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Justification theory is an abstract unifying formalism that captures semantics of various non-monotonic
logics. One intriguing problem that has received significant attention is the consistency problem: un-
der which conditions are justifications for a fact and justifications for its negation suitably related.
Two variants of justification theory exist: one in which justifications are trees and one in which they
are graphs. In this work we resolve the consistency problem once and for all for the tree-like setting
by showing that all reasonable tree-like justification systems are consistent.

1 Introduction

Justification theory [3] is a unifying theory to capture semantics of non-monotonic logics. Largely thanks
to its abstract nature, it is a powerful framework with many use cases. First, it provides a mechanism to
define new logics based on well-known principles in a uniform way, as well as to transfer results between
domains. Second, it brings order in the zoo of logics and semantics, by enabling a systematic comparison
between multiple semantics for a single logic and between different logics, for instance by answering the
question whether a certain semantics of a given logic coincides with a semantics of another logic. Third,
building on the notion of nested justification systems1, it facilitates modular definitions of knowledge
representation languages and semantics.

Justification theory builds on the semantic notion of a justification, which can intuitively be under-
stood as an explanation (in the form of a tree or a directed graph) as to why a certain fact is true or false.
For this reason, logics of which the semantics is captured by justification theory automatically come with
a mechanism of explanation, which is of increasing importance for societal and legal reasons. On top
of that, justifications have repeatedly proven to be useful algorithmically. They have been used in the
unfounded set algorithm of Gebser et al. [5], for improving lazy grounding algorithms [1], as well as to
speed-up parity game solvers [9].

The roots of justification theory can be traced back to the doctoral thesis of Denecker [2], where
it was developed as a framework for studying semantics of logic programs. Later, Denecker et al. [3]
developed a more general theory, aiming to also capture other knowledge representation formalisms,
such as abstract argumentation [4], and nested least and greatest fixpoint definitions [8]. A notable
difference between the original work of Denecker [2] and the theory of Denecker et al. [3] is that in
the former work, a justification is a tree where the nodes are labeled with literals, while in the latter a
justification is a (directed) graph. The relationship between these two formalisms was studied among
others by Marynissen et al. [11]. For clarity, we will refer to tree-like and graph-like justifications when
the distinction is important.

*This work was partially supported by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project G0B2221N).
1Nested justification systems were originally defined by Denecker et al. [3], but have remained largely unexplored since

then. In a companion paper to this paper [13], we provide a systematic study of nested systems and their properties
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2 Tree-Like Justification Systems are Consistent

In justification theory, whether or not a justification is “good” is determined by a branch evaluation.
A branch evaluation is a function that associates to each path through a justification (i.e., to each branch
of the justification) a value. However, a priori, it is not clear that each branch evaluation induces a well-
defined semantics. For this to be the case, intuitively the justifications of a fact x and those of its negation
∼x should be suitably related. Indeed, we cannot accept that there is both an explanation that x is true
and an explanation that ∼x is true. In general, to get a well-defined semantics we will need that the best
possible justification for x and the best possible justification for ∼x are complementary (either one of
them is true and the other false, or both are unknown). The problem of determining whether or not a
branch evaluation induces a well-defined semantics is known as the consistency problem and has been
studied in several papers.

• Denecker [2, Theorem 4.3.1] studied the consistency problem for tree-like justifications for three
specific branch evaluations (corresponding to completion semantics, stable semantics and well-
founded semantics in logic programming).

• Marynissen et al. [14] were the first to exhibit a branch evaluation that (for graph-like justifi-
cations) is not consistent. Moreover, they showed that for graph-like justifications, four branch
evaluations (in addition to the three mentioned above, also the Kripke-Kleene branch evaluation)
are guaranteed to be consistent.

• Marynissen et al. [11] investigated the relationship between justification theory and games over
graphs [7]. They used this relationship to identify some key properties that, when satisfied by a
branch evaluation, guarantee that that branch evaluation is consistent for graph-like and tree-like
justifications, but only in the context of a finite fact space.

Despite all these efforts, there is no clear understanding yet of what it is that makes a branch evaluation
consistent. Moreover, proofs of consistency of individual branch evaluations often span several pages.
In this paper, we resolve this question once and for all for tree-like justifications. Our main theorem
states that: for tree-like justifications, every reasonable branch evaluation is consistent. The proof is
surprisingly simple (compared to earlier proofs for individual branch evaluations) and is completely
included in the main text. The results presented in this paper are part of the PhD thesis of the first author
[10].

The rest of this paper is structured as follows. We recall some basic definitions of justification theory
(focusing solely on tree-like justifications) in Section 2 and state the consistency problem in Section 3.
In Section 4 we present the core theoretic results (in somewhat more generality) that are subsequently
used to prove our main result (namely that every reasonable branch evaluation is consistent) in Section 5.
We conclude in Section 6.

2 Preliminaries

We present the core definitions of justification theory, based on the formalization of Marynissen et al.
[11, 12].

In the rest of this paper, let F be a set, referred to as a fact space, such that L = {t, f,u} ⊆ F, where
t, f and u have the respective meaning true, false, and unknown. The elements of F are called facts. The
set L behaves as the three-valued logic with truth order ≤t given by f ≤t u ≤t t. We assume that F is
equipped with an involution ∼ : F→ F (i.e., a bijection that is its own inverse) such that ∼t = f, ∼u = u,
and ∼x 6= x for all x 6= u. For any fact x, ∼x is called the complement of x. An example of a fact space
is the set of literals over a propositional vocabulary Σ extended with L where ∼ maps a literal to its
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negation. For any set A we define ∼A to be the set of elements of the form ∼a for a ∈ A. We distinguish
two types of facts: defined and open facts. The former are accompanied by a set of rules that determine
their truth value. The truth value of the latter is not governed by the rule system but comes from an
external source or is fixed (as is the case for logical facts).

Definition 2.1. A justification frame JF is a tuple 〈F,Fd ,R〉 such that

• Fd is a subset of F closed under ∼, i.e. ∼Fd = Fd ; facts in Fd are called defined;

• no logical fact is defined: L ∩Fd = /0;

• R⊆ Fd×2F;

• for each x ∈ Fd , (x, /0) /∈ R and there is an element (x,A) ∈ R for /0 6= A⊆ F.

The set of open facts is denoted as Fo := F\Fd . An element (x,A) ∈ R is called a rule with head x
and body (or case) A. The set of cases of x in JF is denoted as JF(x). Rules (x,A) ∈ R are often denoted
as x← A and if A = {y1, . . . ,yn}, we often write x← y1, . . . ,yn.

Logic programming rules can easily be transformed into rules in a justification frame. However, in
logic programming, only rules for positive facts are given; never for negative facts.2 Hence, in order
to apply justification theory to logic programming, a mechanism for deriving rules for negative literals
is needed as well. Similarly, in the setting of argumentation we can naturally derive rules for negative
facts (given attack relations), but rules for positive facts are less obvious. For this, a technique called
complementation was invented [3]; it is a generic mechanism that allows turning a set of rules for x into
a set of rules for ∼x.

Complementation makes use of so-called selection functions for x. A selection function for x is a
mapping s : JF(x)→ F such that s(A)∈ A for all rules of the form x← A. Intuitively, a selection function
chooses an element from the body of each rule of x. For a selection function s, the set {s(A) | A ∈ JF(x)}
is denoted by Im(s). Selection functions can be used to construct rules for∼x from rules for x: intuitively,
a fact ∼x can be derived if every rule for x fails. Formally, if R is a set of rules, the complement C(R) is
the set of elements of the form ∼x←∼ Im(s) with x defined in R and s a selection function for x in R.
The complementation of a set of rules R is CC(R) := R∪C(R).

In general, we will be interested in justification frames where the rules for x and the rules for ∼x
are suitably related. It does not necessarily have to be the case that our frame is obtained by comple-
mentation, but still we want to ensure that the rules are compatible. This has been studied intensively by
Marynissen et al. [14], who have given several equivalent characterizations of when a justification frame
is complementary. Here, we give only one such characterization:

Definition 2.2. Let JF = 〈F,Fd ,R〉 be a justification frame. We call JF complementary if for every
x ∈ Fd the following hold:

1. for every selection function s for x in R, there exists an A ∈ JF(∼x) with A⊆∼ Im(s);

2. for every A ∈ JF(x), there exists a selection function s for ∼x in R with ∼ Im(s)⊆ A.

The first item states that if we find a way to block every possible rule for x (by taking the complement
of all the elements selected by a selection function s for x), then there should be a rule that derives∼x, i.e.,
there should be some rule ∼x← A with A containing only facts in ∼ Im(s). The second item states the

2In some extensions of logic programming “classical negation” is allowed in the head of rules. In that setting, an expression
¬p is a shorthand for an arbitrary atom that can never be true together with p. This is significantly different from our setting
where ∼p simply means that p is false, and hence a rule with ∼p in the head states a condition under which p is false. To
further illustrate this difference: if there are no rules for ∼p, this means in our setting that ∼p cannot be true (hence p cannot
be false). In the aforementioned extensions of logic programming, a lack of rules for ¬p entails nothing about p.
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other direction, namely that whenever we can derive x (by means of a rule x← A), it cannot be possible
to ∼x, i.e., at least one fact in each rule for ∼x should be blocked. This is expressed again by means of a
selection function: there should exist a selection function that selects only facts that are the complement
of a fact in A. For more intuition regarding complementarity, we refer the reader to Marynissen et al.
[14, 11].

Example 2.3. The justification frame

p← q,∼r

∼p←∼q

is not complementary. Intuitively, the first rule states that p holds whenever q is true and r is false; this is
the only case in which p can be derived. Since this is the only rule for p, we expect p to be false (i.e.,∼p
to be true) whenever q is false or r is true; the first case is present, but the second case for ∼p is missing.
After adding the rule

∼p← r (1)

the frame becomes complementary. If we add a further rule

∼p← r,q, (2)

the frame is still complementary; intuitively, (2) is a redundant rule, in the sense that it is weaker than
(1). N

Definition 2.4. A directed labeled graph is a quadruple (N,L,E, `) where N is a set of nodes, L is a set
of labels, E ⊆ N×N is the set of edges, and ` : N→ L is a function called the labeling. An internal node
is a node with outgoing edges and a leaf node is one without outgoing edges.

Definition 2.5. Let JF= 〈F,Fd ,R〉 be a justification frame. A (tree-like) justification J in JF is a directed
labeled graph (N,Fd ,E, `) such that

• the underlying undirected graph is a forest, i.e., is acyclic;

• for every internal node n ∈ N it holds that `(n)←{`(m) | (n,m) ∈ E} ∈ R.

Definition 2.6. A justification is locally complete if it has no leaves with label in Fd . We call x ∈ Fd a
root of a justification J if there is a node n labeled x such that every node is reachable from n in J.

We write J(x) for the set of locally complete justifications rooted in a node labeled x.

Definition 2.7. Let JF be a justification frame. A JF-branch is either an infinite sequence in Fd or a
finite sequence in Fd followed by an element in Fo. For a justification J in JF, a J-branch starting in
x ∈ Fd is a path in J starting in x that is either infinite or ends in a leaf of J. We write BJ(x) to denote the
set of J-branches starting in x.

Not all J-branches are JF-branches since they can end in nodes with a defined fact as label. However,
if J is locally complete, any J-branch is also a JF-branch.

We denote a branch b as b : x0→ x1→ ··· and define ∼b as ∼x0→∼x1→ ·· · .
Definition 2.8. A branch evaluation B is a mapping that maps any JF-branch to an element in F for all
justification frames JF. A branch evaluation B respects negation if B(∼b) =∼B(b) for any branch b.
A justification frame JF together with a branch evaluation B forms a justification system JS, which is
presented as a quadruple 〈F,Fd ,R,B〉.
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We now define some branch evaluations that induce semantics corresponding to the equally named
semantics of logic programs.

Definition 2.9. The supported (completion) branch evaluation Bsp maps x0 → x1 → ·· · to x1 and
branches that consist only of a singe open fact x0 to x0. The Kripke-Kleene branch evaluation BKK
maps finite branches to their last element and infinite branches to u.

Other branch evaluations have been defined as well, for instance stable and well-founded branch
evaluations, which correspond to the equally-named semantics of logic programming [6, 15]. We refer
the reader to the original work introducing justification theory [3] for their definitions.

Definition 2.10. A (three-valued) interpretation of F is a function I : F→L such that I(∼x) = ∼I(x)
and I(`) = ` for all ` ∈L .

Definition 2.11. Let JS= 〈F,Fd ,R,B〉 be a justification system, I an interpretation of F, and J a locally
complete justification in JS. Let x ∈ Fd be a label of a node in J. The value of x ∈ Fd by J under I is
defined as val(J,x, I) = minb∈BJ(x) I(B(b)), where min is the minimum with respect to ≤t .

The supported value of x ∈ F in JS under I is defined as

SVJS(x, I) = max
J∈J(x)

val(J,x, I) for x ∈ Fd

SVJS(x, I) = I(x) for x ∈ Fo.

In other words, the value of a fact in a justification is the value of the worst branch starting in that
fact, and the supported value of a fact in an interpretation is the value of that fact in its best justification.
Models are then defined as those interpretation in which the supported value of each fact equals their
actual value. Every branch evaluation induces a different class of “models”. For instance, models under
the supported branch evaluation correspond to supported models in logic programming.

When JS is clear from the context, we will drop the subscript and just write SV(x, I) for SVJS(x, I).

Definition 2.12. Let JS = 〈F,Fd ,R,B〉 be a justification system. An F-interpretation I is a JS-model
if for all x ∈ Fd , SV(x, I) = I(x). If JS consists of JF and B, then a JS-model will also be called a
B-model of JF.

3 The Consistency Problem

We defined models of a justification system by a kind of a fixpoint equation: for I to be a model, it must
be a fixpoint of the operator SJS that maps I to the interpretation SJS(I), which is the function

F→L : x 7→ SV(x, I).

However, one intriguing problem is that domain and range of the support operator are not equal: the
range of the support operator is the set of functions from F to L , while the domain is the set of F-
interpretations, which are functions from F to L with some additional properties such as I(∼x) =∼I(x)
for all x ∈ F. We might then wonder under which conditions, these properties will be guaranteed for
SJS(I).

On top of that, there is a more fundamental reason why this property is important. Explanations
are of growing importance in various subdomains of artificial intelligence. In our setting, a justification
with value t for x serves as an explanation of why x is true. But what if x is false? Which semantic
structure can explain that? From the definition of supported value, it can be seen that x is false if there
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are no justifications with a better value (than f) for x. But, the absence of such justifications is difficult
to argue. The question that then remains is: how to show that there are no better justifications for x.
The most obvious solution is considering a justification of ∼x. Indeed, intuitively, an explanation why
the negation of x is true should explain why x is false. However, this method implicitly assumes that
SV(∼x, I) =∼SV(x, I), thus motivating the following definition.

Definition 3.1. A justification system JS is consistent if SV(∼x, I) = ∼SV(x, I) for every x ∈ Fd and
every F-interpretation I.

We are now ready to state the consistency problem, which is the central research question of this
article.

Consistency problem

When is a justification system consistent? In particular, what properties do branch evaluations and
justification frames need to have to ensure that the justification system is consistent?

Consistency is a reasonable assumption that, unfortunately, is not always satisfied. An obvious way
to not satisfy it is by having unrelated rules for x and ∼x.{

x← t
∼x← t

}
Of course, in this example we cannot expect that the justifications for x and ∼x are related because their
rules are contradictory. While justification theory in principle works with such rule sets, most of the
theory has focused on complementary justification frames, where the rules for x and ∼x are suitably
related. Another way in which consistency can be violated is if B does not respect negation. Again,
in its most general form, justification theory allows such strange branch evaluations (e.g., one that maps
every branch to t, in which every justification is always true), however there are no applications of such
branch evaluations.

In fact, the main result of our paper is that for tree-like justifications, the two aforementioned syntactic
properties are enough to guarantee consistency:

Theorem 3.2 (Main theorem). Let JS = 〈F,Fd ,R,B〉 be a justification system. If JS is complementary
and B respects negation, then JS is (tree-like) consistent.

We do want to stress the fact that this only holds for tree-like justification systems: Marynissen et
al. [14] gave an example of a branch evaluation that respects negation, on a complementary justification
frame, that is not consistent for graph-like justifications (which we do not consider in this paper).

4 Constructing a Justification

In this section, we will provide the core theoretic results that are needed to prove our main theorem. In
short, what we aim to show here is that if there are no “good” justifications for x, then we can construct
a “good” justification for ∼x. We will prove this in some more generality, making use of a new concept:
a branch selection: a set of branches starting in a certain fact x that contains at least one branch from
every justification of x. The main result of this section (Theorem 4.5) then states that for every branch
selection B for x, we can construct a justification for ∼x that only has branches in ∼B.

Throughout this section, we fix a justification system JS= 〈F,Fd ,R,B〉 with JF= 〈F,Fd ,R〉.
Definition 4.1. A branch selection for x in JF is a set B of branches starting in x such that for each
locally complete justification J rooted in x, B contains at least one J-branch.
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In what follows, if x← A is a rule, and for each y ∈ A, Jy is a justification3 rooted in y, we will write

x A→ (Jy)y∈A for the justification in which A are the children of x and such that the subtree rooted in y ∈ A
equals Jy.

Lemma 4.2. Let B be a branch selection for x, and let x← A be a rule in JF. There exists a y∗ ∈ A such
that for every justification Jy∗ ∈ J(y∗) rooted in y∗, B contains at least one branch of the form x→ y∗→ b
with y∗→ b a branch starting from the root of Jy∗ .4

Proof. Assume by contradiction that such a y∗ does not exist. This would mean that for each y ∈ A, there
exists a Jy ∈ J(y) such that B does not contain any branches of the form x→ y→ b with y→ b a branch in

Jy. However, if we have such a justification for each y ∈ A, consider the justification x A→ (Jy)y∈A. Since
this is a locally complete justification of x, B must contain at least one of its branches, which yields a
contradiction.

Corollary 4.3. Let B be a branch selection for x, and let x← A be a rule in JF. There exists a y∗ ∈ A
such that By∗ := {y∗→ b | x→ y∗→ b ∈ B} is a branch selection for y∗.

Proof. The only thing we need to show is that By∗ contains at least one branch from each justification
rooted in y∗. This follows directly from Lemma 4.2.

Corollary 4.4. Assume JS is a complementary justification system. If B is a branch selection for x in
JF, then there exists a rule ∼x← B∼x for ∼x such that for each y ∈ ∼B∼x, we have that By := {y→ b |
x→ y→ b ∈ B} is a branch selection for y.

Proof. Corollary 4.3 determines a selection function for x in JF, by choosing from each x← A a y∗ ∈ A.
Then by complementarity of JS, there is a rule ∼x← B∼x such that every element of B∼x is one of the
selected y∗.

Theorem 4.5. If JS is a complementary justification system and B is a branch selection for x in JF, then
there exists a justification J′ rooted in ∼x such that for each branch b′ of J′ starting in the root, ∼b′ ∈ B.

Proof. We will first construct a labeled tree T rooted in ∼x with the properties that

1. the label of each internal node is a defined fact;

2. the label of each leaf is an open fact;

3. for each path in T starting in the root, the corresponing branch (obtained by taking the labels of
each node) is the negation of a branch in B.

However, our tree T will not necessarily be a justification: the set of children’s labels of an internal node
will not necessarily be the body of a rule for the label of that node. In the second part of the proof, we
will then prove that a subtree of T indeed forms a justification.

Our tree T is constructed as follows.

• The nodes of T are all finite prefixes of the branches in ∼B. That is, the nodes of T are all
sequences ∼x→∼x1 →∼x2 → ··· → ∼xn such that there is a branch in B that starts with x→
x1→ ··· → xn. Each such node is labeled ∼xn.

3In case y is an open fact, there is only one such justification, namely a justification with a single node and without edges.
4In case y∗ is an open fact, this thus means that b is the empty branch and y∗→ b is a branch with only a single element y∗.
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• For each prefix ∼x→∼x1 →∼x2 → ··· → ∼xn−1 →∼xn, there is an edge from ∼x→∼x1 →
∼x2→ ··· → ∼xn−1 to ∼x→∼x1→∼x2→ ··· → ∼xn.

By construction, there is a one-to-one correspondence between paths starting in the root of T and
branches in B. Since all branches in B are part of a locally complete justification, it is clear that in-
deed, the labels of internal nodes of this tree are defined facts and the labels of leaves are open facts.

We will now show that we can choose a subtree J′ of T that is a locally complete justification. For
each node η = ∼x→∼x1→ ··· → ∼xn, we define Bη as the set of branches b starting in xn such that
x→ x1→ ··· → xn−1→ b is a branch in B. For some nodes, Bη is a branch selection function for xn, but
this is not guaranteed to be the case for every node. For those nodes η (with label ∼z) for which η is a
branch selection for z, Corollary 4.4 guarantees there is a rule ∼z← B∼z such that for each ∼y ∈ B∼z,
{y→ b | z→ y→ b ∈ Bη} is also a branch selection function for y. For each such η , we choose such
a rule and for the rest of this proof denote B∼z as chosenBody(η). Given this choice, we construct the
justification J inductively as follows:

• The root ∼x is a node in J.

• For each node η = ∼x→∼x1 →∼xn in J, and for each ∼y ∈ chosenBody(η), the node ∼x→
∼x1→ ··· → ∼xn→∼y of T is a node of J.

Of course, in order for this construction to work, we need to show that for each node in J, chosenBody(η)
is well-defined, i.e., that for each node η in J with label ∼z, Bη is a branch selection function for z. We
prove this inductively as well

• This claim clearly holds for the root node since the corresponding branch selection function simply
equals B.

• If η =∼x→∼x1→ ··· → ∼xn is a node for which Bη is a branch selection function for xn ∈ Fd
and∼y ∈ chosenBody(η), let η ′ denote the node∼x→∼x1→ ···→∼xn→∼y. We should show
that Bη ′ is a branch selection for y. Now this follows easily from the fact that

Bη ′ = {y→ b | x→ x1→ ·· · → xn→ y→ b ∈ B}
= {y→ b | xn→ y→ b ∈ Bη}

and this last set is guaranteed to be a branch selection (by Corollary 4.4).

This way of constructing J indeed results in a locally complete justification: for each internal node η

labeled ∼z of T that is part of J, a rule ∼z← B is selected and the children of η have labels in B, which
thus concludes our proof.

5 Tree-Like Justification Systems are Consistent

We now turn our attention to proving the main theorem of this paper (Theorem 3.2). As before, we fix a
justification system JS= 〈F,Fd ,R,B〉 with JF= 〈F,Fd ,R〉.

One direction of the main theorem is fairly easy to prove: if we are given a good justification for
a certain fact, there cannot be a good justification for its complement. This direction relies on the fact
that for complementary frames, the cases of x and those of ∼x, and the justification of x and ∼x are
intrinsically related as formalized in the following two lemmas (inspired by similar results for graph-like
justifications [14]).

Lemma 5.1. If JF is complementary, then for all rules x← A and ∼x← B in R, we have A∩∼B 6= /0.
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Proof. Take A ∈ JF(x) and B ∈ JF(∼x). By complementarity, there exists a selection function s for ∼x
such that ∼ Im(s)⊆ A. Therefore, ∼s(B) ∈ A. On the other hand, s(B) ∈ B; hence ∼s(B) ∈ A∩∼B.

Lemma 5.2. Let JF = 〈F,Fd ,R〉 be a complementary justification frame and x ∈ Fd . If J and K are
justifications in J(x) and J(∼x) respectively, then there exists a J-branch b starting in x such that ∼b is
a K-branch starting in ∼x.

Proof. We incrementally define J-paths bi and K-paths b∗i of length i such that bi =∼b∗i . Define b1 and
b∗1 as the node x and ∼x respectively. Now assume that we obtained bi and b∗i . Let y be the end node of
bi. If y is not defined, so is ∼y and then bi is the desired J-branch. So assume y is defined. We want to
find a fact z such that z is a child of y in J and ∼z is a child of ∼y in K. By using the rules for y← A
in J and ∼y← B in K we can use Lemma 5.1 to obtain that A∩∼B 6= /0 because JF is complementary.
Choose a z in A∩∼B. Then we construct bi+1 = bi → z and b∗i+1 = b∗i →∼z. Our required branch is
then the limit of bi for i going to infinity.

From this lemma, one direction of consistency directly follows; this result was also already shown
by Marynissen et al. [11, Proposition 5.13], but we include a direct proof to make the current paper
self-contained.

Proposition 5.3. If JS is complementary and B respects negation, then

SV(x, I)≤t ∼SV(∼x, I)

for any x ∈ Fd and any F-interpretation I.

Proof. Take x with SV(x, I) = ` for some ` ∈ L . This means there is a justification J such that
valJS(J,x, I) = `. Take a justification K for ∼x. Therefore, by Lemma 5.2, there is a J-branch b starting
in x such that ∼b is a K-branch starting in ∼x. We consider three cases:

• If `= t, then I(B(b)) = t; hence K has a branch that is evaluated to f. Therefore, valJS(K,∼x, I) =
f. Since K was taken arbitrarily, we have that SV(∼x, I) = f.

• If `= u, we need to prove that u≥t SV(∼x, I). Similarly, every justification K for∼x has a branch
∼b starting in ∼x such that b is a J-branch and I(B(b)) ≥t u. This shows that I(B(∼b)) ≤t u.
Therefore, SV(∼x, I)≤t u.

• For `= f, the statement is trivial.

The other direction of the consistency is completely novel and follows directly from the theory de-
veloped in Section 4.

Proposition 5.4. If JS is complementary and B respects negation, then

SV(x, I)≥t ∼SV(∼x, I)

for any x ∈ Fd and any F-interpretation I.

Proof. Consider the branch selection

B∼x = {∼x→ b |B(∼x→ b)≤t SV(∼x, I)} .

This set is a branch selection for ∼x, because each justification rooted in ∼x must have at least one
branch with a value at most SV(∼x, I). Theorem 4.5 then guarantees that a justification J rooted in a
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node labelled x exists such that every branch b in J starting in the root is an element of ∼B∼x; hence
B(∼b)≤t SV(∼x, I). Since B respects negation, we have B(b)≥t ∼SV(∼x, I) for every b in J starting
in the root and thus that val(J,x, I) ≥t ∼SV(∼x, I). From this, it immediately follows that SV(x, I) ≥t

∼SV(∼x, I).

Theorem 5.5 (Main theorem, restated). Let JS = 〈F,Fd ,R,B〉 be a justification system. If JS is com-
plementary and B respects negation, then JS is tree-like consistent.

Proof. Follows by combining Proposition 5.3 with Proposition 5.4.

6 Conclusion

Consistency is an important property that relates the absence of an explanation of a fact to the existence
of an explanation for its complement. Our results do not have an impact on branch evaluations that have
been used before, since for all of them, consistency has separately been proven. However, we believe it
will simplify future applications of (tree-like) justification theory, by removing the burden of this proof
obligation. Moreover, the general formulation of our results in Section 4, in fact entails that the so-called
flattening of a justification system [10] is complementary. This notion of flattening is important in the
context of nested justification systems [3, 13].

While we have now once and for all resolved the consistency question for tree-like justifications, for
graph-like justifications, this problem is still open. However, in the PhD thesis of the first author [10,
Corollary 2.4.7], we show that a justification system is graph-like consistent if and only if it is tree-like
consistent and every tree-like justification can be transformed into a graph-like justification5 (a property
that is there called graph-reducibility). The results we presented in this work now entail that, under very
mild assumptions, graph-like consistency is equivalent to graph-reducibility, and hence indirectly, also
contributes to the understanding of graph-like justification systems.
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