(index(1,1),nsubj),edge(index(1,4),obj)],edge(index(1,0),root),

verb,vbz,index(1,2),o,accepted).

token(index(1,3,1),a,[edge(index(1,4),ted)],edge(index(1,4),det),

det,dt,index(1,2),o,accepted).

token(index(1,4,1),car,[edge(index(1,3),det),edge(index(1,2),jbo)],edge(index(1,2),obj),

noun,nn,index(1,2),o,accepted).



116 Knowledge Authoring with Factual English

where a sentence is represented by a set of token/9 predicates and each token/9 predicate represents a

token t. The 1st argument in a token/9 predicate includes sentence ID, candidate parse ID, and t’s ID.

The 2nd argument is the lemma of t. The 3rd argument is a list of edges that connect t to other tokens,

and an edge/2 predicate representing a specific edge e includes the index of the other token on e, and

the edge type (reversed if it is an in-coming one). The 4th argument is the one and only in-coming edge

that t has. The 5th, 6th are t’s UPOS and XPOS tags, respectively. The 7th argument is the index of the

root token in the whole sentence, namely, “buys” in Example 4. Finally, the 8th and 9th arguments are

the named entity and validation tags, where the latter indicates if the parse is factual (accepted) or not.

4.4 Role-filler Disambiguation and Unique Logical Representations

In KALM, a clause represents a complete fact so each clause has only one parse, the one with the highest

semantic score after disambiguation. In KALMFL, coordinations and adnominal clauses are introduced

and their meanings can be captured accordingly, which is further explained in Section 4.4.1 and 4.4.2.

For logical representations, KALMFL uses ulr/3 and role/4 for representing instances of final

parses after disambiguation. Consider theses sentences: “Mary bought a car for John” and “Mary made

a purchase of a car for John”. Although they have different syntactic structures, they are ultimately con-

verted into exactly the same parse and their role-fillers are assigned exactly the same synsets. Therefore,

they must be translated into a unique logical representation (ULR). And indeed, the ULR for sentences

“Mary bought a car for John” and “Mary made a purchase of a car for John” is the same:

ulr(fid_1,’Commerce_buy’,[role(rid_1,’Buyer’,mary,’bn:00046516n’),

role(rid_2,’Goods’,car,’bn:00007309n’),

role(rid_3,’Recipient’,john,’bn:00046516n’)]).

The first argument fid_1 is the unique ID of this buying event, the second argument, ’Commerce_buy’,

is the frame name, and argument 3 is a list of role descriptors.

4.4.1 ULR for Factual Sentences with Coordinations

Generally, a sentence can have a mixture of and- and or-coordinations, whose meaning is quite hard

to describe. For simplicity, we focus on the case where C has only one type of coordination, i.e., all

connectives are and or all are or.

Let [C1, ...,Cn] be the list of all coordinations in a sentence S. A coordinated choice is a list σ =
[el1, ...,eln] of coordination elements such that eli ∈ Ci for all i = 1, ...,n. Let Sσ be S where each co-

ordination, Ci, and its elements is replaced with the corresponding element eli from σ . Thus, for each

coordinated choice σ for S, the above replacement operation constructs another sentence, Sσ , which has

no coordinations. Next, we collect Sσ for all the different σ ’s and organize these sentences as elements

of a new homogeneous coordination of the same type as each of the original coordination Ci. The result

is a sentence S′ with only one coordination, found at the root of the parse for the sentence.

For example, for the sentence “Mary bought and sold a car and a watch”, the coordinated choices

includes σ1 = [bought,car], σ2 = [bought,watch], σ3 = [sold,car], σ4 = [sold,watch]. Based on the

coordinated choices, we can construct 4 sentences without coordinations: “Mary bought a car,” “Mary

bought a watch,” “Mary sold a car,” and “Mary sold a watch,” which are organized into a new and-

coordination. Thus, we have the final ULR for this and-coordination shown below:

ulr(fid_1,’Commerce_buy’,[role(rid_1,’Buyer’,mary,’bn:00046516n’),

role(rid_2,’Goods’,car,’bn:00007309n’)]).

ulr(fid_2,’Commerce_buy’,[role(rid_1,’Buyer’,mary,’bn:00046516n’),



Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 117

role(rid_3,’Goods’,watch,’bn:00077172n’)]).

ulr(fid_3,’Commerce_sell’,[role(rid_1,’Seller’,mary,’bn:00046516n’),

role(rid_2,’Goods’,car,’bn:00007309n’)]).

ulr(fid_4,’Commerce_sell’,[role(rid_1,’Seller’,mary,’bn:00046516n’),

role(rid_3,’Goods’,watch,’bn:00077172n’)]).

4.4.2 ULR for Factual Sentences with Adnominal Clauses

An adnominal clause always describes the nominal word it modifies. This means that an adnominal

clause expresses a complete fact about the nominal word. In other words, the facts represented by

adnominal clauses and by the main clause must both hold. Thus, the ULRs for clauses must be in

conjunction. For example, the sentence “[Mary bought a car]main [made in the country]adnominal [that

John lives in]adnominal” has a main clause and two adnominal clauses, one modifying the word “car” and

the other the word “country.” The ULR then is given below:

ulr(fid_1,’Commerce_buy’,[role(rid_1,’Buyer’,mary,’bn:00046516n’),

role(rid_2,’Goods’,car,’bn:00007309n’)]).

ulr(fid_2,’Manufacturing’,[role(rid_2,’Product’,car,’bn:00007309n’),

role(rid_3,’Place’,country,’bn:00023236n’)]).

ulr(fid_3,’Residence’,[role(rid_4,’Resident’,john,’bn:00046516n’),

role(rid_3,’Location’,country,’bn:00023236n’)]).

5 Evaluation

We use four datasets to demonstrate the high performance of KALMFL as a knowledge authoring ma-

chine for factual English.

5.1 Datasets

• CNLD. [8] uses CNL sentences, largely inspired by FrameNet, to evaluate the original KALM.

We call this dataset the CNL Dataset (CNLD). CNLD contains 250 short CNL sentences in present

tense, such as “Kate purchases a house.” This dataset is captured via 50 logical frames and 317

LVPs constructed from 213 training sentences.

• CNLDM. This dataset is obtained from CNLD by changing the voice of some sentences from

active to passive and vice versa. In addition, some sentences are changed to past or future tense.

Thus, CNLDM contains sentences like “A house was purchased by Kate,” with mixed voice and

tense. Our evaluation uses the same LVPs as in CNLD.

• MetaQA. This dataset [14] has queries that use complex adnominal clauses. These queries neatly

fall into several different templates. Within each template, the queries differ only in the entity

names. Also, all named entities are pre-annotated. For example, the queries “who directed the

movies written by [Thomas Ian Griffith]” and “who directed the movies written by [Frank De Fe-

litta]” belong to the same template “who directed the movies written by [MASK],” where [MASK]

is a placeholder for pre-annotated named entities. In this evaluation, we use 2- and 3-hop tem-

plates directly instead of the original queries, because with named entities annotated, different

queries that fall into a same template have exactly the same mSTANZA parse. Only 3 frames are

needed to represent the semantics of all such queries: Movie, Inequality, and Coop(eration).

Acting as knowledge engineers, we designed 85 training sentences and used the approach of [9] to

understand 2- and 3-hop queries.



118 Knowledge Authoring with Factual English

• NLD. NLD uses part of the dataset from FrameNet. NLD includes 250 sentences which look like:

“GDA has purchased the site from Laing Homes and plans are being prepared for an 80 million

dollar mixed development for business, media and leisure activities”, which is the original sentence

of the CNLD sentence “Kate purchases a house”. NLD sentences have much more complicated

structures that goes beyond factual sentences. Besides factual parts, most of the NLD sentences

have non-factual parts that are not usable for knowledge acquisition. In view of this, we ignore all

the non-factual parts in NLD sentences. Another approach could be highlighting the non-factual

parts and letting the user to correct them or eliminate them.

For the original KALM, all these datasets have to be manually modified to eliminate future/past tense,

to put adnominal clauses in a certain canonical form, restrict the vocabulary for the controlled natural

language parser, particle verbs, appositives and compound nouns also had to be manually modified. In

KALMFL, all this is done automatically, and therefore, it can handle a much bigger share of natural

language sentences.

5.2 Comparison Systems

We compare KALMFL with the original KALM as well as three other frame-based parsers: SEMAFOR

[2], SLING [12], and OpenSesame [13]. SEMAFOR and SLING have been previously shown to be inac-

curate in [7], so we will not repeat these findings and instead focus on the recently proposed OpenSesame

system. Unlike KALMFL, OpenSesame is a three-staged pipeline involving target (i.e., LU) identifica-

tion, frame identification and argument (i.e., role-filler) identification—each stage is essentially a neural

network trained independently of the others. In addition, we consider the neural system DrKIT [3] as

another comparison system, which achieves the best performance on MetaQA among neural models.

5.3 Results

The evaluation is based on the following metrics:

1. Frame-level Micro-F1: the ratio of sentences that (i) correctly trigger all the applicable frames,

and (ii) do not trigger wrong frames.

2. Role-level Micro-F1: the ratio of sentences that (i) correctly trigger all the applicable frames with

all roles correctly identified, and (ii) do not trigger wrong frames.

3. Synset-level Micro-F1: the ratio of sentences that (i) correctly trigger all the applicable frames

with all roles correctly identified and disambiguated, and (ii) do not trigger wrong frames. Note

this metric applies only to KALM and KALMFL; other systems do not attempt to give semantics

with this level of precision.

Table 1: Micro-F1 score comparisons on different datasets

CNLD CNLDM MetaQA NLD

F R S F R S F R S F R S

KALM 0.99 0.99 0.97 – – – 1.00 1.00 1.00 – – –

OpenSesame 0.61 0.17 – 0.59 0.11 – 0.49 0.00 – 0.56 0.12 –

KALMFL 0.99 0.99 0.97 0.99 0.99 0.97 0.95 0.95 0.95 0.99 0.98 0.95

DrKIT – – – – – – – 0.876 – – – –



Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 119

Results for the different levels of F1 scores are presented in Table 1. In the table, F, R, and S refer to the

frame, role, and synset-level F1 scores, respectively. Note that the results reported in the literature for

DrKIT [3] can be interpreted as pertaining the role-level Micro-F1 metric. The results in the table are

summarized below.

1. CNLD: This dataset has only CNL sentences and KALMFL achieves the same high F1 scores as

the original KALM in all metric levels. OpenSesame’s 0.61 frame-level F1 score shows that it has

difficulty even to recognize correct frames.

2. CNLDM: Perturbation of the tenses and voices of CNLD sentences took this dataset outside of

the Attempto’s APE CNL, thus the original KALM cannot handle some of the CNLDM sentences

even though the meaning of these sentence did not change.

3. MetaQA: KALM performs perfectly, but only after changing the sentences so they comply with

the ACE CNL. In contrast, KALMFL gets the 0.95 synset F1 score even without any preprocessing.

OpenSesame fails on MetaQA with 0 role-level F1 score—probably because it was never trained

on the movie domain. In the comparison between DrKIT and KALMFL, DrKIT [3] achieved 0.871

and 0.876 accuracy on 2- and 3-hop query answering respectively. For KALMFL, the 333 out of

350 correctly parsed templates covers 128,784 2-hop queries and 119,923 3-hop queries, which

results in 0.962 and 0.933 accuracy on 2- and 3-hop query answering and outperforms DrKIT.

4. NLD: The original KALM fails since this dataset breaks the CNL restrictions on the input lan-

guage. In contrast, KALMFL does well and easily outperforms OpenSesame, especially when it

comes to handling of adnominal clauses.

It is surprising that OpenSesame’s role level F1 scores are extremely low on the three FrameNet-

related datasets. Error analysis shows that even for simple CNLD sentences like “Mary buys a laptop,”

OpenSesame has hard time extracting all roles. For instance, “laptop” is not extracted as a role-filler for

the role Goods.

6 Limitations and Future Work

Although KALMFL has been shown to have high accuracy, limitations still exist. For example,

• KALMFL accepts various tenses based on Property 3, but currently this and other temporal infor-

mation is ignored and is planned for future work.

• KALMFL doesn’t handle anaphora because the quality of the parses is highly dependent on the

quality of the chosen off-the-shelf anaphora resolver.

• KALMFL treats sentences with quantifiers, like “Every pet has an owner,” as facts rather than

rules, which points to an issue with the definition of factual sentences.

For future work, we plan to address some of the aforesaid problems and to extend KALMFL with

quantifiers, rules, temporal information, and other advanced features that have direct counterparts in

natural languages.

7 Conclusion

The original KALM [7, 8, 9] was proposed as a solution to the problem of semantic mismatch in knowl-

edge authoring using natural languages, but this solution was limited to CNLs, which is a severe limita-

tion both in expressiveness and human training. In this paper, we introduced KALMFL, an NLP system



120 Knowledge Authoring with Factual English

that is not chained by CNL limitations. The only restriction is that the sentences used for knowledge

authoring must be factual, i.e., express factual information as opposed to, say, feelings, allegories, hyper-

bolas, etc. Benchmarking shows that this approach captures the meanings of factual sentences with very

high accuracy: the 0.95 F1 score for both facts and queries.

References

[1] Collin F Baker, Charles J Fillmore & John B Lowe (1998): The berkeley framenet project. In: 36th Annual

Meeting of the Association for Computational Linguistics and 17th International Conference on Computa-

tional Linguistics, Volume 1, pp. 86–90, doi:10.3115/980845.980860.

[2] Dipanjan Das, Desai Chen, André FT Martins, Nathan Schneider & Noah A Smith (2014): Frame-semantic

parsing. Computational linguistics 40(1), pp. 9–56, doi:10.1162/COLI_a_00163.

[3] Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig, Ruslan Salakhutdinov &

William W Cohen (2020): Differentiable reasoning over a virtual knowledge base. arXiv preprint

arXiv:2002.10640 1, doi:10.48550/arXiv.2002.10640.

[4] Charles J Fillmore et al. (2006): Frame semantics. Cognitive linguistics: Basic readings 34, pp. 373–400,

doi:10.1515/9783110199901.373.

[5] Norbert E Fuchs, Stefan Hoefler, Kaarel Kaljurand, Tobias Kuhn, Gerold Schneider & Uta Schwertel

(2006): Discourse Representation Structures for ACE 5. ifi Technical Reports 1(ifi2006. 10), doi:10.5167/

uzh-62058.

[6] Norbert E Fuchs & Rolf Schwitter (1996): Attempto controlled english (ace). arXiv preprint cmp-lg/9603003

1, doi:10.48550/arXiv.cmp-lg/9603003.

[7] Tiantian Gao, Paul Fodor & Michael Kifer (2018): High accuracy question answering via hybrid controlled

natural language. In: 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), IEEE, pp.

17–24, doi:10.1109/WI.2018.0-112.

[8] Tiantian Gao, Paul Fodor & Michael Kifer (2018): Knowledge authoring for rule-based reasoning. In:

OTM Confederated International Conferences” On the Move to Meaningful Internet Systems”, Springer, pp.

461–480, doi:10.1007/978-3-030-02671-4_28.

[9] Tiantian Gao, Paul Fodor & Michael Kifer (2019): Querying Knowledge via Multi-Hop English Questions.

Theory and Practice of Logic Programming 19(5-6), pp. 636–653, doi:10.1017/S1471068419000103.

[10] Roberto Navigli & Simone Paolo Ponzetto (2012): BabelNet: The automatic construction, evaluation and

application of a wide-coverage multilingual semantic network. Artificial Intelligence 193, pp. 217–250,

doi:10.1016/j.artint.2012.07.001.

[11] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton & Christopher D Manning (2020): Stanza: A python

natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082 1, doi:10.

18653/v1/2020.acl-demos.14.

[12] Michael Ringgaard, Rahul Gupta & Fernando CN Pereira (2017): SLING: A framework for frame semantic

parsing. arXiv preprint arXiv:1710.07032 1, doi:10.48550/arXiv.1710.07032.

[13] Swabha Swayamdipta, Sam Thomson, Chris Dyer & Noah A Smith (2017): Frame-semantic parsing with

softmax-margin segmental rnns and a syntactic scaffold. arXiv preprint arXiv:1706.09528 1, doi:10.48550/

arXiv.1706.09528.

[14] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola & Le Song (2018): Variational reasoning

for question answering with knowledge graph. In: Thirty-second AAAI conference on artificial intelligence,

pp. 6069–6076, doi:10.48550/arXiv.1709.04071.

http://dx.doi.org/10.3115/980845.980860
http://dx.doi.org/10.1162/COLI_a_00163
http://dx.doi.org/10.48550/arXiv.2002.10640
http://dx.doi.org/10.1515/9783110199901.373
http://dx.doi.org/10.5167/uzh-62058
http://dx.doi.org/10.5167/uzh-62058
http://dx.doi.org/10.48550/arXiv.cmp-lg/9603003
http://dx.doi.org/10.1109/WI.2018.0-112
http://dx.doi.org/10.1007/978-3-030-02671-4_28
http://dx.doi.org/10.1017/S1471068419000103
http://dx.doi.org/10.1016/j.artint.2012.07.001
http://dx.doi.org/10.18653/v1/2020.acl-demos.14
http://dx.doi.org/10.18653/v1/2020.acl-demos.14
http://dx.doi.org/10.48550/arXiv.1710.07032
http://dx.doi.org/10.48550/arXiv.1706.09528
http://dx.doi.org/10.48550/arXiv.1706.09528
http://dx.doi.org/10.48550/arXiv.1709.04071


Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 121

A Error Detection and Correction

Fig. 8 illustrates one of the errors in STANZA POS tagging. Here, the word protests is wrongly tagged as

a noun and the dependencies related to protests are also wrong.

Figure 8: The best mSTANZA parse for “A student protests against the government”

Fortunately, the six properties that stem from the factual sentence requirement can detect and help

correct some of these mis-taggings. Denote the mSTANZA parse with the highest confidence score

as parse0 = [w1, ...,wn] where n is the number of the words, wi contains all parsing information such

as POS tag, dependency relation of the i-th word in the sentence. Let U pos = [upos1, ...,uposn] and

X pos = [xpos1, ...,xposn] be the UPOS and XPOS taggings of the sentence.

Algorithm 1 POS Tagging Error Detection and Correction

Input: uposi, xposi, the second best UPOS tag upos′i for wi, and the second best XPOS tag upos′i for wi.

Output: The corrected UPOS uposi and XPOS xposi for wi.

1: uposi,xposi← uposi,xposi

2: if uposi.score < 0.9 then

3: if uposi == NOUNU and upos′i == VERBU then

4: uposi← VERBU

5: xposi← VBPX/VBZX/VBDX

6: else if uposi == VERBU and upos′i == AUXU then

7: uposi← AUXU

8: xposi← VBPX/VBZX/VBDX

9: else if uposi == PRONU and upos′i == DETU then

10: uposi← DETU

11: xposi← WDTX/PDTX/DTX

12: else if uposi == SCONJU and upos′i == ADVU then

13: uposi← ADVU

14: xposi← WRBX/INX

15: else if xposi.score < 0.9 then

16: if xposi == VBDX and xpos′i == VBNX then

17: xposi← VBNX

18: else if xposi == VBNX and xpos′i == xposVBD then

19: xposi← VBDX

20: else if xpos1 j == VBPX and xpos′i == VBX then

21: xposi← VBX

22: return uposi,xposi

Detection and correction of POS tags. As shown in the dotted box of Fig. 3, this step starts

with parse0. If parse0 satisfies all the above-mentioned factual properties, parse0 is assumed to be

error-free and is directly sent to the Paraparsing step. Otherwise, following Algorithm 1, if a possibly



122 Knowledge Authoring with Factual English

wrong (with confidence < 0.9) POS tag belongs to a certain type of frequent POS tagging errors (e.g.,

mSTANZA relatively frequently mis-tags verbs as nouns, and this is what happened with protests in

Fig. 8), KALMFL then asserts the tag is wrong and corrects it. Lines 2 and 3 in Algorithm 1 capture such

type of errors and assign corrected POS tags. Note that in Lines 5, 8, 11, and 14, the algorithm faces

multiple options like VBPX/VBZX/VBDX and chooses the one with the highest confidence score.

Re-parsing with new POS tags. Having re-tagged the words in the above step, the new POS tags,

U pos = [upos1, ...,uposn] and X pos = [xpos1, ...,xposn], are fed to the mSTANZA dependency parser to

re-generate a new dependency parse Parse, ranked by confidence scores.

Selecting a corrected parse. In this step, KALMFL goes through the parses in Parse, from the

highest confidence score to lowest, looking for a parse, parse′, that satisfies all the properties of factual

sentences. If parse′ is found, it is taken as a corrected parse, parse = parse′. If parse′ is not found, the

algorithm assumes the sentence in question is not factual, so it asks the user to paraphrase the sentence.


	1 Introduction
	2 The KALM Framework
	3 Factual Sentences
	3.1 Grammatical Properties of Factual Sentences

	4 KALM for Factual Language
	4.1 Multi-Stanza
	4.1.1 POS Tagger and Dependency Parser
	4.1.2 Error Detection and Correction Based on Multi-Stanza

	4.2 Paraparsing
	4.2.1 Passive Voice
	4.2.2 Coordination
	4.2.3 Adnominal Clause
	4.2.4 Other Semantic Mismatches

	4.3 Representing Dependencies in Logic Programming Systems
	4.4 Role-filler Disambiguation and Unique Logical Representations
	4.4.1 ULR for Factual Sentences with Coordinations
	4.4.2 ULR for Factual Sentences with Adnominal Clauses


	5 Evaluation
	5.1 Datasets
	5.2 Comparison Systems
	5.3 Results

	6 Limitations and Future Work
	7 Conclusion
	A Error Detection and Correction

