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Most known results on avoiding the occur-check are based on the notion of “not subject to occur-

check” (NSTO). It means that unification is performed only on such pairs of atoms for which the

occur-check never succeeds in any run of a nondeterministic unification algorithm. Here we show

that this requirement is too strong. We show how to weaken it, and present some related sufficient

conditions under which the occur-check may be safely omitted. We show examples for which the

proposed approach provides more general results than the approaches based on well-moded and

nicely moded programs (this includes cases to which the latter approaches are inapplicable).
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1 Introduction

The programming language Prolog implements SLD-resolution employing an unsound implementation

of unification without the occur-check. This usually creates no problems in practice. Programmers know

that they do not need to care about it, unless they deal with something unusual like checking a difference

list for emptiness.1 Surprisingly, such attitude of programmers is often not justified by theory. The

known criteria for occur-check freeness are applicable to restricted classes of cases. There seems to exist

no further substantial work on avoiding the occur-check after that of Chadha and Plaisted [CP94], Apt

and Pellegrini [AP94], reported in [Apt97], and the generalization in [AL95] to other selection rules than

that of Prolog.

Even for LD-resolution (SLD-resolution with the Prolog selection rule) the proposed methods are

inapplicable to some important cases. To deal with simple examples of programs employing difference

lists, the methods of well-moded and nicely moded programs had to be refined [AP94] in a rather so-

phisticated way. (The refinement is not presented in the textbook [Apt97], one may suppose that it was

considered too complicated.)

Here we are interested in sufficient conditions for safe execution of definite clause programs without

the occur check. Approaches based on semantic analysis, like abstract interpretation, are left outside of

the scope of this paper.

The existing approaches are based on the notion of NSTO (not subject to occur-check) [DFT91]. It

means that unification is performed only on such pairs of atoms for which the occur-check never succeeds

in any run of a nondeterministic unification algorithm.

It turns out that unification without the occur-check works correctly also for some cases which are

not NSTO. In this paper we propose a generalization of NSTO. We show that it is sufficient that the

occur-check does not succeed in one run of the unification algorithm for a given input (instead of all

1In the important Prolog textbook by Sterling and Shapiro [SS94], the occur-check is mentioned (in the context of ac-

tual programs) only when discussing difference lists (p. 298, p. 300, on p. 299 an error due to unsound Prolog unification is

explained). The textbook of Bratko [Bra12] mentions the occur-check only once, when comparing matching in Prolog with

unification in logic.

http://dx.doi.org/10.4204/EPTCS.345.17


W. Drabent 55

the runs). We discuss some related sufficient conditions for safely avoiding the occur-check. They are

applicable to some examples to which the former approaches are inapplicable. For other examples, a

wider class of initial queries is dealt with, or/and applying the proposed approach seems simpler than

the former ones. We additionally present a sufficient condition, based on NSTO, for safely avoiding the

occur-check under arbitrary selection rule (and provide a detailed proof of its correctness).

Preliminaries

We use the terminology, notation and many definitions from [Apt97] (and reintroduce here only some of

them). The terminology is based on that of logic; in particular “atom” means an atomic formula.

By an expression we mean a term, an atom, or a tuple of terms (or atoms). An equation is a construct

s
.
= t, where s, t are expressions. Given sequences of terms (or atoms) s = s1, . . . ,sn and t = t1, . . . , tn,

the set {s1
.
=t1, . . . ,sn

.
= tn} will be sometimes denoted by s

..
= t. A syntactic object (expression, equation,

substitution, etc) is linear when no variable occurs in it more than once. As in Prolog, each occurrence

of _ in a syntactic object will stand for a distinct variable. Otherwise variable names begin with upper

case letters. Var(t) denotes the set of variables occurring in a syntactic object t. We say that s and t are

variable disjoint ifVar(s)∩Var(t) = /0.

For a substitution θ = {X1/t1, . . . ,Xn/tn}, we define Dom(θ)= {X1, . . . ,Xn}, Ran(θ)=Var(t1, . . . , tn),
θ |S = {X/t ∈ θ | X ∈ S} (for a set S of variables), and θ |u = θ |Var(u) (for an expression u).

We employ the Martelli-Montanari unification algorithm (MMA) (cf. [Apt97]). It unifies a set of

equations, by iteratively applying one of the actions below to an equation from the current set, until no

action is applicable. The equation is chosen nondeterministically.

(1) f (s1, . . . ,sn)
.
= f (t1, . . . , tn) −→ replace by equations s1

.
= t1, . . . ,sn

.
= tn

(2) f (s1, . . . ,sn)
.
=g(t1, . . . , tm) where f 6= g −→ halt with failure

(3) X
.
=X −→ delete the equation

(4) t
.
=X where t is not a variable −→ replace by X

.
= t

(5) X
.
= t where X 6∈Var(t) and X occurs elsewhere −→ apply substitution {X/t} to all other

equations
(6) X

.
= t where X ∈Var(t) and X 6= t −→ halt with failure

By a run of MMA for an input E we mean a maximal sequence E0, . . . ,En of equation sets such that

E = E0 and Ei is obtained from Ei−1 by one of the actions of the algorithm (i = 1, . . . ,n). See [Apt97]

for the properties of MMA, in particular how the obtained mgu is represented by a final equation set.

An equation set E is said to be NSTO if action (6) is not performed in any execution of MMA starting

with E . We often say “unification of s and t is NSTO” instead of “{s
.
= t} is NSTO”. In such case while

unifying s, t the occur check never succeeds, and thus can be skipped.

We need to generalize some definitions from [Apt97], in order not to be limited to LD-resolution.

We will say that unification of A and H is available in an SLD-derivation (or SLD-tree) for a program P,

if A is the selected atom in a query of the derivation (tree), and H is a standardized apart head of a clause

from P, such that A and H have the same predicate symbol. (A more formal phrasing is “equation set

{A
.
=H} is available”.) If all the unifications available in an SLD-derivation (SLD-tree) are NSTO then

the derivation (tree) is occur-check free. We say that a program P with a query Q is occur-check free if,

under a given selection rule, the SLD-tree for P with Q is occur-check free.

We refer a few times to results of [AP94] reported in [Apt97]; in such cases only a reference to

[Apt97] may be given.
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Similarly to [AP94], we will employ modes. This means dividing the argument positions of predi-

cates into two groups, by assigning a function mp:{1, . . . ,n}→ {+,−} (called a mode) to each predicate

p of the considered program (where n is the arity of p). A program with a mode for each predicate is

called a moded program, and the collection of modes is called moding. We follow the usual terminology,

argument positions with + assigned are called input, and those with − are called output. We usually

specify mp by writing p(mp(1), . . . ,mp(n)). E.g. p(+,−) states that the first argument of p is input and

the second one is output. Note that moding does not need to correspond to any intuitive notion of data

flow. It is to be chosen so that the moded program satisfies the conditions of interest.

We will write p(s; t) to represent an atom p(t1, . . . , tn) and to state that s is the sequence of terms in

its input positions, and t the sequence of terms in its output positions. An atom p(s; t) is input-output

disjoint if Var(s)∩Var(t) = /0. Let us define VarIn(p(s; t)) =Var(s), VarOut(p(s; t)) =Var(t). The input

(resp. output) positions of a query Q are the input (output) positions of the atoms of Q. A query (or an

atom) Q is input linear (resp. output linear) if the sequence of the terms occurring in the input (output)

positions of Q is linear. We will refer to the following results.

Lemma 1 1. Consider atoms A and H. If they are variable disjoint, one of them is input-output

disjoint, one of them is input linear, and the other is output linear then {A
.
=H} is NSTO [Apt97,

Lemma 7.14].

2. Let s and t be sequences of terms, such that the lengths of s and t are the same. If Var(s)∩Var(t)= /0

and s (or t) is linear then s
..
= t is NSTO (a special case of [Apt97, Lemma 7.5]).

Obviously, p(s)
.
= p(t) is NSTO iff s

..
= t is NSTO. Based on Lemma 1.1, Apt and Pellegrini [AP94]

introduced two sufficient conditions for occur-check freeness. One (well-moded programs [Apt97, Def.

7.8]) implies that the input positions of the atoms selected in LD-trees are ground. The other one (nicely-

moded programs [Apt97, Def. 7.19]) implies that the selected atoms are output-linear.

2 NSTO and arbitrary selection rules

2.1 Sufficient condition

Here we propose a syntactic condition for occur-check freeness under arbitrary selection rules. We

assume that the programs dealt with are moded.

Definition 2 Let Q = A1, . . . ,An be a query. We define a relation →Q on {A1, . . . ,An}. Let Ai →Q A j

when a variable occurs in an output position of Ai and an input position of A j.

Query Q is tidy if it is output linear and→Q is acyclic (Ai 6→
+
Q Ai for i = 1, . . . ,n).

Clause H← Q is tidy if Q is tidy, and

H is input linear,

no variable from an input position of H occurs in an output position of Q.

Note that each atom in a tidy query is input-output disjoint. Also, if a query Q is tidy then any

permutation of Q is tidy too. A linear query is tidy under any moding.

Tidy programs are a generalization of nicely moded programs [CP94], [AP94] [Apt97] (the first

reference uses different terminology). A nicely moded query A1, . . . ,An is tidy (as Ai →Q A j implies

i < j), and a nicely moded clause with an input linear head is tidy. A tidy program can be converted into

a nicely moded one by reordering the atoms in the clause bodies. The generalization proposed here may

be understood as minor. However it still seems to be worth presenting, as the proof of the crucial lemma

in [AL95] seems unavailable.
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This is a basic property of tidy clauses and queries:

Lemma 3 Let Q be a tidy query, and C a tidy clause variable disjoint from Q. An SLD-resolvent Q′ of

Q and C is tidy.

Due to a space limit, the proof must be excluded from this paper and will be made available else-

where. We only mention here two main lemmas involved in the proof.

Lemma 4 Let θ be a substitution and X ,V,V ′ variables. Assume that X ∈Var(V θ) and X ∈Var(V ′θ).
Then X =V =V ′, or X ,V,V ′ ∈Var(θ) and moreover X ∈Ran(θ).

The next lemma employs the following notion: A substitution θ is linear for a set of variables S if

for any two distinct variables X ,Y ∈S the pair Xθ ,Y θ is linear. Note that if a θ = {X1/t1, . . . ,Xn/tn} is

linear for Dom(θ) then θ is linear in the sense of [AP94, Def. A.3] (i.e. t1, . . . , tn is linear).

Lemma 5 Consider two variable disjoint expressions s, t where t is linear. Let S be a set of variables

such that S ∩Var(t) = /0. If s, t are unifiable then there exists a relevant and idempotent mgu θ of s, t
such that

θ |s is linear for S and Ran(θ |s) ⊆Var(t).

Now our sufficient condition for occur-check freeness is:

Corollary 6 A tidy program with a tidy query is occur-check free, under any selection rule.

PROOF By Lemma 3, in each SLD-derivation for a tidy program and query, each query is tidy. Assume

A is an atom from a tidy query and H is the head of a standardized apart tidy clause. As A is input-output

disjoint and output linear and H is input linear, {A
.
=H} is NSTO, by Lemma 1. ✷.

2.2 Examples

Apt and Pellegrini [AP94] found that the approaches based on well-modedness or nice modedness are

inapplicable to some programs, and introduced a more sophisticated approach. The programs are FLAT-

TEN [SS94, Program 15.2], QUICKSORT_DL [SS94, Program 15.4], and NORMALIZE ([SS94, Program

15.7]); they employ difference lists. Here we focus on FLATTEN, which flattens a given list. (We split

arguments of the form t\u or t++u into two argument positions; the argument positions of built-in predi-

cates are considered input.)

FLATTEN:

%flatten dl(Xs,Ys,Zs) – difference list Ys\Zs represents the flattened list Xs

flatten dl([X|Xs],Ys,Zs)← flatten dl(X,Ys,Ys1), flatten dl(Xs,Ys1,Zs).
flatten dl(X, [X|Xs],Xs)← constant(X), X \== [ ].
flatten dl([ ],Xs,Xs).

flatten(Xs,Ys)← flatten dl(Xs,Ys, [ ]).

We see that, for the program to be tidy, the second and the third arguments of flatten dl cannot be both

output (Ys1 occurs in these positions in a clause body, which must be output linear). Also, the first and

the second arguments of flatten dl cannot be both input, the same for the second and the third one (as a

clause head must be input linear). The reader is encouraged to check that FLATTEN is tidy under moding

M1 = flatten(+,−), flatten dl(+,−,+), and under M2 = flatten(−,+), flatten dl(−,+,−). The relation
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→Q (where Q = A1,A2 is the body of the first clause) consists of one pair; for M1 it is A2→Q A1, for M2

it is A1→Q A2. In both cases the program remains tidy if the moding of flatten is replaced by (−,−).

For any term t and variable R 6∈Var(t), query Q0 = flatten(t,R) is tidy under M1. (To be tidy under

M2, Q0 has to be linear.) By Corollary 6, FLATTEN with Q0 is occur-check free, under any selection rule.

We only mention that QUICKSORT_DL and NORMALIZE are also tidy, and thus are occur-check

free for a wide class of queries. NORMALIZE is similar to FLATTEN, and is tidy for similar

modings. QUICKSORT_DL is tidy for instance for modings quicksort(+,−), quicksort dl(+,−,+),
partition(+,+,−,−), and quicksort(−,+), quicksort dl(−,+,−), partition(−,+,+,+). Another ex-

ample of a tidy program is DERIVATIVE (Example 22 below).

Surprisingly, the approach based on nice modedness is applicable to FLATTEN and NORMALIZE.

FLATTEN is nicely moded under M2, so is the query Q0, provided it is linear. As the clause heads are

input linear, it follows that FLATTEN with Q0 is occur-check free for the Prolog selection rule (by [Apt97,

Corollary 7.25]). Similarly, NORMALIZE is nicely moded (e.g. under normalize ds(−,+,−)); we skip

further details. In both cases the modes may be seen as not natural; what is understood as input data

appears in a position moded as output. This may explain why the nice modedness of the programs was

not noticed in [AP94].

3 Weakening NSTO

The discussion on avoiding the occur-check above, and in all the work referred here, is based on the

notion of NSTO. We show that NSTO is a too strong requirement. Unification without the occur-check

produces correct results also for some pairs of atoms which are not NSTO. In such cases the algorithm

may temporarily construct infinite terms, but eventually halt with failure. An example of such pair is

p(a, f (X),X), p(b,Y,Y ). For this pair, some runs of MMA halt due to selecting a
.
=b, some other ones

due to a successful occur-check. Omitting the occur-check would result in failure on a
.
=b; this is a

correct result.

NSTO requires that each run of MMA does not perform action (6). In this section we show that it is

sufficient that there exists such run. For this we need to introduce a precise description of the algorithm

without the occur-check, called MMA−. We define WNSTO, a weaker version of NSTO, and show that

MMA− produces correct results for expression pairs that are WNSTO. Then we show an example of a

program with a query which is not occur-check free, but will be correctly executed without the occur-

check, as all the atom pairs to be unified are WNSTO. Then we present sufficient conditions, based on

WNSTO, for safely skipping the occur-check.

3.1 An algorithm without the occur-check

By abuse of terminology, we will write “unification algorithm without the occur-check”, despite such

algorithm does not correctly implement unification. We would not consider any actual unification algo-

rithm of Prolog, this would require to deal with too many low level details. See for instance the algorithm

of [Aı̈t91, Section 2]. Instead, we use a more abstract algorithm, obtained from MMA. We cannot simply

drop the occur-check from MMA (by removing action (6) and the condition X 6∈Var(t) in action (5)). The

resulted algorithm may not terminate, as an equation X
.
=t where X ∈Var(t) can be selected infinitely

many times.

We obtain a reasonable algorithm in two steps. First, MMA is made closer to actual unification

algorithms. The idea is to abandon action (5), except for t being a variable. (The action applies {X/t} to
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all equations except one). Instead, {X/t} is applied only when needed, and only to one occurrence of X .

This happens when the variable becomes the left hand side of two equations X
.
= t, X

.
=u (where t,u are

not variables, and X 6∈Var(t,u)). Then X
.
=u is replaced by t

.
=u. To achieve termination, t should not be

larger than u. From such algorithm the occur-check may be dropped.

Without loss of generality we assume that we deal with unification of terms. Let |t| be the number of

occurrences in t of variables and function symbols, including constants.

Definition 7 ([Col82]) MMA−−− (MMA without the occur-check) is obtained from MMA by

(a) removing action (6), and

(b) replacing action (5) by

(5a) X
.
=Y , where X ,Y are distinct variables and X occurs elsewhere

−→ apply substitution {X/Y} to all other equations,

(5b) X
.
= t, X

.
=u where t,u are distinct non-variable terms; let {s1,s2}= {t,u} and |s1| ≤ |s2|

−→ replace X
.
=s2 by s1

.
=s2

A set E of equations is in a semi-solved form if E is {X1
.
=t1, . . . ,Xn

.
= tn}, where X1, . . . ,Xn are distinct,

each Xi is distinct from ti, and if a ti is a variable then Xi occurs only once in E (for i = 1, ...,n). E is in

a solved form if, additionally, Xi 6∈Var(t j) for 1≤ i, j ≤ n.

Note that inability of performing any action of MMA− means that the equation set is in a semi-solved

form.

Let us first discuss termination of MMA−. Let k > 1 be an integer greater than the arity of each

function symbol appearing in the equation set E which is the input of the algorithm. We define a function

|| || assigning natural numbers to equation sets and equations:

||{t1
.
=u1, . . . , tn

.
=un }||=

n

∑
i=1

||ti
.
=ui||, where ||t

.
=u||= k max(|t|, |u|).

Assume that an action of MMA− is applied to a set E of equations, resulting in E ′. Then ||E||= ||E ′|| if
the action is (4), (5a), or (5b), and ||E||> ||E ′|| if it is (3). By the lemma below, ||E||> ||E ′|| for action

(1).

Lemma 8 For any terms (or atoms) s = f (s1, . . . ,sn), t = f (t1, . . . , tn), ||s
.
=t||>

n

∑
i=1

||si
.
=ti||.

PROOF2 The inequality obviously holds for n = 0. Let n > 0, and l,r be, respectively, the left and the

right hand side of the inequality. Without loss of generality, assume that |s| ≥ |t|. Now l = k ·k|s1| · · ·k|sn|≥
k ·k|t1 | · · ·k|tn|. Hence l/k≥ k|u| for any u ∈ {s1, . . . ,sn, t1, . . . , tn}. Thus l/k≥ ||si

.
=ti|| for i = 1, . . . ,n, and

then n · l/k ≥ r. As n/k < 1, we obtain l > r. ✷

Let f45a(E) be the number of those equations from E to which action (4) or (5a) applies. Let f5b(E)
be the number of equations of the form X

.
=u in E , where u is not a variable. Note that applying (4) or

(5a) decreases f45a(E), and applying (5b) decreases f5b(E) without changing f45a(E),

2Function || || is proposed and the lemma is stated without proof in [Col82]. There, however, k is the maximal arity of

symbols from E, which does not make sense when it is 0 or 1. The lemma also holds (with a slightly longer proof) for k being

the maximal number out of 2 and the arities of the symbols.
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Now consider the lexicographic ordering ≺3 on N
3 (cf. for instance [Apt97, p. 33]). If E ′ is obtained

from E by applying one action of the algorithm, it holds that

(||E ′||, f45a(E
′), f5b(E

′))≺3 (||E||, f45a(E), f5b(E)).

Thus, as ≺3 is well-founded, MMA− terminates for any input set of equations E .

In discussing further properties of the algorithm, we will consider possibly infinite terms (i-terms)

over the given alphabet. We require that the set of variables occurring in an i-term is finite. The corre-

sponding generalization of the notion of substitution is called i-substitution.

Definition 9 A substitution (respectively i-substitution) θ is a solution (i-solution) of an equation t
.
=u

if tθ = uθ ; θ is a solution (i-solution) of a set E of equations, if θ is a solution (i-solution) of each

equation from E. Two sets of equations are equivalent (respectively i-equivalent) if they have the same

set of solutions (i-solutions).

Lemma 10 Each action of MMA or of MMA− replaces an equation set by an i-equivalent one.

PROOF For any i-substitution θ , f (s1, . . . ,sn)θ = f (t1, . . . , tn)θ iff si = ti for all i ∈ {1, . . . ,n}. Thus the

claim holds for action (1). For actions (3), (4) the claim is obvious; the same for (2), (6), Actions (5)

and (5a) replace an equation set E = EX ∪E1 by E ′ = EX ∪E1{X/t}, where EX = {X
.
= t}. Consider an

i-solution θ of EX . So Xθ = tθ . Hence (V{X/t})θ = V θ for any variable V , and thus t{X/t}θ = tθ
for any expression t. So θ is a solution of E1 iff θ is a solution of E1{X/t}. For (5b), equivalence of

{X
.
=t,X

.
=u}∪E1 and {X

.
=t, t

.
=u}∪E1 follows immediately from Def. 9 ✷

Lemma 11 Any set of equations E in a semi-solved form has an i-solution.

PROOF If an equation of the form Xi
.
=Y occurs in E then E has an i-solution iff E \ {X j

.
=Y} has an

i-solution (as such X j occurs in E only once), Hence we can assume that E does not contain any equation

of this form. Now the result follows from Th. 4.3.1 of [Cou83]. ✷

It remains to discuss the results of MMA−. Note that if E and E ′ are i-equivalent then they are

equivalent. Consider a run R of MMA− starting from an equation set E . If R halts with failure (due to ac-

tion (2)) then, by Lemma 10, E has no solutions (is not unifiable). If it halts with equation set E ′ in semi-

solved form, then by Lemma 10, E is unifiable iff E ′ is. So applying MMA to E ′, which boils down to ap-

plying actions (5) and (6), either halts with failure, or produces a solved form E ′′, representing an mgu of

E . Prolog does not perform the occur-check, and treats the semi-solved form as the result of unification.

Prolog implementations present the result to the user in various ways. For instance the answer to query

g(X ,X) = g(Y, f (Y )) is displayed as X=Y, Y= f (Y ) by SWI, and as X= f ( f ( f (. . .))), Y= f ( f ( f (. . .)))
by SICStus (predicate =/2 is defined by clause =(Z,Z)).

3.2 WNSTO

Let us say that a run of MMA is occur-check free if the run does not perform action (6). (In other words,

no equation X = t is selected where X ∈Var(t) and X 6= t; simply – the occur-check does not succeed

in the run). An equation set E is WNSTO (weakly NSTO) when there exists an occur-check free run of

MMA for E . When E is s
.
= t we also say that the unification of s and t is WNSTO. A program P with

a query Q is weakly occur-check free if, under a given selection rule, all the unifications available in

the SLD-tree for P with Q are WNSTO. A run of MMA− on an equation set E is correct if it produces

correct results i.e. the run halts with failure if E is not unifiable, and produces a unifiable equation set E ′
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in a semi-solved form otherwise. The latter means that applying to E ′ action (5) iteratively produces an

mgu of E , in a form of an equation set in a solved form. We say that MMA− is sound for E if all the

runs of MMA− on E are correct.

Now we show that if unification of E can be split in two parts and each of them is NSTO, then E is

WNSTO. (For a proof see Appendix A.)

Lemma 12 Let E1∪E2 be an equation set.

If E1 is not unifiable and is NSTO then E1∪E2 is WNSTO.

If θ1 is an mgu of E1, and each E1 and E2θ1 is NSTO then E1∪E2 is WNSTO.

Corollary 13 Consider a moding and atoms p(s; t) and p(s′; t ′), where s
..
=s′ is NSTO.

If s
..
=s′ is not unifiable then p(s; t)

.
= p(s′; t ′) is WNSTO.

If θ is an mgu of s
..
=s′, and (t

..
= t ′)θ is NSTO then p(s; t)

.
= p(s′; t ′) is WNSTO.

PROOF Equation p(s; t)
.
= p(s′; t ′) is WNSTO iff equation set s

..
= s′∪ t

..
= t ′ is WNSTO. Now Lemma 12

applies. ✷

WNSTO is sufficient for the unification without the occur-check to work correctly:

Theorem 14 Consider an equation set E. Assume that there exists an occur-check free run of MMA on

E. Then MMA− is sound for E.

PROOF Let R1 be an occur-check free run of MMA on E , and R2 be a run of MMA− on E . We show

that R2 is correct. Let S be the set of the i-solutions of E , and thus of every equation set E ′ appearing in

R1 or R2 (by Lemma 10).

If R1 succeeds then S contains unifiers of E , and of every E ′ appearing in R2. Hence action (2) is not

performed in R2, and R2 halts with success producing a unifiable equation set E2 in a semi-solved form.

If R1 halts with failure then the last performed action is (2), thus S = /0. This implies that R2 does not

produce a semi-solved form (by Lemma 11). Hence R2 terminates with failure, due to action (2). ✷

It immediately follows that a weakly occur-check free program can be safely executed without the

occur check:

Corollary 15 Assume a selection rule. If a program P with a query Q is weakly occur-check free then

algorithm MMA− is sound for each unification available in the SLD-tree for P with Q.

In other words, P with Q may be correctly executed without the occur-check.

3.3 Example – a weakly occur-check free program

The core fragment of the n queens program [Frü91] will be now used as an example. We call it NQUEENS,

see [Dra21a] for explanations.

pqs(0,_,_,_).

pqs(s(I),Cs,Us,[_|Ds]):-

pqs(I,Cs,[_|Us],Ds),

pq(s(I),Cs,Us,Ds).

pq(I,[I|_],[I|_],[I|_]).

pq(I,[_|Cs],[_|Us],[_|Ds]):-

pq(I,Cs,Us,Ds).

(1)

(2)

(3)

(4)
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A typical initial query is Qin = pqs(n,q0,_,_), where q0 is a list of distinct variables, and n a natural

number represented as si(0). The program works on non-ground data.

We now show that the standard syntactic approaches to deal with avoiding the occur-check are in-

applicable to NQUEENS. Under no moding the program is well-moded with Qin because its answers are

non-ground. To be tidy (or nicely moded with input linear clause heads), at most one position of pq is in-

put (as (3) must be input linear). Thus at least three positions of pqs have to be output (as a variable from

an input position of the head of (2) cannot appear in an output position of body atom pq(s(I),Cs,Us,Ds)).
This makes the body not output linear, contradiction.

It can be shown that NQUEENS with Qin is occur-check free under any selection rule, by showing that

in all SLD-derivations each atom in each query is linear [Dra21b]. This is however rather tedious. The

program is not occur-check free for some non linear queries, for instance for ASTO = pq(m,L, [L|_],_)
(where m is ground). This is because unifying ASTO with the unit clause (3) is not NSTO.

We now show that NQUEENS can be correctly executed without the occur-check, for a wider class of

initial queries, including each pqs(m, t1, t2, t3) where m is ground. Let us say that a query Q is 1-ground

if the first argument of the predicate symbol in each atom of Q is ground. We show that:

Proposition 16 NQUEENS is weakly occur-check free, under any selection rule, for any 1-ground query.

PROOF Note first that each query in each SLD-derivation is 1-ground. Let A = p(s1, . . . ,s4) be a 1-

ground atom, and H = pq(I, [I|_], [I|_], [I|_]) be the head of (3), standardized apart. Equation s1
.
= I is

NSTO and θ = {I/s1} is its mgu. Let s = (s2,s3,s4) and t = ([I|_], [I|_], [I|_]). As s1 is ground, tθ is

linear. Thus sθ
..
= tθ is NSTO by Lemma 1. Hence by Lemma 12, s1,s

..
= I, t is WNSTO. So A

.
=H is

WNSTO. The cases of the remaining clause heads of NQUEENS are obvious, as the heads are linear. For

another proof, see Examples 19, 21. ✷

By Corollary 15, NQUEENS with with any 1-ground query is correctly executed without the occur-

check, under any selection rule.

NQUEENS may be considered a somehow unusual program. However similar issues appear with

rather typical programs dealing with ground data. Assume, for instance, that data items from a ground

data structure are to be copied into two data structures. Program

USE2: p([X|Xs], f (X,Xs1), [g(X,_)|Xs2])← p(Xs,Xs1,Xs2). p([ ],g, [ ]).

provides a concise example. Similarly as for NQUEENS, it can be shown that USE2 is not occur-check

free for some 1-ground queries, but is weakly occur-check free for all such queries.3 For a quick proof

see Ex. 19 or 21.

3.4 Sufficient conditions for WNSTO

Now we discuss sufficient conditions for safely avoiding the occur-check due to WNSTO. We assume

that the programs dealt with are moded.

We say that a selection rule is compatible with moding (for a program P with a query Q) if (i) the

input positions are ground in each selected atom in the SLD-tree for P with Q ([AL95] calls this “delay

declarations imply the moding”), and (ii) some atom is selected in a query whenever the query contains

3USE2 is well-moded under p(+,−,−), but the approach for well-moded programs does not apply, as the clause head is not

output linear. In contrast to NQUEENS, USE2 can be treated as tidy, or nicely moded. The program is tidy under any moding

with at most one position +. Hence it is occur-check free for tidy queries (they are a proper subset of 1-ground queries, and

include all linear queries).
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an atom with its input positions ground. Note that (i) implies that the selection rule is partial, in the sense

that there exist nonempty queries in which no atom is selected. For such a query no resolvent exists, this

is called floundering (or deadlock).

An atom A is weakly linear if any variable X which occurs more than once in A occurs in an input

position of A. (Speaking informally, grounding the variables in the input positions of A results in a linear

atom.)

Lemma 17 Consider variable disjoint atoms A and H, such that the input positions of A are ground,

and H is weakly linear. The unification of A and H is WNSTO.

PROOF Let A = p(s; t), where s is ground, and H = p(s′; t ′). Equation set s
..
=s′ is NSTO (by Lemma

1). Assume that s
..
=s′ is unifiable and that θ is an mgu of s

..
=s′. Thus Xθ is ground for each variable

X ∈Var(s′). Hence t ′θ is linear, and (t
..
=t ′)θ is NSTO (by Lemma 1). Now by Corollary 13, A

.
=H is

WNSTO. ✷

It immediately follows:

Corollary 18 Let P be a program in which each clause head is weakly linear. If the selection rule is

compatible with moding then P (with any query) is weakly occur-check free.

Example 19 The heads of the clauses of NQUEENS are weakly linear under moding pqs(+,−,−,−),
pq(+,−,−,−). By Corollary 18, the program (with any query) is weakly occur-check free under any

selection rule compatible with moding. Consider a query Q which is 1-ground (cf. Section 3.3, p. 62). A

simple check shows that in any SLD-derivation for NQUEENS and Q all queries are 1-ground. So each

selection rule is compatible with moding (for NQUEENS with Q). Thus NQUEENS with any 1-ground

query is weakly occur-check free for any selection rule. The same reasoning applies to USE2, with

p(+,−,−).

Now we provide a syntactic sufficient condition for a program to be weakly occur-check free. It

employs a generalized notion of moding, in which some argument positions may be neither + (input)

nor − (output), to such positions we assign ⊥ (neutral). We will call it 3-moding when it is necessary to

distinguish it from a standard moding. We write p(s; t;u) to represent an atom p(t1, . . . , tn) and to state

that s (respectively t, u) is the sequence of terms in its + (−, ⊥) positions. The idea is to distinguish (as

+ or −) some argument positions which, roughly speaking, deal with ground data. A syntactic sufficient

condition will imply for LD-derivations that in each selected atom the input positions are ground.

By a well-3-moded program (or query) we mean one which becomes well-moded after removing

the ⊥ argument positions. For a direct definition, let a defining occurrence of a variable V in a clause

C = H←Q be an occurrence of V in an input position of H, or in an output position in Q. Now C is

well-3-moded when each variable V in an output position of H has its defining occurrence in C, and each

occurrence of a V in an input position in Q is preceded by a defining occurrence of V in another literal of

C [Dra87]. A query Q is well-3-moded when clause p← Q is. An equivalent definition can be obtained

by an obvious adaptation of [Apt97, Def. 7.8]. Note that any query with its input positions ground is

well-3-moded.

We now use the fact that well-3-moded programs/queries inherit the main properties of well-moded

ones.

Lemma 20 Let P and Q be well-3-moded.

1. All queries in SLD-derivations of P with Q are well-3-moded.

2. For P with Q the Prolog selection rule is compatible with moding.
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3. If each clause head in P is weakly linear then P with Q is weakly occur-check free under the Prolog

selection rule (and any selection rule compatible with moding). Moreover, if no argument position

is moded as output then P with Q is weakly occur-check free under any selection rule.

4. P with Q does not flounder under any selection rule compatible with moding.

PROOF 1. An SLD-resolvent of a well-3-moded query and a well-3-moded clause is well-3-moded. The

proof is the same as that of the analogical property of well-moded queries and clauses [Apt97, Lemma

7.9]. 2. and 4. From 1. and the fact that the input positions of the first atom of a well-3-moded query are

ground. 3. From 2. by Corollary 18. Additionally, under a 3-moding without −, all input positions in a

well-3-moded query are ground. Thus each selection rule is compatible with moding and Corollary 18

applies. ✷

Example 21 Programs NQUEENS and USE2 are well-3-moded under pqs(+,⊥,⊥,⊥), pq(+,⊥,⊥,⊥),
and p(+,⊥,⊥); so is any 1-ground query. Their clause heads are weakly linear. (The same holds under

the modings from Ex. 19.) Thus by Lemma 20.3, the programs are weakly occur-check free for 1-ground

queries, under any selection rule. So we obtained by syntactic means the results of Ex. 19.

Example 22 Apt and Pellegrini [AP94] use program DERIVATIVE [SS94, Program 3.30] as an example

for an approach combining those for well-moded and nicely moded programs. Here are representative

clauses of the program (infix operators ↑,∗ are used).

DERIVATIVE: d(X ,X ,s(0)).
d(X↑s(N), X , s(N)∗X↑N).
d(F∗G, X, F∗DG+DF∗G)← d(F,X,DF),d(G,X,DG).

A typical query is d(e,x, t), where e,x are ground (e represents an expression, and x a variable), t is often

a variable. Here moding d(+,⊥,⊥) will be sufficient. Consider a query Q = d(e1,x1, t1), . . . ,d(en,xn, tn)
where e1, . . . ,en are ground. DERIVATIVE and Q are well-3-moded moded under d(+,⊥,⊥). Also, the

clause heads are weakly linear. By Lemma 20.3, the program with Q is weakly occur-check free under

any selection rule.

Alternatively, DERIVATIVE is tidy under d(−,+,−). Hence, by Corollary 6, under any selection rule

the program is occur-check free for tidy queries, including any linear queries.

[AP94] applied a combination of methods of well-moding and nice moding to show that DERIVATIVE

is occur-check free for an atomic Q (n = 1) with ground e1,x1 and linear t1, under LD-resolution. That

result is subsumed by each of our two conclusions above. Surprisingly, a more general result can be

obtained by a simpler approach from that work. Under d(−,+,−) DERIVATIVE is nicely-moded and

its clause heads are input linear. Thus it is occur-check free under LD-resolution for any nicely moded

queries, this includes any linear queries.

In this section we dealt with clause heads whose certain instances are linear. Appendix B employs

clauses whose certain instances are tidy, to construct another sufficient condition for weak occur-check

freeness.

4 Comments

Let us first discuss briefly the limits of applicability of the presented results. The approaches discussed

here are based on conditions imposed on clauses and queries. The conditions treat any predicate argument

as a single entity, and refer to groundness or to placement of variables within certain argument positions.
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This may not be sufficient when the occur-check depends on other features of the terms in argument

positions. For instance, in the SAT-solver of Howe and King [HK12] an argument is a non-linear list

of lists of pairs, and for occur-check freeness the first element of each pair should be ground [Dra18].

In such case our methods fail, and some semantic analysis is needed instead. One may expect that

introducing a suitable type system could be useful.

Introduction of WNSTO has two consequences. Some cases where unification is not NSTO can actu-

ally be safely executed without the occur check. Also, reasoning based on WNSTO is sometimes simpler.

For instance, showing that program NQUEENS is occur-check free was substantially more complicated

than showing it to be weakly occur-check free for a wider class of queries.

Most of the employed sufficient conditions are based on the notion of modes. Examples show that

modes (except for well-moded programs) do not need to correspond to any intuitive understanding of

data flow. Instead, they deal with how variables are placed in argument positions. An output argument

may well be used for input data. Neglecting this fact may be the reason why in some examples of [AP94]

unnecessarily complicated methods were applied, or more general results could have been obtained.

(For examples and explanations see the comments on FLATTEN and NORMALIZE in Section 2.2, and on

DERIVATIVE in Ex. 22.)

Conclusions The main contribution of this paper is weakening the notion of NSTO (not subject to

occur-check) used in the previous work on avoiding the occur-check. We generalize NSTO to WNSTO

(weakly NSTO). This leads to a generalization of the notion of occur-check free programs/queries (based

on NSTO) to weakly occur-check free ones (based on WNSTO). We proved that unification without the

occur-check is sound for any input which is WNSTO. We presented a few sufficient conditions for

WNSTO, and for a program/query being weakly occur-check free. Some conditions are syntactic, like

Lemma 20, some refer to semantic notions, like Corollary 18 which explicitly refers to details of SLD-

derivations. Additionally, we presented a sufficient condition based on NSTO, generalizing the approach

based on nicely moded programs. Examples show that the proposed approach makes it possible to omit

the occur-check in cases, to which the approaches based on NSTO are inapplicable. In some other cases,

it leads to simpler proofs.

A Appendix. Proof of Lemma 12

The proof employs a technical lemma.

Lemma 23 Consider a run R of MMA producing an mgu θ . Let X1
.
=t1, . . . ,Xk

.
= tk (in this order) be the

equations selected in action (5) in R, and γi = {X1/t1} for i = 1, . . . ,k. Then θ = γ1 · · ·γk. Moreover, the

last equation set of R is {Xi
.
= tiγi+1 · · ·γk | 0 < i≤ k}.

PROOF Action (5) means applying γi to all the equations except for Xi
.
= ti. Moreover, (a current instance

of) Xi
.
= ti is not selected anymore in R. So θ contains a pair Xi/tiγi+1 · · ·γk. Let ψ j = {Xi/tiγi+1 · · ·γ j |

0 < i≤ j} and ϕ j = γ1 · · ·γ j, for j = 0, . . . ,k. Now ψ j = ϕ j, by induction on j (as {Xi/tiγi+1 · · ·γ j | 0 <
i≤ j}γ j+1 = {Xi/tiγi+1 · · ·γ j+1 | 0 < i≤ j}∪ γ j+1). Thus θ = ϕk. ✷

PROOF (of Lemma 12) Assume that E1 is not unifiable. Then from a run R of MMA on E1 one can

construct in an obvious way a run R′ of MMA on E1∪E2, performing the same actions and selecting the

same equations. Thus action (6) is not performed in R′.

Now assume that θ1 is an mgu of E1. Consider a run R1 of MMA on E1, and a run R2 of MMA on

E2θ1. Without loss of generality we may assume that θ1 is the result of R1. (Otherwise, R1 produces θ

such that E2θ1 is a variant of E2θ .)
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Let step (5) be applied in R1 to equations X1
.
= t1, . . . ,Xk

.
= tk (in this order), and in R2 to

Xk+1
.
= tk+1, . . . ,Xm

.
= tm (in this order). Let γi = {Xi/ti}, for i = 1, . . . ,m. Let F be the last equation

set in R1; by Lemma 23, F = {X1
.
= t1γ2 · · ·γk, . . . ,Xk

.
=tk}.

To construct a run R of MMA on E1 ∪ E2, for each equation set from R1 or R2 we construct a

corresponding equation set from R.

Consider an equation set E in R1. Let X1
.
= t1, . . . ,Xi

.
=ti be the equations on which action (5) has

been performed in R1 until obtaining E (i ∈ {0, . . . ,k}). The equation set corresponding to E is E ′ =
E ∪E2γ1 · · ·γi. In particular (by Lemma 23), F ∪E2θ1 corresponds to the last equation F of R1.

For i ∈ {k, . . . ,m} let us define Fi = {Xl
.
= tlγl+1 · · ·γi | 0 < l ≤ k}. Note that Fk = F . Consider an

equation set E in R2. Let Xk+1
.
=tk+1, . . . ,Xi

.
= ti be the equations on which action (5) has been performed

in R2 until obtaining E (i ∈ {k, . . . ,m}). The equation set corresponding to E is E ′ = Fi∪E .

Consider now the sequence consisting of the equation sets corresponding to those of R1 and then of

the equation sets corresponding to those of R2 (without the first one, to avoid a repetition of F ∪E2θ1).

The sequence is a run of MMA on E1∪E2. As the run does not involve action (6), E1∪E2 is WNSTO. ✷

B Appendix. Another syntactic sufficient condition

Here we present a sufficient condition for avoiding the occur-check, related to WNSTO and based on the

syntactic conditions for tidy programs.

Consider a 3-moding M and an additional moding M′, for the latter we use symbols +′,−′. Consider

transforming each clause C of a program P, by grounding the variables that occur in the + positions in

the head. Let P′ be the resulting program. Let us say that P is weakly tidy (under M,M′) if P′ is tidy

under M′.

For an example, consider a program P containing a clause C with body B = q(X ,Y ),q(Y,Z),q(Z,X).
Assume also that P contains a clause head H = q(t,u) with t,u containing a common variable. For P

to be tidy, the argument positions of q cannot be both input (due to H), and cannot be both output (due

to B). However, if they are (+,−), or (−,+) then →B is cyclic. Thus P is not tidy (and not nicely

moded) under any moding. Assume now that C is p(X)← B. Under p(+), and q(+′,−′) the clause is

weakly tidy. (A corresponding clause of P′ is p(s)← q(s,Y ),q(Y,Z),q(Z,s), for a ground term s; note

that q(+′,−′) may be replaced by q(−′,+′).) By the lemma below, if p(s) is selected in a tidy query Q

then the resolvent of Q and C is tidy.

Lemma 24 Let P be a weakly tidy program under M,M′, and Q a query tidy under M′. Under any

selection rule compatible with M

each query in any SLD-derivation for P with Q is tidy under M′, and

P with Q is weakly occur-check free.

PROOF Let A be the selected atom of a tidy (under M′) query Q, and H be the head of a standardized

apart clause C of P. Let A = p(s; t;u) and H = p(s′; t ′;u′) (under M). Unifying A with H can be divided

in two steps: [Apt97, Lemma 2.24].

1. Unifying s with s′. As s is ground, s
..
= s′ is NSTO.

2. Unifying (t,u
..
= t ′,u′)θ provided that s

..
=s′ is unifiable with an mgu θ . This is the same as unifying

Aθ
.
=Hθ (as sθ = s′θ and is ground). Note that Qθ = Q (thus Aθ = A), and that Cθ is tidy under M′. So

Aθ is an atom from a tidy query, and Hθ is the head of a standardized apart tidy clause Cθ . By Corollary

6, Aθ
.
=Hθ is NSTO.
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Now by Corollary 13, A
.
=H is WNSTO. If A

.
=H is unifiable then, by Lemma 3, the resolvent Q′ of

Qθ and Cθ is tidy. Q′ is also the resolvent of Q and C.

We showed, for a tidy query Q and a standardized apart clause C of P, that unification of the selected

atom of Q with the head of C is WNSTO, and that the resolvent (if it exists) of Q with C is tidy. The

Lemma follows by simple induction. ✷

Consider P,Q satisfying the conditions of the Lemma. If P and Q are well-3-moded under M then P

with Q is weakly occur-check free under Prolog selection rule (and under any selection rule compatible

with M, under such rule it does not flounder).
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