
A. Formisano, Y.A Liu, et al. (Eds.): International Conference on

Logic Programming (Technical Communications) 2021 (ICLP 2021)

EPTCS 345, 2021, pp. 165–178, doi:10.4204/EPTCS.345.30

© N.F. Zhou

This work is licensed under the

Creative Commons Attribution License.

Modeling and Solving Graph Synthesis Problems Using

SAT-Encoded Reachability Constraints in Picat

Neng-Fa Zhou

CUNY Brooklyn College & Graduate Center

zhou@sci.brooklyn.cuny.edu

Many constraint satisfaction problems involve synthesizing subgraphs that satisfy certain reachabil-

ity constraints. This paper presents programs in Picat for four problems selected from the recent

LP/CP programming competitions. The programs demonstrate the modeling capabilities of the Pi-

cat language and the solving efficiency of the cutting-edge SAT solvers empowered with effective

encodings.

1 Introduction

Picat [27] is a Prolog-like language that takes many features from other languages, including pattern-

matching rules, functions, list/array comprehensions, loops, assignments, tabling for dynamic program-

ming and planning, and constraint programming. These features make Picat a convenient modeling

language for combinatorial problems, on a par with AMPL [8], OPL [9], and MiniZinc [17]. As a logic

language, Picat can often offer solutions that are as concise and elegant as the ones in ASP [5].

Picat supports constraint solving using different solvers, including CP (constraint programming),

SAT (satisfiability), MIP (mixed integer programming), and SMT (SAT Modulo Theories). The last

two decades have witnessed dramatic enhancement in SAT solvers’ performance, thanks to inventions

of techniques, from conflict-driven clause learning, backjumping, variable and value selection heuristics,

to random restarts [2, 4, 16]. With findings of effective encodings [12, 13, 15, 19, 21, 23, 26], SAT has

become a strong contendant for solving a wide range of constraint satisfaction and optimization problems

(CSP).

Many CSPs involve synthesizing subgraphs that satisfy certain reachability constraints, including the

constraint that ensures a cycle connecting all the vertices, as in the Hamiltonian cycle problem (HCP),

and the constraint that ensures a strongly connected component. For that reason, CP systems provide

graph constraints for easing the modeling and solving of these problems [1, 20]. This paper addresses

modeling graph synthesis problems in Picat and solving them using SAT. It describes programs for four

problems selected from the recent LP/CP programming competitions, including the Roadrunner problem

from the 2019 competition, and the Masyu, Shingoki, and Tapa problems from the 2020 competition. It

also compares the programs with ASP programs for these problems. The Picat programs demonstrate the

modeling capabilities of the Picat language and the solving efficiency of the cutting-edge SAT solvers

empowered with effective encodings.

In [7], programs in Picat are given for several Google Code Jam problems that utilize tabling and

constraint programming. This paper can be considered as a sequel, which offers SAT-based solutions.

The remainder of the paper is structured as follows: Section 2 briefly introduces constraint programming

in Picat and describes the reachability constraints. Sections 3 through 6 give Picat programs for the four

problems.1 Section 7 describes the SAT encodings of the reachability constraints implemented in Picat,

1The complete programs are available at https://github.com/nfzhou/lp-contest

http://dx.doi.org/10.4204/EPTCS.345.30
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/nfzhou/lp-contest

166 Modeling and Solving Graph Synthesis Problems

and presents the experimental results. Section 8 concludes the paper. The readers are assumed to be

familiar with Picat. The overview chapter of the book [27] is a good quick start.

2 Picat and its Reachability Constraints

Picat provides four solver modules, cp, mip, sat, and smt, for modeling and solving CSPs. As a

constraint programming language, Picat resembles CLP(FD) [6]: the operators :: and notin are used for

domain constraints, the operators #=, #!=, #>, #>=, #<, #<=, and #=< are used for arithmetic constraints,

and the operators #/\ (and), #\/ (or), #^ (xor), #~ (not), #=> (if), and #<=> (iff) are used for Boolean

constraints.2 Picat also supports table constraints and many global constraints.

Recent additions into Picat include the hcp and scc constraints. The hcp(Vs,Es) constraint ensures

that the directed graph represented by V s and Es forms a Hamiltonian cycle, where V s is a list of pairs

of the form {V,B}, and Es is a list of triplets of the form {V1,V2,B}. A pair {V,B} in V s, where V is

a ground term and B is a Boolean (0/1) variable, denotes that V is in the graph if and only if B = 1. A

triplet {V1,V2,B} denotes that V1 is connected to V2 by an edge in the graph if and only if B = 1.

The hcp constraint has several variants. The hcp(V s,Es,K) constraint also forces the number of

vertices in the graph to be K. The hcp_grid(A) constraint ensures that the grid graph represented by

A, which is a two-dimensional array of Boolean (0/1) variables, forms a Hamiltonian cycle. In a grid

graph, each cell is directly connected orthogonally (i.e., horizontally and vertically, but not diagonally),

to its neighbors. The hcp_grid(A,Es) constraint restricts the edges to Es, which consists of triplets.

In a triplet {V1,V2,B} in Es, V1 and V2 take the form (R,C), where R is a row number and C is a column

number, and B is a Boolean variable. If Es is a variable, then it is bound to the edges of the grid graph.

The hcp_grid(A,Es,K) constraint also enforces the number of vertices in the graph to be K.

The circuit and subcircuit constraints are two classical graph constraints in CP. Let L be a list

of domain variables [X1,X2,...,Xn], where each variable corresponds to a vertex in the given graph

and its domain represents the set of adjacent vertices. A valuation of the domain variables satisfies the

circuit(L) constraint if the subgraph represented by the valuation forms a Hamiltonian cycle. In the

subcircuit(L) constraint, a vertex Xi is an in-vertex if Xi takes a value other than i. A valuation of

the domain variables satisfies the subcircuit(L) constraint if the subgraph of all the in-vertices forms

a Hamiltonian cycle.

The following gives implementations of the circuit and subcircuit constraints using the hcp

constraint.

circuit(L) =>

N = len(L),

L :: 1..N,

Vs = [{I,1} : I in 1..N],

Es = [{I,J,B} : I in 1..N,

J in fd_dom(L[I]),

J !== I,

B #<=> L[I] #= J],

hcp(Vs,Es).

2It is a tradition for CLP(FD) to prefix the sharp character to Prolog’s operators to make constraint operators.

N.F. Zhou 167

subcircuit(L) =>

N = len(L),

L :: 1..N,

Vs = [{I,B} : I in 1..N,

B #<=> L[I] #!= I],

Es = [{I,J,B} : I in 1..N,

J in fd_dom(L[I]),

J !== I,

B #<=> L[I] #= J],

hcp(Vs,Es).

The function fd_dom(V) returns the domain of V as a list. In the implementation of circuit, as all the

vertices are included in the subgraph, all the Boolean variables in the pairs of Vs are set to be 1. In the

implementation of subcircuit, a vertex I is in the subgraph if and only if L[I] #!= I, and there is

an edge from vertex I to vertex J if and only if L[I] #= J. Note that subcircuit cannot represent a

subgraph that consists of a single vertex. This limitation is remedied by the hcp constraint.

The scc(V s,Es) constraint ensures that the undirected graph represented by V s and Es is strongly

connected, where V s and Es have the same forms as the arguments in the hcp(Vs,Es) constraint. Note

that the graph to be constructed is assumed to be undirected. If there exists a triplet {V1,V2,B} in Es,

then the triplet {V2,V1,B} will be added to Es if it is not specified. The scc constraint also has several

variants. The scc(V s,Es,K) constraint also forces the number of vertices in the subgraph to be K.

The scc_grid(A) constraint ensures that the grid graph represented by A forms a strongly connected

undirected graph, and the scc_grid(A,K) constraint also forces the number of vertices in the graph to

be K.

Figure 1: A Road Runner instance and a solution

3 Smarty Road Runner

Given a grid map, where each cell is either an open area (called a white cell) or a hill (called a black

cell), the goal of the Smarty Road Runner game is to install laser kits on some of the white cells such

that the following rules are obeyed:

• No two laser kits can shoot each other, meaning that no two laser kits can be installed in the same

row or the same column, unless there is at least one black cell between them.

168 Modeling and Solving Graph Synthesis Problems

• A black cell may have a number that indicates the number of laser kits installed in its quadrantal

neighboring cells.

• A white cell that is not covered by any laser beam is called a safe cell. All safe cells must form one

closed circuit for the Road Runner to run safely, meaning that the Road Runner can start running

in any safe cell, follow to an adjacent safe cell, and arrive at the starting cell, traveling all safe cells

without visiting any one twice.

A laser kit, once installed, fires up horizontally and vertically, and laser beams do not stop until they

reach a black cell or the edge of the grid. For example, Figure 1 shows an instance and a solution.3

The following gives a Picat program for the problem.

import sat.

main([File]) =>

read_data(File,MaxX,MaxY,Hill,Nums),

Laser = new_array(MaxX,MaxY),

Laser :: 0..1,

Road = new_array(MaxX,MaxY),

Road :: 0..1,

foreach ($number(X,Y,Num) in Nums)

sum([Laser[X1,Y1] : (X1,Y1) in [(X-1,Y), (X+1,Y), (X,Y-1), (X,Y+1)],

X1 >= 1, X1 =< MaxX,

Y1 >= 1, Y1 =< MaxY]) #= Num

end,

foreach (X in 1..MaxX, Y in 1..MaxY)

(Hill[X,Y] == 1 ->

Laser[X,Y] = 0,

Road[X,Y] = 0

;

attacked_positions(Hill,X,Y,MaxX,MaxY,Ps),

foreach ((X1,Y1) in Ps)

Laser[X,Y] #=> #~Laser[X1,Y1],

Laser[X,Y] #=> #~Road[X1,Y1]

end,

sum([Laser[X1,Y1] : (X1,Y1) in [(X,Y)|Ps]]) #= 0 #=> Road[X,Y]

)

end,

K :: 1..MaxX*MaxY,

hcp_grid(Road,_Es,K),

solve([$max(K)],Road),

printf("safecircuitlen(%d).\n",K).

The predicate read_data reads the following items from an instance file: MaxX and MaxY are, respec-

tively, the number of columns and the number of rows, of the grid, counting from 1; Hill is a 2-

dimensional 0/1 array, where an 1 entry indicates a black cell, and a 0 entry indicates a white cell; Nums

3The image is taken from https://github.com/lpcp-contest/lpcp-contest-2019.

https://github.com/lpcp-contest/lpcp-contest-2019

N.F. Zhou 169

is a list of terms of the form number(X,Y,Num), which indicates that there must be Num lasers installed

in (X,Y)’s neighbors.

The model uses a 2-dimensional array of Boolean variables, Laser, to indicate where lasers are

installed, and another 2-dimensional array of Boolean variables, Road, to indicate the safe cells. The

first foreach loop ensures that the required numbers of lasers are installed as specified in the input.4

The second foreach loop in the program enforces the relationship between the Laser and Road

arrays. For each cell position (X,Y), if the cell is a hill, then both Laser[X,Y] and Road[X,Y] are

bound to 0, meaning that the cell can neither be a laser cell nor a road cell. Otherwise, the following

actions are taken: (1) the call attacked_positions(Hill,X,Y,MaxX,MaxY,Ps) finds a list, Ps, of

the positions that are under attack by laser beams originating at (X,Y); the foreach loop enforces that,

if the cell at (X,Y) is a laser cell, then none of the positions in Ps can be a road or a laser cell; (3) the

constraint

sum([Laser[X1,Y1] : (X1,Y1) in [(X,Y)|Ps]]) #= 0 #=> Road[X,Y]

ensures that, if no lasers are installed in any of the attacked positions, then (X,Y) is a road cell.

The predicate attacked_positions is defined as follows:

attacked_positions(Hill,X,Y,MaxX,MaxY,Ps) =>

Ps = [(X1,Y) : X1 in X-1..-1..1, until(Hill[X1,Y] == 1)] ++

[(X1,Y) : X1 in X+1..MaxX, until(Hill[X1,Y] == 1)] ++

[(X,Y1) : Y1 in Y-1..-1..1, until(Hill[X,Y1] == 1)] ++

[(X,Y1) : Y1 in Y+1..MaxY, until(Hill[X,Y1] == 1)].

A list comprehension is utilized to collect the positions that are under attack by the laser beam in each

of the four directions, and Ps is bound to the concatenation of the four lists created by the list com-

prehensions. Picat translates a list comprehension into a foreach loop that uses an assignment (:=) to

accumulate values [25]. The until(Condition) expression describes a terminating condition for the

loop.

The hcp_grid constraint ensures that all the road cells form a cycle. It constrains K to be the total

number of road cells:

K #= sum([Road[X,Y] : X in 1..MaxX, Y in 1..MaxY])

The lower bound of K is 1, which ensures that there is at least one safe cell for the runner.

The objective of the problem is to find a subgraph such that K is maximized. The actual route is not

required. If it were, it could be retrieved from the list of edges returned by hcp_grid.

4 Masyu

Masyu is a logic puzzle played on a square grid. Some of the cells are marked with black circles, some

are marked with white circles, and the rest are empty. The goal of the puzzle is to draw a single loop on

the board, without crossings, that passes through all the black and white circles in the following fashion:

• White circles must be passed through in a straight line, but the loop must turn in the previous

and/or the next cell.

• Black circles must be turned upon, and the loop must travel straight through the next and the

previous cell.

4The $ symbol denotes that number(X,Y,Num) is a term, not a function call.

170 Modeling and Solving Graph Synthesis Problems

• The loop can pass through any number of empty cells, as long as there are no crossings.

Figure 2 shows an instance and its solution.5

Figure 2: A Masyu instance and its solution

The following gives a Picat program for the Masyu problem.

import util, sat.

main([File]) =>

read_data(File,N,Board,Grid),

hcp_grid(Grid,Es),

EMap = new_map(),

foreach ({(R1,C1), (R2,C2), B} in Es)

EMap.put({R1,C1,R2,C2}, B)

end,

foreach(R in 1..N, C in 1..N)

if Board[R,C] == w then

constrain_w(N,EMap,R,C)

elseif Board[R,C] == b then

constrain_b(N,EMap,R,C)

end

end,

solve((Grid,values(EMap))),

output(EMap).

The predicate read_data reads the following items from an instance file: N is the grid size; Board is a

2-dimensional N×N array that represents the configuration of the board, where white circles are denoted

by the atom w and black circles are denoted by the atom b; Grid is a 2-dimensional N×N array of Boolean

variables, where the entries of white and black circles are all set to be 1, indicating that the loop passes

through these cells, and the entries of empty cells are free variables.

The hcp_grid(Grid,Es) constraint ensures that all the cells that are labeled 1 in Grid form a loop

represented by a list of directed edges Es. A directed edge in Es has the form {(R1,C1),(R2,C2),B},

where (R1,C1) and (R2,C2) are two cell positions, and B is a Boolean variable that is equal to 1 if and

only if the edge from (R1,C1) to (R2,C2) is included in the loop.

5The images shown in Figures 2, 3, and 4 are taken from https://github.com/alviano/lpcp-contest-2020.

https://github.com/alviano/lpcp-contest-2020

N.F. Zhou 171

The loop must obey the rules when passing through black and white circles. In order to facilitate the

use of Es returned by hcp_grid, the implementation converts Es to a map. A triplet {(R1,C1),(R2,C2),B}
is converted to a key-value pair, where the key is {R1,C1,R2,C2} and the value is B. The map makes it

possible to retrieve the edge variable of a given edge in constant time.

The predicate constrain_w(N,EMap,R,C), which is defined below, constrains how the loop passes

through the white cell at (R,C).

constrain_w(N,EMap,R,C) =>

Ps = [[(R,C-1), (R,C), (R,C+1), (R-1,C+1)],

[(R,C-1), (R,C), (R,C+1), (R+1,C+1)],

[(R-1,C-1), (R,C-1), (R,C), (R,C+1)],

[(R+1,C-1), (R,C-1), (R,C), (R,C+1)],

[(R-1,C-1), (R-1,C), (R,C), (R+1,C)],

[(R-1,C+1), (R-1,C), (R,C), (R+1,C)],

[(R-1,C), (R,C), (R+1,C), (R+1,C-1)],

[(R-1,C), (R,C), (R+1,C), (R+1,C+1)]],

constrain_paths(N,EMap,Ps).

There must be a line in the loop that passes through the cell horizontally or vertically, and the loop must

turn in the previous and/or the next cell. The predicate collects 8 path shapes into the variable Ps. Each

path shape represents 2 paths, with the path shape itself representing one path and its reverse representing

the other one. So, there are, in total, 16 possible ways that the loop passes through the white cell. For

example, the path

(R,C-1)→ (R,C)→ (R,C+1)→ (R-1,C+1)

enters (R,C) from left, moves on to right, and turns up at (R,C+1).

Let B1 be the edge variable of (R,C-1) → (R,C), B2 be the edge variable of (R,C) → (R,C+1),

and B3 be the edge variable of (R,C+1) → (R-1,C+1). The above path is included in the loop if

B1 #/\ B2 #/\ B3 is satisfied.

Some of the path shapes in Ps may not be valid because they contain coordinates that fall outside

of the grid. The predicate constrain_paths(N,EMap,Ps) generates constraints to ensure that at least

one of the valid path shapes in Ps occurs in the loop.

The predicate constrain_b(N,EMap,R,C) constrains how the loop passes through the black cell at

(R,C). The loop must make a turn at (R,C), and must travel straight through the next and the previous

cell. In total, there are 8 possible ways that the loop passes through the black cell, among which the

following is one:

(R,C-2)→ (R,C-1)→ (R,C) → (R+1,C)→ (R+2,C)

The path enters (R,C) horizontally from left, and turns down at (R,C).

The predicate solve((Grid,values(EMap))) retrieves the vertex variables from Grid and the

edge variables from EMap, and labels these variables such that the constraints are satisfied.6

5 Shingoki

Shingoki is a logic puzzle, similar to Masyu, played on a square grid. Some of the cells are marked

with black circles, some are marked with white circles, and the rest are empty. The goal of the puzzle

6The function values(EMap) returns a list of values in the key-value pairs of EMap.

172 Modeling and Solving Graph Synthesis Problems

is to draw a single loop, without crossings, that passes through all the black and white circles. White

circles must be passed through in a straight line, and black circles must be turned upon. In Shingoki,

each marked cell also has a number on it, which constrains the length of the two lines connected at the

cell.

Figure 3 shows an instance of Shingoki and its solution. The cell marked with 4 is a black circle. The

loop turns on the circle. The horizontal line connecting to it has length 3, and the vertical line connecting

to it has length 1, making the total length equal to 4.

Figure 3: A Shingoki instance and its solution

The following shows a Picat program for Shingoki.

main([File]) =>

read_data(File,N,Board,Grid),

hcp_grid(Grid,Es),

EMap = new_map(),

foreach ({(R1,C1), (R2,C2), B} in Es)

EMap.put({R1,C1,R2,C2}, B)

end,

foreach(R in 1..N, C in 1..N)

if Board[R,C] = $w(Clue) then

constrain_w(N,EMap,R,C,Clue)

elseif Board[R,C] = $b(Clue) then

constrain_b(N,EMap,R,C,Clue)

end

end,

solve((Grid,values(EMap))),

output(EMap).

The read_data predicate is the same as the one in the Masyu program, except that Board is a 2-

dimensional N×N array that represents the configuration of the board, where an entry w(Clue) indicates

a white circle with a clue number, and an entry b(Clue) indicates a black circle with a clue number.

The predicate constrain_w(N,EMap,R,C,Clue), which is defined below, constrains how the loop

passes through the white cell at (R,C), which has the clue number Clue.

constrain_w(N,EMap,R,C,Clue) =>

Ps = [],

foreach (D1 in 1..Clue-1, D2 = Clue-D1)

N.F. Zhou 173

V = [(R1,C) : R1 in R-D1..R+D2],

P1 = [(R-D1,C-1)] ++ V ++ [(R+D2,C-1)],

P2 = [(R-D1,C-1)] ++ V ++ [(R+D2,C+1)],

P3 = [(R-D1,C+1)] ++ V ++ [(R+D2,C-1)],

P4 = [(R-D1,C+1)] ++ V ++ [(R+D2,C+1)],

H = [(R,C1) : C1 in C-D1..C+D2],

P5 = [(R-1,C-D1)] ++ H ++ [(R-1,C+D2)],

P6 = [(R-1,C-D1)] ++ H ++ [(R+1,C+D2)],

P7 = [(R+1,C-D1)] ++ H ++ [(R-1,C+D2)],

P8 = [(R+1,C-D1)] ++ H ++ [(R+1,C+D2)],

Ps := [P1,P2,P3,P4,P5,P6,P7,P8|Ps]

end,

constrain_paths(N,EMap,Ps).

There must be a line of length Clue passing through the cell, and the line can be split into two segments.

The foreach loop considers all possible splits, with D1 being the length of the first segment and D2

being the length of the second segment (D1+D2 = Clue). The line can be either vertical or horizontal.

The variable V refers to a list of cell positions in the vertical line, and the variable H refers to a list of cell

positions in the horizontal line. Depending on how the loop turns at the ends of the line segments, there

are, in total, 8 possible shapes of paths going through the cell. Each path shape represents two paths. So,

there are, in total, 16 possible paths. The predicate collects all the path shapes into a variable Ps using

assignments, and calls constrain_paths(N,EMap,Ps) to ensure that at least one of the path shapes in

Ps occurs in the loop.

The predicate constrain_b(N,EMap,R,C,Clue) is defined similarly. As the loop turns on a black

circle, two line segments connect orthogonally at the cell, and there are 4 possible connections, namely,

⌈, ⌉, ⌊, and ⌋. Counting in the possible ways the loop turns at the ends of the line segments, there are up

to 16 possible shapes of paths going through a black cell.

Figure 4: A Tapa instance and its solution

6 Tapa

Tapa is another logic puzzle played on a square grid. Initially, some of the cells are filled with clue

numbers and all others are empty. The goal of the puzzle is to color each of the cells black or white such

that the following constraints are satisfied:

• The black cells form a single polyomino, connected orthogonally in a single group.

• There are no 2×2 black areas.

174 Modeling and Solving Graph Synthesis Problems

• The clue numbers are respected.

A clue number indicates the size of a connected block of black cells in the surrounding neighbors,

including diagonally connected neighbors. A cell can be filled with up to 4 clue numbers. If there are 2

or more clue numbers in a cell, then there must be at least 1 white cell between each 2 black blocks. The

blocks can appear in any order. Figure 4 gives a Tapa instance and its solution. It can be checked that the

solution respects all the clue numbers. For example, for the clue numbers 1 and 4 on the cell (3,2), row

3 and column 2, there is a block of size 1 at (4,3) and a block of size 4 occupying (2,1), (2,2), (3,1), and

(4,1).

The following gives a Picat program for the Tapa problem.

main([File]) =>

read_data(File,N,Board,Grid),

scc_grid(Grid),

foreach (R in 1..N-1, C in 1..N-1)

Grid[R,C] + Grid[R,C+1] + Grid[R+1,C] + Grid[R+1,C+1] #< 4

end,

foreach (R in 1..N, C in 1..N, nonvar(Board[R,C]))

neibs(N,R,C,NeibArr),

constrain_blocks(Board[R,C],Grid,NeibArr)

end,

solve(Grid),

output(Grid).

neibs(N,R,C,NeibArr) =>

NeibArr = {(R1,C1) : (R1,C1) in [(R-1,C-1), (R-1,C), (R-1,C+1), (R,C+1),

(R+1,C+1), (R+1,C), (R+1,C-1), (R,C-1)],

R1 >= 1, R1 =< N, C1 >= 1, C1 =< N}.

The predicate read_data reads the following items from an instance file: N is the grid size; Board is

a 2-dimensional N×N array that represents the configuration of the board, where a non-variable entry

indicates a list of clue numbers; Grid is a 2-dimensional N×N array of Boolean variables, where a

variable is labeled 1 if the cell is colored black, and 0 otherwise.

The scc_grid(Grid) constraint ensures that all the black cells form a strongly connected compo-

nent. The first foreach loop ensures there are no 2×2 black areas. The second foreach loop ensures

that the clue numbers are respected. For each entry (R,C), if there are clue numbers filled in the cell,

meaning that nonvar(Board[R,C]) is true, then the program ensures the existence of the given clue

numbers of blocks in the neighbors.

The call neibs(N,R,C,NeibArr) binds NeibArr to an array of neighboring positions surrounding

(R,C). An array is more convenient than a list because the positions are circular.

The predicate constrain_blocks is defined as follows:

constrain_blocks(Clues,Grid,NeibArr) =>

findall_layouts(Clues,NeibArr,Layouts),

Bs = [],

foreach (Layout in Layouts)

B :: 0..1,

N.F. Zhou 175

LayoutBs = [cond(Layout[I] == 1, Grid[R,C], #~Grid[R,C]) :

I in 1..len(NeibArr), NeibArr[I] = (R,C)],

B #= min(LayoutBs),

Bs := [B|Bs]

end,

sum(Bs) #>= 1.

The predicate findall_layouts(Clues,NeibArr,Layouts)finds all the possible layouts of the blocks

of the given sizes as indicated by Clues. A layout is an array where, an entry is 0 if the corresponding

neighbor cell is free, and 1 if the corresponding neighbor cell is occupied by a block. For example, the

cell at (3,2), row 3 and column 2, in Figure 4 has the following array of neighbors:

NeibArr = {(2,1), (2,2), (2,3), (3,3), (4,3), (4,2), (4,1), (3,1)}

The layout of the two blocks, of size 1 and size 4, respectively, given in Figure 4 is represented by the

following layout:

{1, 1, 0, 0, 1, 0, 1, 1}

The conditional expression cond(Layout[I] == 1, Grid[R,C], #~Grid[R,C]) is equal to Grid[R,C]

if Layout[I] == 1, and #~Grid[R,C] otherwise. For each layout, a Boolean variable B is utilized to indi-

cate if the blocks have the layout. The constraint sum(Bs) #>= 1 ensures that the blocks have at least

one of the layouts.

7 Implementation and Experimental Results

Several SAT encodings are available for the HCP problem [10, 18, 22, 14, 24, 11]. If a graph has more

than one vertex, then each vertex must have exactly one incoming edge and exactly one outgoing edge,

and all the edges must form exactly one cycle. The degree constraints can be encoded easily. The focus

of the encodings for HCP has been on how to ensure the reachability of all the in-vertices and ban sub-

cycles. A common technique used is to impose a strict ordering on the vertices. The distance encoding

chooses a vertex to serve as the starting vertex, and assigns a distinct distance to each of the in-vertices.

If there is an edge from vi to v j, then v j’s distance is the successor of vi’s, unless v j is the starting vertex.

The successor function can be encoded in several different ways. In the implementation in Picat, the

binary adder encoding is used, which has been found to be the most effective [24].

In contrast to HCP, no studies have been reported on encoding SCC into SAT. The challenge is

centered on how to enforce the reachability of all the in-vertices. The satisfiability modulo acyclicity

approach [3] avoids encoding the constraint by performing reachability checking at solving time. The

Picat implementation of scc employs an encoding, named tree encoding, which utilizes the property that

every strongly connected graph has at least one spanning tree. The tree encoding chooses a vertex as the

root of a tree, chooses a parent for each non-root vertex, and assigns a distance to each vertex, with 0

being assigned to the root, and the distance assigned to each non-root vertex being 1 greater than that

assigned to its parent.

For optimization problems, Picat uses branch-and-bound to optimize the objective. It first posts the

problem as a constraint satisfaction problem, ignoring the objective. Once a solution is found, Picat uses

binary search to find a solution with the optimum value. Each time the lower or upper bound is updated,

Picat starts the SAT solver from scratch.

176 Modeling and Solving Graph Synthesis Problems

Table 1: Execution times (seconds)
Benchmark Picat(Kissat) Picat(Maple) Clingo

Roadrunner6 (20×20) 0.82 1.84 0.54

Roadrunner7 (20×20) 5.05 42.52 1.33

Roadrunner8 (30×30) 6.99 55.70 10.75

Masyu3 (30×30) 1.62 6.94 22.37

Masyu4 (35×35) 3.95 9.03 48.84

Masyu5 (40×40) 6.21 11.72 96.78

Shingoki3 (31×31) 2.89 7.11 27.28

Shingoki4 (36×36) 5.26 8.59 57.42

Shingoki5 (41×41) 8.62 14.23 111.62

Tapa3 (25×25) 0.43 1.40 0.61

Tapa4 (30×30) 0.62 3.74 0.97

Tapa5 (35×35) 0.99 5.29 1.72

The rest of this section gives the execution times of the programs run using Picat version 3.17 on a

Windows machine (Intel i7 3.30GHz CPU and 64G RAM). Picat provides C interfaces to several SAT

solvers, with Maple8 as the default. The execution times reported below were obtained using Maple and

Kissat version 1.0.3.9

For the sake of comparison, the execution times of the ASP programs for the problems provided by

the LP/CP competition organizers run with Clingo version 5.5.010 are also included. The reachability

constraint is encoded neatly in ASP as follows:

reach(V) :- start(V).

reach(V) :- reach(U), edge(U,V).

:- in(V), not reach(V).

It ensures that there is a path from the starting vertex to every in-vertex. Clingo adopts the lazy approach

to reachability checking [3].

Table 1 shows the execution times, which include both translation and solving times. The column

Benchmark gives the instances, where the graph sizes are shown in parentheses. Picat(Kissat) is a clear

winner.11 While Picat(Kissat) and Clingo demonstrate similar performance on Roadrunner and Tapa,

Picat(Kissat) is more than 10 times as fast as Clingo on Masyu and Shingoki.

8 Conclusion

This paper presents the newly added graph constraints in Picat, and their use in modeling and solving

four graph synthesis problems selected from the recent LP/CP competitions. The programs demonstrate

the modeling capabilities of the Picat language. Picat provides several language constructs that are not

7picat-lang.org
8http://sat-race-2019.ciirc.cvut.cz/
9http://fmv.jku.at/kissat/

10https://potassco.org/clingo/
11Maple was the winner of the main track of the 2019 SAT Race, and Kissat was the overall winner of the 2020 SAT

competition.

picat-lang.org
http://sat-race-2019.ciirc.cvut.cz/
http://fmv.jku.at/kissat/
https://potassco.org/clingo/

N.F. Zhou 177

present in standard Prolog, including functions, arrays, loops, list/array comprehensions, and assign-

ments. With the graph constraints and these language constructs, Picat can serve as a powerful modeling

language for various constraint solvers. The Picat programs compare favorably well in terms of concise-

ness with the ASP programs. As a general-purpose language, Picat has the advantage over many other

modeling languages in handling I/O and integration with other software components.

The Picat programs also demonstrate the solving efficiency of the cutting-edge SAT solvers empow-

ered with effective encodings. The bottleneck in solving the problems is ensuring the reachability of all

the in-vertices. When the hcp and scc constraints are removed from the programs, all of the problem

instances become trivial and can be solved in a flash. Picat follows the eager approach, first encoding

constraints into SAT and then using a SAT solver to solve the encoding. This paper has shown that the

eager approach is competitive with the lazy approach used in Clingo. With the advancement of SAT

solvers and inventions of novel encoding methods, the eager approach will become ever more appealing.

The encodings for the hcp and scc constraints are the results of an extensive comparison study.

Nevertheless, they are not meant to be optimal, and further research is warranted to find even better

encodings. For optimization problems, such as the Road Runner problem, using an incremental SAT

solver could lead to better performance. Furthermore, it is worthwhile to investigate translation of the

graph constraints to SMT that supports checking of graph reachability at solving time.

Acknowledgement

The author would like to thank the following people: Håkan Kjellerstrand for identifying many opti-

mization opportunities in Picat’s SAT compiler; Peter Bernschneider for sharing his Picat programs for

the problems, which motivated the hcp and scc constraints and the programs presented in this paper;

Mario Alviano for sharing his ASP encodings for the 2020 competition problems; Orkunt Sabuncu and

Jose Morales for sharing the ASP encoding for the Road Runner problem. This work is supported in part

by the NSF under the grant number CCF1618046.

References

[1] Nicolas Beldiceanu, Mats Carlsson & Jean-Xavier Rampon (2021): Global Constraint Catalog. http://

sofdem.github.io/gccat/gccat/.

[2] Armin Biere, Marijn Heule, Hans van Maaren & Toby Walsh, editors (2009): Handbook of Satisfiability.

Frontiers in Artificial Intelligence and Applications 185, IOS Press.

[3] Jori Bomanson, Martin Gebser, Tomi Janhunen, Benjamin Kaufmann & Torsten Schaub (2016): Answer Set

Programming Modulo Acyclicity. Fundam. Informaticae 147(1), pp. 63–91, doi:10.3233/FI-2016-1398.

[4] Lucas Bordeaux, Youssef Hamadi & Lintao Zhang (2006): Propositional Satisfiability and Constraint Pro-

gramming: A comparative survey. ACM Comput. Surv. 38(4), pp. 1–54. Available at http://doi.acm.

org/10.1145/1177352.1177354.

[5] Gerhard Brewka, Thomas Eiter & Miroslaw Truszczyński (2011): Answer Set Programming at a Glance.

Commun. ACM 54(12), pp. 92–103. doi:10.1017/S1471068407003250

[6] Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrahmane Aggoun, Thomas Graf &

Françoise Berthier (1988): The Constraint Logic Programming Language CHIP. In: FGCS, pp. 693–702.

[7] Sergii Dymchenko & Mariia Mykhailova (2015): Declaratively Solving Google Code Jam Problems with

Picat. In: PADL, pp. 50–57, doi:10.1007/978-3-319-19686-2_4.

http://sofdem.github.io/gccat/gccat/
http://sofdem.github.io/gccat/gccat/
http://dx.doi.org/10.3233/FI-2016-1398
http://doi.acm.org/10.1145/1177352.1177354
http://doi.acm.org/10.1145/1177352.1177354
http://dx.doi.org/10.1017/S1471068407003250
http://dx.doi.org/10.1007/978-3-319-19686-2_4

178 Modeling and Solving Graph Synthesis Problems

[8] Robert Fourer & David M. Gay (2002): Extending an Algebraic Modeling Language to Support Constraint

Programming. INFORMS J. Comput. 14(4), pp. 322–344, doi:10.1287/ijoc.14.4.322.2825.

[9] Pascal Van Hentenryck (2002): Constraint and Integer Programming in OPL. INFORMS J. Comput. 14(4),

pp. 345–372, doi:10.1287/ijoc.14.4.345.2826.

[10] Alexander Hertel, Philipp Hertel & Alasdair Urquhart (2007): Formalizing Dangerous SAT Encodings. In:

SAT, 4501, pp. 159–172, doi:10.1007/978-3-540-72788-0_18.

[11] Marijn J. H. Heule (2021): Chinese Remainder Encoding for Hamiltonian Cycles. In: SAT, pp. 216–224,

doi:10.1007/978-3-030-80223-3_15.

[12] Jinbo Huang (2008): Universal Booleanization of Constraint Models. In: CP, pp. 144–158, doi:10.1007/

978-3-540-85958-1_10.

[13] Peter Jeavons & Justyna Petke (2012): Local Consistency and SAT-Solvers. J. Artif. Intell. Res. 43, pp.

329–351, doi:10.1613/jair.3531.

[14] Andrew Johnson (2014): Quasi-linear reduction of Hamiltonian cycle problem (HCP) to satisfiability prob-

lem (SAT). Available at https://priorart.ip.com/IPCOM/000237123.

[15] Donald Knuth (2015): The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability. Addison-

Wesley.

[16] Sharad Malik & Lintao Zhang (2009): Boolean satisfiability from theoretical hardness to practical success.

Commun. ACM 52(8), pp. 76–82, doi:10.1145/1536616.1536637.

[17] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck & Guido Tack

(2007): MiniZinc: Towards a Standard CP Modelling Language. In: CP, pp. 529–543, doi:10.1007/

978-3-540-74970-7_38.

[18] Steven David Prestwich (2003): SAT problems with chains of dependent variables. Discret. Appl. Math.

130(2), pp. 329–350, doi:10.1016/S0166-218X(02)00410-9.

[19] Mirko Stojadinovic & Filip Maric (2014): meSAT: multiple encodings of CSP to SAT. Constraints An Int. J.

19(4), pp. 380–403, doi:10.1007/s10601-014-9165-7.

[20] Peter J. Stuckey, Kim Marriott & Guido Tack (2021): The MiniZinc Handbook. https://www.minizinc.

org/doc-2.5.5/en/index.html.

[21] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa & Mutsunori Banbara (2009): Compiling finite linear CSP

into SAT. Constraints An Int. J. 14(2), pp. 254–272, doi:10.1007/s10601-008-9061-0.

[22] Miroslav N. Velev & Ping Gao (2009): Efficient SAT Techniques for Absolute Encoding of Permutation

Problems: Application to Hamiltonian Cycles. In: SARA, AAAI. Available at http://www.aaai.org/

ocs/index.php/SARA/SARA09/paper/view/837.

[23] Toby Walsh (2000): SAT v CSP. In: CP, pp. 441–456, doi:10.1007/3-540-45349-0_32.

[24] Neng-Fa Zhou (2020): In Pursuit of an Efficient SAT Encoding for the Hamiltonian Cycle Problem. In: CP,

pp. 585–602, doi:10.1007/978-3-030-58475-7_34.

[25] Neng-Fa Zhou & Jonathan Fruhman (2017): Canonicalizing High-Level Constructs in Picat. In: PADL, pp.

19–33, doi:10.1007/978-3-319-51676-9_2.

[26] Neng-Fa Zhou & Håkan Kjellerstrand (2017): Optimizing SAT Encodings for Arithmetic Constraints. In:

CP, pp. 671–686, doi:10.1007/978-3-319-66158-2_43.

[27] Neng-Fa Zhou, Håkan Kjellerstrand & Jonathan Fruhman (2015): Constraint Solving and Planning with

Picat. Springer Briefs in Intelligent Systems, Springer, doi:10.1007/978-3-319-25883-6.

http://dx.doi.org/10.1287/ijoc.14.4.322.2825
http://dx.doi.org/10.1287/ijoc.14.4.345.2826
http://dx.doi.org/10.1007/978-3-540-72788-0_18
http://dx.doi.org/10.1007/978-3-030-80223-3_15
http://dx.doi.org/10.1007/978-3-540-85958-1_10
http://dx.doi.org/10.1007/978-3-540-85958-1_10
http://dx.doi.org/10.1613/jair.3531
http://dx.doi.org/10.1145/1536616.1536637
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1016/S0166-218X(02)00410-9
http://dx.doi.org/10.1007/s10601-014-9165-7
https://www.minizinc.org/doc-2.5.5/en/index.html
https://www.minizinc.org/doc-2.5.5/en/index.html
http://dx.doi.org/10.1007/s10601-008-9061-0
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/837
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/837
http://dx.doi.org/10.1007/3-540-45349-0_32
http://dx.doi.org/10.1007/978-3-030-58475-7_34
http://dx.doi.org/10.1007/978-3-319-51676-9_2
http://dx.doi.org/10.1007/978-3-319-66158-2_43
http://dx.doi.org/10.1007/978-3-319-25883-6

	1 Introduction
	2 Picat and its Reachability Constraints
	3 Smarty Road Runner
	4 Masyu
	5 Shingoki
	6 Tapa
	7 Implementation and Experimental Results
	8 Conclusion

