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This paper introduces the APIA architecture for policy-aware intentional agents. These agents,
acting in changing environments, are driven by intentions and yet abide by domain-relevant policies.
This work leverages the AIA architecture for intention-driven intelligent agents by Blount, Gelfond,
and Balduccini. It expands AIA with notions of policy compliance for authorization and obligation
policies specified in the language AOPL by Gelfond and Lobo. APIA introduces various agent
behavior modes, corresponding to different levels of adherence to policies. APIA reasoning tasks
are reduced to computing answer sets using the CLINGO solver and its Python API.

1 Introduction

This paper introduces APIA,1 an architecture for intentional agents that are aware of policies and abide
by them. It leverages and bridges together research by Blount, Gelfond, and Balduccini [5, 6] on
intention-driven agents (AIA2), and work by Gelfond and Lobo [12] on authorization and obligation
policy languages (AOPL3). Both AIA and AOPL are expressed in action languages [11] that have a
seamless translation into logic programs [10], and are implemented in Answer Set Programming (ASP)
[14].

With the current rise in autonomous systems the question arises of how to best construct agents that
are capable of acting in a changing environment in pursuit of their goals, while also abiding by domain-
relevant policies. For instance, we would want a self-driving car to not only take us to our destination but
also do so while respecting the law and cultural conventions. This work is a first step in this direction.
As in Blount et al.’s work, we focus on agents:

• whose environment (including actions and their effects) and mental states can be represented by a
transition diagram. Physical properties of the environment and the agent’s mental states form the
nodes of this transition diagram. Arcs from one state to another are labeled by actions that may
cause these transitions.

• who are capable of making correct observations, remembering the domain history, and correctly
recording the results of their attempts to perform actions;

• who are normally capable of observing the occurrences of exogenous actions; and

• whose knowledge bases may contain some pre-computed plans for achieving certain goals, which
we call activities, while agents can compute other plans on demand.

Additionally, these agents possess specifications of authorization and obligation policies and have access
to reasoning mechanisms for evaluating the policy compliance of their actions.

1APIA stands for “Architecture for Policy-aware Intentional Agents.”
2AIA stands for “Architecture for Intentional Agents.”
3AOPL stands for “Authorization and Obligation Policy Language.”
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Thus, in our work, we extend the AIA architecture introduced by Blount et al. [5, 6] with the
notion of policy compliance. AIA agents are Belief-Desire-Intention (BDI) agents [16] who are driven
by goals, have intentions that persist, and can operate with pre-computed activities. However, they are
oblivious to the different nuances of authorization and obligation policies (e.g., actions whose execution
is permitted vs. not permitted), and policy compliance. These intentional agents have only two behavioral
modes: either ignore policies altogether (when policies are not represented by any means in the agent’s
knowledge base) or blindly obey policies that disallow certain actions from being performed, even if
this may be detrimental (when policies are represented as actions that are impossible to be executed).
Instead, we introduce a wider range of possible behaviors that may be set by an agent’s controller (e.g.,
prefer plans that are certainly policy-compliant to others that are only possibly policy-compliant, but if
no plans of the former type exist, accept plans of the latter kind).

In formalizing the different policy compliance behavior modes, we rely on the language AOPL [12]
for specifying authorization and obligation policies, and priorities between such policies. While Gelfond
and Lobo specify reasoning algorithms for determining the degree of policy compliance for a sequence
of actions, this is done from the perspective of a third-person observer analyzing the actions of all agents
after they already occurred. Instead, our work focuses on an agent making decisions about its own
future actions. As a result, various courses of action may be compared to determine the most policy-
compliant one according to the behavior mode set by the agent’s controller. Moreover, our research
addresses interactions between authorization and obligation policies that were not discussed in the work
on AOPL.

There have been several other attempts to enable agents to reason over various kinds of policies.
However, these involve reasoning over access control policies only [7, 17, 1] and a few utilize ASP as a
reasoning tool for this purpose [3, 4]. Access control policies are more restrictive than the kinds of poli-
cies an agent using AOPL can reason over. The work that is closest to our goal is the PDC-agent by Liao,
Huang, and Gao [13]. The PDC architecture extends the BDI architecture with a policy and contract-
aware methodology the authors call BGI-PDC logic. A PDC-agent is an event-driven multi-component
framework which allows for controlled and coordinated behavior among independent cooperative agents.
Liao et al. use policies to control agent behavior, and contracts as a mechanism to coordinate actions
between agents. This architecture was later extended to support reasoning over social norms (the NPDC-
agent) [15]. The PDC-agent architecture is defined as a 7-tuple of the following components: (Event
Treating Engine, Belief Update, Contract Engine, Policy Engine, Goal Maintenance, Plan Engine, Plan
Library) [13]. A major distinction of the PDC-agent agent architecture is that it supports coordination
among multiple agents. This is beyond the scope of our work. Both AIA and APIA focus on an agent
with individual goals. Expanding these architectures into multi-agent frameworks by introducing com-
munication acts is still part of future work. However, knowledge about the changing environment is
expressed in the PDC-agent architecture in terms of a Domain Conceptualization Language (DCL) [8]
and a Concept Instance Pattern (CIP). While DCL and CIP can represent plans (which are analogous to
activities in the AIA architecture), there is no support for expressing the direct or indirect effects of an
action. This is a disadvantage in comparison to action-language-based architectures since plans have to
be pre-computed and the goals that they accomplish must be annotated according to the agent’s designer’s
intuition. Since action languages only require a description of the effects of individual actions (and plans
consisting of all combinations of actions can be automatically computed), there is significantly less work
for a human designer when working with APIA than the PDC-agent architecture.

Thus, our proposed APIA architecture is, to the best of our knowledge, the only intentional agent
architecture that is capable to model compliance with complex authorization and obligation policies,
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while allowing agents to come up with policy-compliant activities on the fly.

The major contributions presented in this paper work are as follows:

1. Create a bridge between research on intentional agents and policy compliance, thus producing a
policy-aware intentional agent architecture APIA.

2. Introduce various agent behavior modes with respect to compliance with authorization and obliga-
tion policies.

3. Introduce mechanisms to check the consistency of a policy containing both authorization and obli-
gation policies and reason over the interactions between these two.

4. Implement APIA in CLINGO (version 5.4.1)4 while leveraging CLINGO’s Python API.5 (As a
by-product, AIA was also updated to this CLINGO version).

2 Background

In this section, we briefly present the AIA architecture and AOPL language, which form the two pillars
of our work. We direct the unfamiliar reader to outside resources on Answer Set Programming [10, 14]
and action language AL [9], which are also relevant to our research.

2.1 AIA: Architecture for Intentional Agents

The Architecture for Intentional Agents, AIA [6], builds upon the Observe-Think-Act control loop of the
AAA architecture6 [2] and extends it in a couple of directions. First, AIA adds the possibility for action
failure: the agent attempts to perform an action during its control loop but may find that it is unable
to do so. In this case, the action is deemed non-executable. Second, AIA addresses a limitation of
AAA in which plans are not persisted across iterations of the control loop. In AIA, agents pursue goals
by persisting in their intentions to execute action plans known to satisfy these goals (i.e., activities).
Activities are represented via a set of statics [5, 6]:

{activity(M), length(M,L), goal(M,G),
component(M,1,C1), component(M,2,C2), . . . , component(M,L,CL) }

where M is a unique identifier for the activity; C1,C2, . . . ,CL are the 1st ,2nd , . . . ,Lth components of the
activity; and G is the goal that [C1,C2, . . . ,CL] achieves. Some activities are pre-computed and stored in
the agent’s knowledge base, while the rest can be generated on demand.

In addition to fluents and actions describing the agent’s environment, AIA introduces mental fluents
to keep track of the agent’s progress in the currently intended activity and towards its desired goal. Mental
fluents are updated through mental actions. The Theory of Intentions is a collection of axioms that
maintain an agent’s mental state. Elements of the agent’s mental state include the currently selected goal
G, stored in the active goal (G) inertial fluent, and the current planned activity, stored in the status(M,k)
inertial fluent. When either a goal is selected or an activity is planned, they are said to be intended.
Mental action start(M) initiates the agent’s intention to execute activity M and stop(M) terminates it.
Though most actions are executed by the agent itself, some must be executed by the agent’s controller.

4https://potassco.org/clingo/
5https://potassco.org/clingo/python-api/5.4/
6AAA stands for “Autonomous Agent Architecture.”

https://potassco.org/clingo/
https://potassco.org/clingo/python-api/5.4/


J. Meyer & D. Inclezan 87

The exogenous mental action select(G) causes the agent to intend to achieve goal G while abandon(G)
causes the agent to cease its intent to achieve goal G.

An agent in the AIA architecture performs the following loop:

1. Interpret observations.
2. Find intended action A.
3. Attempt to perform A; record this attempt in history.
4. Observe the world; record observations in history.
5. Repeat (i.e. go to step 1).

(1)

2.2 AOPL: Authorization and Obligation Policies in Dynamic Systems

In real-world applications, an autonomous agent may be required to follow certain rules or ethical con-
straints, and may be penalized when acting in violation of them. Thus, it is necessary to discuss poli-
cies for agent behavior and a formalism with which agents can deduce the compliance of their actions.
Gelfond and Lobo [12] introduce the Authorization and Obligation Policy Language AOPL for policy
specification. An authorization policy is a set of conditions that denote whether an agent’s action is
permitted or not. An obligation policy describes what an agent must do or must not do. AOPL works
in conjunction with a dynamic system description written in an action language such as AL. An agent’s
policy is the subset of the trajectories in the domain’s transition diagram that are desired by the agent’s
controller.

Policies of AOPL are specified using predicates permitted for authorization policies, obl for obli-
gation policies, and static laws similar to those from action language AL:

permitted (a) if cond
¬permitted (a) if cond

obl (h) if cond
¬obl (h) if cond

where a is an action; h is a happening (i.e., an action or its negation7); and cond is a, possibly empty,
conjunction of fluents, actions, or their negations. In addition to these strict policy statements, AOPL

supports defeasible statements and priorities between them as in:

d : normally permitted(a) if cond
d : normally ¬permitted(a) if cond
d : normally obl(h) if cond
d : normally ¬obl(h) if cond

pre f er(di,d j)

(2)

Gelfond and Lobo define policy compliance separately for authorizations vs. obligations:

Definition 1 (Policy Compliance – adapted from Gelfond and Lobo [12]) Authorization: A set A of
actions occurring at a transition system state σ is strongly compliant with a policy P if all a ∈ A are
known to be permitted at σ using rules in P. A is non-compliant with P if any of the actions are known to
be not permitted at σ using rules in P. Otherwise, if P is unclear and does not specify whether an action
a ∈ A is permitted or not at σ , then the set of actions is weakly compliant.

7If obl(¬a) is true, then the agent must not execute a in the current state.
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Obligation: A set of actions A occurring at state σ is compliant with an obligation policy P if a ∈ A
whenever obl(a) can be derived from the rules of P and a 6∈ A whenever obl(¬a) can be derived from P
at σ . Otherwise, it is non-compliant.

Note that a set of actions A can be strongly, weakly, or non-compliant with an authorization policy, but
A can only be compliant or non-compliant with an obligation policy. Given an AOPL policy (with
authorization and obligation policy statements), A is strongly compliant if it is strongly compliant with
its authorization policy and compliant with its obligation policy. Likewise for weak compliance and
non-compliance. Computing policy compliance is reduced to the problem of finding answer sets of a
logic program obtained by translating the policy rules into ASP. In this translation, predicates obl and
permitted are extended to include an extra argument I standing for the time step, while l p(x) denotes the
ASP transformation of x, where x can be a rule, an action literal, a fluent literal, or a condition.

AOPL does not discuss interactions between authorization and obligation policies on the same ac-
tion, does not define compliance in terms of obligation policies for a trajectory in the dynamic system,
and does not compare the degree of compliance of two trajectories. All of these aspects are relevant
when modeling a policy-aware intentional agent and are addressed in our work.

3 APIA Architecture

We can now introduce our APIA architecture for policy-aware intentional agents. We focus on two main
aspects of APIA: reframing AOPL to fit an agent-centered architecture, and the encoding of different
policy compliance behavior modes of an APIA agent.

3.1 Re-envisioning AOPL Policies in an Agent-Centered Architecture

Gelfond and Lobo [12] conceived AOPL as a means to evaluate policy compliance in a dynamic system.
This differs from AIA in the following ways:

• AOPL evaluates trajectories in a domain’s transition diagram from a global perspective whereas
AIA distinguishes between agent actions and exogenous actions, and chooses which agent actions
to attempt next.

• AOPL evaluates histories at “the end of the day” whereas the AIA architecture, while still rea-
soning over past actions in its diagnosis mode, places an emphasis on planning future actions to
achieve a future desired state.

These differences prevent AOPL policies from interoperating with the AIA agent architecture out
of the box. To address the first issue, we constrain AOPL policies to describe only agent actions in
our APIA architecture. For the second issue, we adjust our policy compliance rules such that only
future actions affect policy compliance. Since our focus is on planning, in APIA past actions are always
considered “compliant” although they might not have been at the time. For an agent that previously
had no choice but a non-compliant action, this allows the agent to conceive of “turning a new leaf” and
seeking policy-compliant actions in the future.

Also, AOPL does not include specification on how authorization policy statements interact with
obligation policy statements. For example, consider the following AOPL policy:

permitted(a)
obl(¬a)
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which is contradictory, since the agent is permitted to perform action a but at the same time is obligated to
refrain from it. Appealing to common sense, if an agent is obligated to refrain from an action, one would
conclude that the action is not permitted. Likewise, it makes sense to say that, if an agent is obligated
to do an action, then it must be permitted. Thus, we take these intuitions and create the following
non-contradiction ASP axioms, in which we use literals obl and permitted expanded to include a new
argument I representing the time step:

← agent action(A), obl(A, I), ¬permitted(A, I).
← agent action(A), obl(neg(A), I), permitted(A, I).

(3)

These enforce that, at the very least, the authorization and obligation policies do not contradict each
other, while allowing for defeasible policies to work appropriately.

We also extend the translation of defeasible policy statements. Suppose we have the following:

normally permitted(a)
obl(¬a) if cond

(4)

Using Gelfond and Lobo’s approach [12], the corresponding ASP translation would be:

permitted(a, I)← not ¬permitted(a, I).
obl(neg(a), I)← l p(cond).

where l p(cond) and obl(neg(a), I) represent the logic programming encoding of cond and obl(¬a),
respectively. Based on policy (4), both permitted(a, I) and obl(neg(a), I) would be true at a time step I
when cond is met. This violates the non-contradiction axioms in (3). So, we replace the translation of
the defeasible statement in (4) with the following encoding:

permitted(a, I) ← not ¬permitted(a, I), not obl(neg(a), I).

This allows the presence of obl(¬a) to be an exceptional case to the defeasible rule.
In general, we propose translating the different types of defeasible statements in (2) as follows,

respectively, where predicate ab facilitates dealing with possible additional (weak) exceptions:

permitted(a, I) ← l p(cond), not ab(d, I), not ¬permitted(a, I), not obl(neg(a), I).
¬permitted(a, I) ← l p(cond), not ab(d, I), not permitted(a, I), not obl(a, I).

obl(a, I) ← l p(cond), not ab(d, I), not ¬obl(a, I), not ¬permitted(a, I).
obl(neg(a), I) ← l p(cond), not ab(d, I), not obl(neg(a), I), not permitted(a, I).

3.2 Policy-Aware Agent Behavior

The AIA architecture, which is the underlying basis of APIA, introduces mental fluents and actions
in addition to physical ones. In APIA, we additionally introduce policy fluents and actions needed to
reason over policy compliance (see Table 1). The new policy action descriptions encode the effects of
future agent actions on policy compliance and provide means for the control loop to deem non-compliant
activities futile and execute compliant ones in their place.

For example, the dynamic causal laws in (5) define inertial policy fluents auth compliance(weak)
and auth compliance(strong) according to the definitions for strong and weak authorization policy com-
pliance of AOPL seen in Definition 1:

a causes ¬auth compliance(strong) if not permitted(a)
a causes ¬auth compliance(weak) if ¬permitted(a)

(5)
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Table 1: List of Policy Fluents and Actions in the APIA Architecture
Fluents Actions
Inertial: auth compliance(strong) ignore not permitted(a)

auth compliance(weak) ignore neg permitted(a)
obl compliant(do action) ignore obl(a)
obl compliant(re f rain f rom action) ignore obl(neg(a))

Defined: policy compliant( f ), for every physical fluent f for every physical action a

These rules are defined for every physical action a of the transition system. Should an action a occur
where permitted(a) is not known to be true, then the scenario ceases to be strongly compliant (i.e., it
becomes weakly compliant). Since auth compliance(strong) cannot be made true again by any action,
the rest of the scenario remains weakly compliant by inertia. Likewise, should an action a occur where
permitted(a) is false, then the scenario ceases to be weakly compliant (i.e., it becomes non-compliant)
and remains in this state by inertia.

For every physical fluent f , we introduce a new defined policy fluent policy compliant( f ). This
allows us to reuse the AIA control loop shown in (1) as is. When the agent controller wants to specify
that the agent should achieve goal f in a policy-compliant manner, the controller simply has to initiate
action

select goal(policy compliant( f ))

instead of the original select goal( f ). The policy fluent policy compliant( f ) is true iff f is true and
auth compliance(l) is true, for some minimum compliance threshold l set by the controller. Thus, when
policy compliant( f ) is an agent’s goal, activities below l-compliance are deemed as futile and the agent
works to achieve fluent f subject l-compliance.

Authorization Policies and Agent Behavior. To allow for cases when the threshold l set by the
controller is not the maximum possible level of compliance or, in the future, cases when an agent
deliberately chooses to act without l-compliance, we add policy actions ignore not permitted(a) and
ignore neg permitted(a), where a is a physical action. By executing these actions concurrently with a,
our agent ignores a’s effect at that time step on weak compliance or non-compliance, respectively. This
enables our agent to look for activities with a lower level of compliance if no activities that achieve f are
strongly-compliant. One can imagine that this capability can be used to model multiple agent behaviors,
based on what the minimum and maximum requirements of adherence to their authorization policy are.
We have parameterized the agent’s behavior as seen in Table 2, and introduced names for these possible
agent behaviors.

Require weak Prefer weak over non-compl. Ok with non-compl.
Require strong Paranoid (Invalid) (Invalid)
Prefer strong over weak Cautious Best effort (Invalid)
Ok with weak Subordinate Subordinate when possible Utilitarian

Table 2: APIA Authorization Policy Modes

One behavior mode is for the agent to strictly adhere to its authorization policy such that it never
chooses to perform ignore neg permitted(a). This causes all non-compliant actions to indirectly cause
policy compliant( f ) to be false, if they are executed. Hence, only activities with weakly or strongly
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compliant actions are considered. Since this mode never dares to become non-compliant, it is called
subordinate.

A similar behavior mode causes the agent to never perform ignore not permitted(a). This causes
all weak and non-compliant actions to indirectly cause policy compliant( f ) to be false when executed.
Hence, only activities with strongly compliant actions are considered. Since weakly compliant actions
are actions for which the policy compliance is unknown, this mode is called paranoid as it treats weakly
compliant actions as if they were non-compliant.

Another behavior mode allows unrestricted access to the two actions, ignore neg permitted(a) and
ignore not permitted(a). This mode is called utilitarian because it reduces the behavior of APIA to
that of AIA, where policies are not considered at all.

An interesting feature of the ignore neg permitted(a) and ignore not permitted(a) actions is the
ability to optimize compliance. Using preference statements in ASP, we can require the control loop to
minimize the use of these two policy actions. Hence, if it is possible to execute an activity that is strongly
compliant, the agent will prefer it over a weakly or non-compliant one (since the use of these actions is
required to allow policy compliant( f ) to be true). Under this condition, ignore not permitted(a) and
ignore neg permitted(a) are only used when it is impossible to achieve the fluent f in a strongly or
weakly compliant manner, respectively.

The combination of compliance optimization with the first three behavior modes allows for more
possible configurations. For example, adding optimization to the subordinate option makes a cautious
mode. In this mode, the agent will try to mimic the behavior of the paranoid mode (all strongly compliant
actions), but ultimately it will reduce to subordinate (all weakly compliant actions) in the worst case.
Likewise, adding optimization to the utilitarian mode adds two options: best effort and subordinate when
possible. Best effort prefers strong compliance over weak compliance and weak compliance over non-
compliance, but ultimately permits non-compliance when no better alternatives exist. Subordinate when
possible prefers weak compliance over non-compliance but does not optimize from weak compliance to
strong compliance.

A new feature of this approach to optimization is the ability to optimize within the weakly and
non-compliant categories. Consider two weakly compliant activities, 1 and 2, where activity 1 has
more weakly compliant actions than activity 2. Since weakly compliant actions do require a concurrent
ignore not permitted(a) action, activity 1 will have more ignore not permitted(a) actions than activity
2. Hence, activity 2 will be preferred to activity 1, even though they both fall in the weakly compliant
category. Gelfond and Lobo [12] do not consider such a feature.

Obligation Policies and Agent Behavior. So far we discussed authorization policies induced by
an AOPL policy. To address obligation policies, we add policy fluents obl compliant(do action) and
obl compliant(re f rain f rom action) with policy actions ignore obl(a) and ignore obl(neg(a)), as seen
in Table 1. (For configurability, we consider obligation policies to do actions and to refrain from actions
separately). We extend the definition of policy compliant( f ) to require both obl compliant(do action)
and obl compliant(re f rain f rom action) to be true. Like with authorization compliance, if obl(a) is
true but action a does not occur, then obl compliant(do action) becomes false and remains false by
inertia. Likewise for obl compliant(re f rain f rom action). If ignore obl(a) or ignore obl(neg(a)) are
performed, then these effects on the obl compliant fluents are temporarily waived.

There are five different configurations (or behavior modes) an agent in the APIA architecture can
have regarding its obligation policy (see Table 3). When in subordinate mode, the agent will never use ei-
ther ignore obl(a) and ignore obl(neg(a)) actions. Hence, all activities achieving policy compliant( f )
will be compliant with both aspects of its obligation policy. When in best effort mode, the agent prefers
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Honor obl(¬a) Prefer honoring obl(¬a) Ignore obl(¬a)
Honor obl(a) Subordinate Permit commissions (Not reasonable)
Prefer honoring obl(a) Permit omissions Best effort (Not reasonable)
Ignore obl(a) (Not reasonable) (Not reasonable) Utilitarian

Table 3: APIA Obligation Policy Modes

using other actions over these policy actions. Hence, activities will be compliant if possible but may
include non-compliant elements when no other goal-achieving activities exist. The permit omissions and
permit commissions options are variations of these modes. Mode permit omissions is like best effort with
regards to obl(a) policy statements, but like subordinate with regards to obl(¬a) policy statements. Like-
wise, permit commissions is like subordinate with regards to obl(a) policy statements but like best effort
regarding obl(¬a) statements. Utilitarian mode, like with authorization policies, reduces the behavior
of an APIA agent with respect to its obligation policy to that of an AIA agent.

Behavior Mode Configurations. An agent’s combined authorization and obligation policy configura-
tion can be represented by a 2-tuple (A,O), where A is the authorization mode and O is the obligation
mode. When an APIA agent is running in mode (utilitarian,utilitarian), its behavior reduces to that of
an AIA agent (i.e., policy actions are not used in this mode). This is due to an optimization we provide
internally.

For each APIA configuration, we adjust the definition of policy compliant( f ) such that excess
policy actions are not required. For instance, in the case of an agent with a subordinate authorization
mode, we adjust policy compliant( f ) such that ignore not permitted(a) is never needed since such an
agent always disregards strong compliance.

4 Examples

To demonstrate the operations of an agent in the APIA architecture, we will introduce a series of ex-
amples that illustrate prototypical cases. For conciseness, we will focus on three APIA configurations:
(paranoid, subordinate), (best effort, best effort), and (utilitarian, utilitarian), and we limit ourselves to
examples about authorization policies.

4.1 Example A: Fortunate case

To begin with a simple case, suppose that two people are in an office space that has four rooms with
doors in between them. Room 1 is connected by door d12 to Room 2. Room 2 is connected by door d23
to Room 3 and so on. Door d34 has a lock and is currently in the unlocked position. Suppose our agent,
Alice, wants to greet another agent, Bob. This scenario is represented by a dynamic domain description
that considers:

• Fluents: door locked(D) for each door D, in room(P,R), greeted by(P,A) where person P is
greeted by person A; and

• Actions: move through(A,D), lock door(A,D), unlock door(A,D), greet(A,P), where A is the
person doing the action, D is a door, and P a person (the direct object of the action).
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Assume that agent Alice is given a policy specifying that all actions are permitted along with the
following pre-computed activity that is stored in her knowledge base as the set of facts:

{activity(1), length(1,4), goal(1, policy compliant(greeted by(alice,bob))),
component(1,1,move through(alice,d12)), component(1,2,move through(alice,d23)),
component(1,3,move through(alice,d34)), component(1,4,greet(alice,bob))}

Before the control loop begins, Alice observes that she is in Room 1, Bob is in Room 4, the door d34
is unlocked, and that she has not yet greeted Bob.

At timestep 0, the first iteration of the control loop begins. In this first step, Alice analyzes her ob-
servations and interprets unexpected observations by assuming undetected exogenous actions occurred.
None of her observations are unexpected, so no exogenous actions are assumed to occur. Alice then
intends to wait at timestep 0. Alice attempts wait. Alice observes that her wait action was successful and
that, in the meantime, the exogenous action

select(policy compliant(greeted by(alice,bob)))

happened. The time step is incremented and Alice does not observe any fluents.
The second iteration of the control loop begins. Alice analyzes her observation of

select(policy compliant(greeted by(alice,bob))) and determines that
active goal(policy compliant(greeted by(alice,bob))) is true. Alice then starts planning to achieve
policy compliant(greeted by(alice,bob)) and determines that she intends to start activity 1. Since each
action in activity 1 is strongly compliant, no policy actions are needed.

The rest of the example is very straight forward and is almost identical to scenarios discussed by
[5, 6] in the AIA architecture.

4.2 Example B: Strong compliance degrades to weak compliance

Let us consider a less fortunate example, in which a strongly compliant activity becomes weakly compli-
ant due to an unexpected environmental observation. In the same scenario, suppose we modify Alice’s
policy from Example A such that regarding greet(A,P) we have:

permitted(greet(A,P)) if ¬busy working(P)
permitted(greet(A,P)) if busy working(P), in room(P,R),

door connects(D,R), knocked on door(D)
(6)

We also have new fluents busy working(P) and knocked on door(D), and actions begin working(A) and
knock on door(A,D). Let Alice’s knowledge base contain two additional activities, 2 and 3, with the
same goal as 1 and defined by the sets of facts:

{activity(2), length(2,5), goal(2, policy compliant(greeted by(alice,bob))),
component(2,1,move through(alice,d12)), component(2,2,move through(alice,d23)),
component(2,3,knock on door(alice,d34)), component(2,4,move through(alice,d34)),
component(2,5,greet(alice,bob)),

activity(3), length(3,2), goal(2, policy compliant(greeted by(alice,bob))),
component(3,1,knock on door(alice,d34)), component(3,2,move through(alice,d34))}

Alice observes that Bob is not busy working, in addition to the initial observations of Example A.
At timestep 0, the first iteration of the control loop begins. During the second iteration of the control
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loop (at timestep 1), Alice plans to achieve the policy compliant(greeted by(alice,bob)) goal. Since
she believes Bob is not busy working, activity 1 is still strongly compliant and so is activity 2. Alice
chooses activity 1 over activity 2 because it requires a shorter sequence of actions. She then executes
activity 1 like in Example A until she enters Room 3, at which points she observes that Bob is busy
working. During the next iteration (at timestep 5), the agent interprets this observation by inferring that
begin working(bob) happened at the previous timestep (4).

As a result, activity 1 becomes weakly compliant. Since Bob is busy working but Alice has not
knocked on the door, no policy statement describes whether our next action, greet(alice,bob), is compli-
ant or not. If Alice is operating in (utilitarian, utilitarian) mode, she continues the execution of activity 1
and greets Bob anyway. (This happens without the use of policy actions due to our internal optimiza-
tions). Otherwise, Alice will stop the activity and then either refuse to plan another weakly compliant
activity or use a concurrent policy action to dismiss this event.

If our agent is running in (paranoid, subordinate), Alice will refuse to execute a weakly compliant
activity. Through planning, Alice will discover that a new activity that includes knocking at the door is
strongly compliant (e.g. activity 3) and begin its execution. If our agent is running in (best effort, best
effort), she will behave likewise because activity 3 is strongly compliant. The difference is that, if there
did not exist a strongly compliant activity, she would plan a new activity that involved a policy action
and greeted Bob anyway. Alice knocks on door d34 at timestep 7, greets Bob at timestep 8, and stops
activity 3 at timestep 9.

4.3 Example C: Compliance degrades to non-compliant

Suppose we take policy rule (6), make it defeasible, and add this AOPL rule :

¬permitted(greet(A,P)) if busy working(P), supervisor to(P,A)

Now, let us imagine that Bob is Alice’s supervisor. Similar to Example B, our agent executes activity
1 until the observation that Bob is busy working. This time, we have a strict authorization statement
forbidding greeting Bob since he is Alice’s supervisor. Under the (utilitarian, utilitarian) option, we
proceed on with activity 1 anyway. With the (paranoid, subordinate) option, our agent stops activity
1 but cannot construct a new activity that achieves the goal subject to its policy. Hence, the goal is
futile and the agent waits until its environment changes such that a strongly compliant activity exists.
Under the (best effort, best effort) option however, our agent constructs a new activity that contains
greets Bob anyway. The activity contains: greet(alice,bob), ignore not permitted(greet(alice,bob)),
and ignore neg permitted(greet(alice,bob)).

4.4 Example D: Hierarchy of contradictory defeasible statements

Further extending Example C, suppose we turn all policy statements from Example A into defeasible
ones (i.e., all actions are normally permitted) and add another policy statement:

m1(A,D) : normally permitted(move through(A,D))
m2(A,D) : normally ¬permitted(move through(A,D)) if in room(A,R1),

door connects(D,R2),
private o f f ice(R2),
R1! = R2



J. Meyer & D. Inclezan 95

and the static private o f f ice(R) with private o f f ice(r4) as a fact. Since we have two contradictory
defeasible statements, we need to add a preference between the two (without a preference our agent can
non-deterministically choose between which of the two rules to apply). If we add:

pre f er(m2(A,D),m1(A,D))

then, when Alice observes that Bob is not busy working at the beginning of the scenario, an agent running
in (paranoid, subordinate) mode will immediately consider the goal to be futile. Unlike in Example C,
our agent knows this immediately because private o f f ice is a static, not an unexpected observation. If
our agent is running in (best effort, best effort) mode, it creates an activity like activity 1, except that
it contains ignore not permitted(greet(alice,bob)) and ignore neg permitted(greet(alice,bob)). Our
utilitarian agent, like always, completely ignores our policy and executes activity 1.

5 Implementation

In this section, we discuss two important implementation aspects: the refactoring of the AIA implemen-
tation including its Theory of Intentions and control loop, and the implementation of the APIA control
loop using CLINGO’s Python API.

5.1 AIA Theory of Intentions and Control Loop

Since APIA takes AIA as a basis, we first update Blount et al.’s [6] AIA implementation such that it
requires a state-of-the-art solver: CLINGO (version 5.4.1).8 For this purpose, we re-implement the AIA

logic program in ASP using only the description of the architecture presented by Blount et al. [5, 6].
During this process, we make minor modifications to AIA as a whole. First, we refactor the arrangement
of ASP rules into multiple files according to their purpose in the AIA architecture (e.g. whether they are
part of the Theory of Intentions, AIA’s rules for computing models of history, or the AIA intended
action rules). Second, we refactor the names of mental fluents in the Theory of Intentions so that their
names are more descriptive and self-documenting. Thirdly, we extensively add inline comments to each
ASP rule with reference quotations and page numbers from Blount et al.’s work. Lastly, we make
minor corrections to ASP rules to match the translation of particular scenarios (i.e., histories) with the
mathematical definitions proposed by Blount et al..

In addition to upgrading the AIA logic program, we also refactor the implementation of the AIA

control loop. In his dissertation, Blount [5] introduced the AIA Agent Manager. This is an interactive
Java program that allows an end-user to assign values to agent observations in a graphical interface for
each control loop iteration. Since this requires manual input, it does not easily lend itself to automa-
tion and reproducibility of execution, which are required for performance benchmarking. Furthermore,
the AIA Agent Manager is structured around interacting with an underlying solver using subprocesses
and process pipes. While the AIA Agent Manager could conceivably invoke CLINGO as a subprocess,
CLINGO 5 provides a unique opportunity for more advanced integrations using its Python API.

Because of these two points, we replace the AIA Agent Manager with a new implementation of the
AIA control loop written in Python 3.9.0. This new implementation uses a command-line interface and
allows for reproducible execution through ASP input files. Since this control loop is also the basis for
our APIA implementation, we will discuss it more in the next subsection.

8Our updated AIA implementation is available at https://gitlab.com/0x326/miami-university-cse-700-aia.
git and is released under the MIT open-source license.

https://gitlab.com/0x326/miami-university-cse-700-aia.git
https://gitlab.com/0x326/miami-university-cse-700-aia.git
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5.2 Python Component

We provide an implementation of the AIA control loop for the APIA architecture.9 The APIA control
loop is implemented using Python 3.9.0 and CLINGO 5.4.1 using CLINGO’s Python API. We provide
two modes: an automatic mode and a manual mode. The automatic mode is intended to be used for
normal execution while the manual mode is intended to aid in debugging unexpected output in answer
sets. The automatic mode uses a command-line interface to specify the ASP files of the input domain,
the observations of the agent, and the APIA policy compliance mode the agent should use. The control
loop then provides human-readable output as to what happens at each control loop step (see Figure 1 in
the appendix).

In the case of unexpected output, the manual mode allows one to examine the answer set at each
step of the control loop. It also provides scripts to highlight differences between answer sets of differ-
ent timesteps in a visual manner and to step through the control loop like one would do in a traditional
debugger. Additionally, manual mode addresses certain violations of AIA and AOPL underlying as-
sumptions. For example, it generates an invalid predicate when there exists an action that is neither a
physical, mental, or policy action. Likewise when an action is neither an agent action nor an exogenous
action. In addition, it generates an invalid predicate when an AOPL policy statement describes an object
that is not declared as an action. These rules have been very useful in debugging the implementation of
the APIA architecture and they will aid future end-users who encode and execute scenarios using this
architecture. Since these rules are intended during debugging, they are not executed during the automatic
mode.

6 Conclusions and Future Work

In this paper, we created an architecture for a policy-aware intentional agent by bridging together pre-
vious work on intentional agents [5, 6] and reasoning algorithms for authorization and obligation poli-
cies [12]. A main difficulty was adapting the work on policy compliance so that it would be relevant
for an agent deciding on which course of actions to take. While Gelfond and Lobo’s work could de-
termine whether a trajectory (i.e., sequence of actions) was strongly compliant, weakly compliant, or
non-compliant, we introduced a wider range of agent behavior modes, which additionally explore the
interactions between authorization and obligation policies.

This work can be further expanded by refining the decision making process in the planning phase
of APIA by introducing a relative ranking system between activities that would achieve the same goal,
based on the number of actions that are strongly, weakly, or non-compliant. Moreover, it would be
interesting to allow the agent’s controller to switch behavior modes while the agent is active, in the
middle of executing an activity.
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A APIA Output

Figure 1: Automatic execution of Example A using configuration (paranoid,subordinate)
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