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Hybrid probabilistic logic programs can represent several scenarios thanks to the expressivity of

Logic Programming extended with facts representing discrete and continuous distributions. The

semantics for this type of programs is crucial since it ensures that a probability can be assigned to

every query. Here, following one recent semantics proposal, we illustrate a concrete syntax, and we

analyse the syntactic requirements needed to preserve the well-definedness.

1 Introduction

The power and expressivity of Probabilistic Logic Programming (PLP) [8, 18] have been utilized to rep-

resent many real world situations [2, 9, 14]. Usually, probabilistic logic programs involve only discrete

random variables with Bernoulli or Categorical distributions. Numerous solutions emerged to also han-

dle continuous distributions [10, 12, 25], increasing the expressiveness of PLP and giving birth to hybrid

probabilistic logic programs, that is, programs that include discrete and continuous random variables. In-

ference in this type of programs is hard since it combines the complexity of the grounding computation

with the intractability of a distribution defined by a mixture of random variables.

Usually, inference in general hybrid probabilistic logic programs (i.e., without imposing restrictions

on the type of distributions allowed) is done by leveraging knowledge compilation and using external

solvers [25] or by sampling [4, 16].

The semantics of hybrid programs has been proved well-defined in [3], but the authors neither pro-

vided an explicit syntax, nor introduced explicit syntactic requirements. In this paper, we close this gap

by introducing an explicit syntax and the syntactic requirements needed to preserve the well-definedness

of the semantics of hybrid probabilistic logic programs.

The paper is structured as follows: in Section 2 we introduce the semantics and the syntax for pro-

grams with only discrete random variables with both finite and infinite number of explanations. The

semantics and syntax for hybrid programs is introduced in Section 3, and the syntactic requirements

are analysed in Section 4. Section 5 concludes the paper. All the Sections are accompanied by several

examples, to make the concepts clearer.

2 Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) allows the construction of complex yet interpretable probabil-

ity models through the usage of Logic Programming. Several probabilistic logic languages based on

the Distribution Semantics (DS) [21] have been proposed during the years, such as PRISM [21], and

ProbLog [9]. Basically, they allow the definition of probabilistic facts, i.e., facts that can be true or false

with a certain probability.
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Following the ProbLog syntax [9], each probabilistic fact has the form p :: a where p∈]0,1], meaning

that a is true with probability p and false with probability 1− p. If p = 1, the fact is deterministic. An

atomic choice indicates whether a grounding aθ of a probabilistic fact p :: a is selected or not, and it is

represented with the triple (a,θ ,k). k ∈ {0,1}, where k = 1 means that the fact is selected and k = 0 that

it is not. If a set of atomic choices does not contain two atomic choices in which the fact is both selected

and not, it is termed consistent. A consistent set κ of atomic choices is called composite choice and its

probability can be computed as:

P(κ) = ∏
(ai,θ ,1)∈κ

pi · ∏
(ai,θ ,0)∈κ

(1− pi)

A total composite choice contains one atomic choice for every grounding of every probabilistic fact.

A world is a logic program identified by a total composite choice, and it is created by selecting the

atoms corresponding to each atomic choice with k = 1. Its probability is given by the probability of

the total composite choice. Here we consider only programs where every world has a two-valued Well-

Founded Model (WFM). A semantics for programs without a two-valued WFM [22] based on credal

sets is discussed in [7]. If a program does not contain function symbols, the set of groundings for every

probabilistic fact is finite, and so the set of worlds for a program is finite.

Example 1 (Card) Consider the following toy example that models a deck of three cards composed of

ace of spades, ace of clubs, and ace of hearts. The three cards can be drawn with equal probability. This

simple scenario can be modelled using the following program:

1/3 :: spades(X).

1/2 :: clubs(X).

pick(0,spades) :- spades(0).

pick(0,clubs) :- \+ spades(0), clubs(0).

pick(0,hearts) :- \+ spades(0), \+ clubs(0).

We use only two random variables since the third (hearts) can be represented with both random variables

negated (see 5th clause). Furthermore, note that the probability of clubs(X) is set to 1/2 to obtain 1/3

for every possible choice: P(pick(0,spades)) = 1/3, P(pick(0,clubs)) = 2/3 · 1/2 = 1/3, and

P(pick(0,hearts))= 2/3 ·1/2 = 1/3. We keep the variable X for the first two facts, even if it may be

considered a singleton variable, to better illustrate the next concepts.

Example 1 illustrates a program without function symbols. If a program has at least one variable,

one constant, and one function symbol, its grounding is infinite, so the previous definition must be

extended [15].

The set of worlds ωκ compatible with a composite choice κ is defined as ωκ = {wσ ∈WP | κ ⊆ σ},

where WP is the set of worlds for the whole probabilistic logic program, σ is a total composite choice,

and wσ is the world identified by the total choice. If the program does not have function symbols, the

probability of a composite choice is equal to the sum of the probabilities of the worlds in ωκ . If the

program has function symbols, ωκ may be uncountable and the probability of each world is 0 (infinite

product of values ∈]0,1[). However, the probability of a composite choice can still be computed. The

set of worlds compatible with a set of composite choices K is given by the union of the worlds identified

by each composite choice in the set. Two composite choices are incompatible if their union is not con-

sistent. A set of composite choices is pairwise incompatible if every pair of different composite choices
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is incompatible. P(K) is still well-defined for programs with function symbols and can be computed by

constructing pairwise incompatible equivalent sets. A composite choice κ is an explanation for a query

q (a conjunction of ground atoms) if, for all worlds w ∈ ωκ , w |= q. Furthermore, a set of composite

choices is covering with respect to a query q if ∀w in which q is true, w ∈ ωκ . We can also define

as explanation a set of worlds and define the covering property for sets of worlds. The probability of a

query q is then computed by defining a probability measure over the set of worlds identified by countable

sets of countable composite choices: µP(ωK) = limn→∞ µ(K
′

n), where K
′

n = {κ
′

1, . . . ,κ
′

n} is a pairwise in-

compatible set of composite choices equivalent to Kn = {κ1, . . . ,κn}, K = {κ1,κ2, . . .} is a covering set

of explanations for q and µP(Kn) = ∑n
i=1 P(κ ′

i ). Programs with function symbols have a well-defined

semantics [17].

If a probabilistic logic program is range restricted, i.e., every variable in the head appears also in a

positive literal in the body, the answers of a query are always ground instantiations of it [13, 20], and

probabilities are always assigned to ground atoms. However, in some cases, probabilistic facts may

not be range restricted, and can contain variables (see, for instance, the probabilistic facts spades/1

and clubs/1 in Example 1). In this situation, queries’ answers are still ground instantiations and the

program can be well-defined provided that the variables in probabilistic facts are ground when the fact is

called: they can be directly bound to a constant (as in Example 1, where X is bound to 0), or they must

appear in a previous literal in the body.

Theorem 1 (Ground queries with well-defined probability) Given a Probabilistic Logic Program P

and a query q, if P is range restricted and all the variables in probabilistic facts appearing in the body

of clauses of P are present in a previous positive literal, the answers to q will be ground instantiation of

it, with an associated well-defined probability.

Before illustrating the proof, we introduce some basic concepts following [13]. Given two atoms, a

and b, a substitution θ (a replacement of variables with terms) is a unifier for a and b if aθ = bθ . A

substitution is a grounding if all the involved terms are ground. Furthermore, a unifier σ is the most

general unifier (mgu) for a and b if, for all unifiers µ of both a and b, exists a substitution ρ such that

(aσ)ρ = aµ .

The main step of resolution is the following: given two clauses A and B with no common variables,

l ∈ A and ¬l′ ∈ B, and θ being the mgu of l and l′, the resolvent of A and B is defined as ((A\{l})∪ (B\
{l′}))θ ; for a program P and a query q, resolution is linear when B represents only clauses in P and A is

the query or the resolvent of another linear resolution. We suppose that literals in clauses are ordered and

are chosen following this order during the resolution. A resolution proof for SLDNF can be represented

as a sequence of clauses 〈q,C1,C2, . . . ,Cn〉. If Cn is the empty clause, the proof is a refutation. The

substitution for the query q is given by θ = θ1θ2 . . .θn, where each θi is the substitution correspondent

to clause Ci. Moreover, if P is range restricted, θ is a grounding.

Proof 1 Let us now prove Theorem 1 by induction. In the base case, the SLDNF resolution consists of

only one step: the query q unifies with a deterministic fact, since there is not a previous positive literal

in the body that will allow the presence of a probabilistic fact. The program is range restricted, θ1 is

computed, and the variables in the query are all grounded. Suppose now that the theorem is true at step

n. The current set of substitutions is {θ1,θ2, . . . ,θn}. There are two possible cases: if the selected literal

of the query matches a deterministic fact, substitution θn+1 grounds the literal, as deterministic facts are

already ground. If the selected literal of q matches with a probabilistic fact, this fact cannot be the first

of the body of the correspondent clause, by assumption: all the variables appearing in the probabilistic

fact are already grounded by preceding substitutions, so the literal is ground when called, and a new



D. Azzolini & F. Riguzzi 17

substitution θn+1 is computed and added to the list. Eventually, all the variables will be grounded and

the answer to the query will be a ground instantiation.

If variables appear for the first time in probabilistic facts, the query could still eventually be ground, but

probabilistic facts will not be ground when called, and thus the semantics will be ill-defined.

Let us now extend Example 1 by introducing new clauses to obtain a program with an infinite cover-

ing set of explanations.

Example 2 (Card with an infinite number of explanations) Consider a game of card where a player

needs to pick one out of three possible cards: ace of spades, ace of clubs or ace of hearts. The game

stops when the player picks the ace of hearts. This can be modelled by adding the following clauses to

Example 1.

pick(s(X),spades):- \+ pick(X,hearts), spades(s(X)).

pick(s(X),clubs):- \+ pick(X,hearts), \+ spades(s(X)), clubs(s(X)).

pick(s(X),hearts):- \+ pick(X,hearts), \+ spades(s(X)), \+ clubs(s(X)).

at_least_once_spades :- pick(_,spades).

never_spades :- \+ at_least_once_spades.

We can ask for the probability that the player picks at least once spades or that that he/she never

picks spades (respectively P(at least once spades) and P(never spades)).

For conciseness, let us replace spades(X) with f1 and clubs(X) with f2. Consider query

at least once spades: it has the pairwise incompatible covering set of explanations K = {κ0,κ1, . . .}
with

κ0 = {( f1,{X/0},1)}

κ1 = {( f1,{X/0},0),( f2,{X/0},1),( f1 ,{X/s(0)},1)}

. . .

κi = {( f1,{X/0},0),( f2,{X/0},1), . . . ,( f1,{X/si−1(0)},0),

( f2,{X/si−1(0)},1),( f1,{X/si(0)},1)}

. . .

In other words, in κ0 the player picked spades at round 0, in κ1 he/she does not piked spades and picked

clubs at round 0 and picked spades in round s(0), and so on.

K is countable and infinite and the explanations in it are pairwise incompatible, so the probability of

at least once spades can be computed as

P(at least once spades) =
1

3
+

1

3
·

(

2

3
·

1

2

)

+
1

3
·

(

2

3
·

1

2

)2

+ . . .

=
1

3
+

1

3
·

(

1

3

)

+
1

3
·

(

1

3

)2

+ . . .

=
1

3
·

1

1− 1
3

=
1

3
·

3

2
=

1

2

since it is the sum of a geometric series. The probability for the query never spades can be computed

in a similar way. After the computations we get P(at least once spades) = 1−P(never spades) = 1/2.

In the next section we introduce the syntax for hybrid probabilistic logic programs, i.e., programs

with both discrete and continuous random variables.
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3 Hybrid Programs

When a probabilistic logic program contains both discrete and continuous random variables, it is called

hybrid probabilistic logic program. Here, we also consider constraints involving continuous random

variables’ values, obtaining probabilistic constraint logic programs [3, 12]. In this paper we use hybrid

probabilistic logic program and probabilistic constraint logic program interchangeably, since usually in

PLP the goal is to compute the probability of a query (and thus we always have constraints to define

the range of the continuous random variables), rather than the joint probability density induced by the

program.

A probabilistic constraint logic program is composed of a set of rules, a set of Boolean probabilistic

facts, and a countable set of continuous random variables. The authors in [3] define X = {X1,X2, . . .} the

countable set of continuous random variables, each one associated with its range (that can be either R

or Rn), and F the set containing discrete probabilistic facts. These discrete facts form a countable set of

Boolean random variables Y = {Y1,Y2, . . .}. The sample space of the whole program (WP ) is defined as

the product of the spaces for continuous (WX ) and discrete (WY ) random variables, i.e, WP =WX ×WY .

The probabilistic facts associated with every random variable Yi set to 1, and the grounding of the

rules (with the constraints removed) whose constraints are satisfied given a valuation of the continuous

random variables, define a ground normal logic program. The probability of a query can be computed

by considering a pairwise incompatible covering set of explanations. As before, an explanation for a

query of a probabilistic constraint logic program is a set of worlds ωi such that the query is true in every

element of this set.

A concrete syntax for this type of programs is given by cplint hybrid programs [18]. In cplint

hybrid programs, logical variables are partitioned into two disjoint sets: those that can assume terms as

values and those that can assume continuous values. Let us call the first term variables and the latter

continuous variables.

Continuous random variables are encoded with probabilistic facts of the form

A : Density

where A is an atom with a continuous variable Var as argument and Density is a special atom identifying

a probability density on variable Var. For example,

p(X) : gaussian(X,0,1).

indicates that X in atom p(X) is a continuous variable that follows a Gaussian distribution with mean

0 and variance 1. Each predicate p/n has a signature that specifies which arguments hold continuous

values. Only these arguments can contain continuous variables. Continuous values (and variables) can

appear inside a term built on a function symbol f/n. Each function symbol f/n also has a signature that

specifies which arguments hold continuous values. Again, only these arguments can contain continuous

variables. While discrete random variables are identified by ground atoms (that form a countable set),

continuous random variables are identified by predicates and by the ground terms present in atoms with

arguments that can hold continuous random variables.

ProbLog probabilistic facts of the form p :: f can also be encoded as f : p for uniformity with Logic

Programs with Annotated Disjunctions [24] and CP-Logic [23].

Atoms in clauses and probabilistic facts can have both term and continuous variables. However, we

impose the constraint that in every world of the program the values taken by term variables in a ground

atom for a predicate p/n that is true in the world uniquely determine the values taken by the continuous

variables.
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Continuous variables are introduced by probabilistic facts for continuous random variables and by

the special predicate =:=/2 that is used to define a new variable based on a formula involving existing

continuous variables (see Example 5). Constraints are represented by Prolog comparison predicates.

The semantics assigns a probability of being true to any ground atom not having continuous values

as arguments. Atoms with continuous values have probability 0, as the probability that a continuous

random variable takes a specific value is 0. However, there is one special case when a continuous value

is admitted as an argument. This will be discussed in Section 4.

Inference in cplint hybrid programs can be performed using MCINTYRE [1, 4, 19], an algorithm

based on Monte Carlo sampling. cplint hybrid programs can also be translated into probabilistic con-

straint logic programs [12] by removing the continuous variables from the arguments of predicates and

by replacing constraints with their probabilistic constraint logic program form.

Consider an extension to Example 2, where we also add a continuous random variable and clauses

with constraints.

Example 3 (Card extended with a continuous random variable) Suppose that the previous game is

extended, and the player also needs to spin a wheel. In addition to the previous rules, if the axis of

the wheel is between 0 and π degrees (approximated to 3.14 for convenience), the game stops. In this

example, we have a continuous random variable with uniform distribution that indicates the angle of the

wheel, plus a constraint on its value in the clauses for the pick/2 predicate:

1/3 :: spades(_).

1/2 :: clubs(_).

angle(_,X) : uniform_dens(X,0,6.28).

pick(0,spades) :- spades(0), angle(0,V), V > 3.14.

pick(0,clubs) :- \+ spades(0), clubs(0), angle(0,V), V > 3.14.

pick(0,hearts) :- \+ spades(0), \+ clubs(0), angle(0,V), V > 3.14.

pick(s(X),spades):- \+ pick(X,hearts), spades(s(X)),

angle(s(X),V), V > 3.14.

pick(s(X),clubs):- \+ pick(X,hearts), \+ spades(s(X)),

clubs(s(X)), angle(s(X),V), V > 3.14.

pick(s(X),hearts):- \+ pick(X,hearts), \+ spades(s(X)),

\+ clubs(s(X)), angle(s(X),V), V > 3.14.

at_least_once_spades :- pick(_,spades).

never_spades :- \+ at_least_once_spades.

With the query at least once spades we can compute the probability that the player picks at least

one time spades when the axis of the wheel is between π (3.14) and 2π (6.28). The continuous random

variables are represented by the second argument of predicate angle(T,X): they form a countable set,

and there is a continuous random variable for each value of T (0, s(0), s(s(0)), . . . ). The set Y of

discrete Boolean random variables is composed of {Y c
i ,Y

s
i | i = 1,2, . . .}. Y c

i (Y s
i ) represents clubs(si(0))

(spades(si(0))), and yc
i (ys

i ) are values for Y c
i (Y s

i ). Similarly, the set X of continuous random variables

is composed of {Xi | i = 1,2, . . .}. Each Xi has a range [0,2π], and its value is denoted with xi. To

compute the probability of this query, we can consider the mutually disjoint covering set of worlds ω =
ω0 ∪ω1 ∪ . . . where
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ω0 = {(wX,wY) | wX = (x1,x2, . . .),wY = (yc
1,y

s
1,y

c
2,y

s
2, . . .),

x1 ∈ [π,2π],ys
1 = 1}

ω1 = {(wX,wY) | wX = (x1,x2, . . .),wY = (yc
1,y

s
1,y

c
2,y

s
2, . . .),

x1 ∈ [π,2π],ys
1 = 0,yc

1 = 1,x2 ∈ [π,2π],ys
1 = 1}

. . .

That is, for explanation ω0 spades was selected at round 0 (ys
1 = 1) and the wheel (x1) in the same round

was in the range [π,2π]. For explanation ω1, spades was not selected at round 0 (ys
1 = 0), clubs was

selected at round 0 (yc
1 = 0), the wheel (x1) was in the range [π,2π] at round 0, spades was selected at

round s(0) (ys
2 = 1) and the wheel (x2) was in the range [π,2π] at round s(0). The probability for ω0 can

be computed as [3, 6]:

µ(ω0) =

∫ 2π

π
µY({(y

c
1,y

s
1,y

c
2,y

s
2, . . .) | yc

1 = 1}) dµX

=

∫ 2π

π

1

3
·

1

2π
dx1 =

1

3
·

1

2
=

1

6
.

where 1
3

is the contribution of the discrete random variable (spades) and 1
2π is the contribution of the

continuous one (angle). The probability for the other ωi can be computed in a similar way. Overall,

considering the limits, we get 1
3
· 1

2
·∑∞

i=0(
2
3
· 1

2
· 1

2
)i = 1

6
·∑∞

i=0(
1
6
)i = 1

6
· 6

5
= 1

5
as probability for the query

at least once spades.

Example 4 (Gaussian mixture) A Gaussian mixture model is a way to generate values of a continuous

random variable: a discrete random variable is sampled and, depending on the sampled value, a different

Gaussian distribution is selected for sampling the value of the continuous variable.

A Gaussian mixture model with two components can be expressed in cplint hybrid programs as 1:

h : 0.6.

heads :- h.

tails :- \+ h.

g(X) : gaussian(X, 0, 1).

h(X) : gaussian(X, 5, 2).

mix(X) :- heads, g(X).

mix(X) :- tails, h(X).

mix :- mix(X), X > 2.

The argument X of mix(X) follows a distribution that is a mixture of two Gaussians, one with mean 0

and variance 1 with probability 0.6, and one with mean 5 and variance 2 with probability 1 - 0.6 = 0.4.

We can then ask for the probability of mix.

Here, predicates g/1, h/1, and mix/1 have a single argument which can hold continuous variables,

so overall there is a finite set of continuous random variables. Since there are no term variables, each

atom for these predicates in a world univocally determines its argument. For predicate mix/1 this is not

obvious as there are two clauses for it. However, the two clauses have mutually exclusive bodies, i.e., in

each world only one of them is true. This property is further discussed in Section 4.

1http://cplint.eu/e/gaussian_mixture.pl

http://cplint.eu/e/gaussian_mixture.pl
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Example 5 (Gaussian mixture and constraints, from [11]) Consider a factory with two machines, a

and b. Each machine produces a widget with a continuous feature. A widget is produced by machine a

with probability 0.3 and by machine b with probability 0.7. If the widget is produced by machine a, the

feature is distributed as a Gaussian with mean 2 and variance 1. If the widget is produced by machine b,

the feature is distributed as a Gaussian with mean 3 and variance 1. The widget then is processed by a

third machine that adds a random quantity to the feature. The quantity is distributed as a Gaussian with

mean 0.5 and variance 1.5. This can be encoded by in cplint hybrid programs as 2:

machine(a) : 0.3.

machine(b) :- \+ machine(a).

st(a,Z) : gaussian(Z, 2, 1).

st(b,Z) : gaussian(Z, 3, 1).

pt(Y) : gaussian(Y, 0.5, 1.5).

widget(X) :- machine(M), st(M,Z), pt(Y), X =:= Y + Z.

ok_widget :- widget(X), X > 1.0.

We can then ask the probability of ok widget.

Here, X, Y, and Z are continuous variables and M is a term variable. Since X is a continuous variable,

in every world there should be a single value for X that makes widget(X) true. Predicate widget/1

has a single clause but the clause has two groundings, one for M = a, and one for M = b, so in principle

there could be two values for X in true groundings of widget(X). However, as in Example 4, the two

groundings of the rule have mutually exclusive bodies, as in each world either machine(a) is true or

machine(b) is true, but not both.

Example 6 (Estimation of the mean of a Gaussian) Consider now this example 3:

mean(M) : gaussian(M,1,5).

value(_,M,X) : gaussian(X,M,2).

value(I,X) :- mean(M), value(I,M,X).

The program states that, for an index I, the continuous variable X is sampled from a Gaussian whose

variance is 2 and whose mean M is sampled from a Gaussian with mean 1 and variance 5.

This program can be used to estimate the mean of a Gaussian by querying mean(M) given observa-

tions for atom value(I,X) for different values of I.

Here, the first argument of value/3 can hold a term variable while its second and third arguments

can hold a continuous variable. The second argument is used as a parameter in the probability density

of the third argument. It is not immediate to see whether this program has a well-defined semantics or

not. In fact, the semantics does not allow specifying the parameters of continuous distributions with

values computed by the program, but we can consider continuous variables M and X as specified by a

joint density (see Section 4). Since a Gaussian density with a Gaussian mean is still a Gaussian, the joint

density will be a multivariate Gaussian.

In the next Section, we illustrate more in detail the syntactic requirements that hybrid probabilistic

logic programs, and thus probabilistic constraint logic programs, must follow to have a well-defined

semantics.

2http://cplint.eu/e/widget.pl
3http://cplint.eu/example/inference/gauss_mean_est.pl

http://cplint.eu/e/widget.pl
http://cplint.eu/example/inference/gauss_mean_est.pl
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4 Syntactic Requirements

To preserve the well-definedness, we require that the set of random variables must be countable. That

is, every random variable must be associated with a ground logical atom. The discrete arguments of this

logical atom can contain terms and cannot be real values. Let us now analyse several possible situations.

In the fourth clause of Example 3, (reported here for clarity)

pick(0,spades) :- spades(0), angle(0,V), V > 3.14.

the first argument of the continuous random variable angle is a constant. Similarly happens with the

clauses with angle(s(X),V). Variable X appears in the head, so it is ground when angle(s(X),V) is

called (during the recursion or by directly set a value for X in the query), and the continuous random

variable V is associated with term s(X) by predicate angle/2. In both cases, s(X) is a ground logical

term (integer in case of 0), so the semantics is well-defined.

Consider now Example 4: in this program there are two random variables, identified respectively by

g(X) and h(X). Predicate mix/1 is composed of two clauses with the same head but different bodies, a

situation that may lead to an ill-defined program where both clauses are true and the random variable X

is defined by two different distributions. However, the two bodies are mutually exclusive: the discrete

random variable h is used to discriminate between the two. When h is true, heads is true, and thus

the first clause of mix/1 is considered. When it is false, the second mix/1 clause is considered. This

mutual exclusivity guarantees the well-definedness of the program. Algorithmically, this property can

be verified performing clause unfolding, obtaining two clauses with the same head with bodies mutually

exclusive, since they contain at least one atom in common, but in one it is positive, in the other it is

negated. The same happens for Example 5. This idea can be extended to the case where there are n

clauses with the same head defining n different distributions for the same variable, provided that all the

clauses are mutually exclusive.

To see a counterexample, if we modify the clauses for predicate mix/1 of Example 4 in this way:

mix(X) :- g(X).

mix(X) :- h(X).

the program is ill-defined, since the two clauses are not mutually exclusive, and there is not a single

distribution for variable X.

Focus now on Example 6. Here, atom value/3 has a continuous random variable (M) as input. To

keep the well-definedness, this input must be defined in another continuous probabilistic fact and must

be used only as a parameter for another distribution. In fact, M is obtained from a Gaussian distribution

and it is used as a parameter for the mean for another Gaussian distribution. In this way, variables M and

X are specified by a joint density. Note that the first variable of value/3 is a term variable and can be

associated with a ground atom (integer, for example), preserving the well-definedness: the value of the

term variable uniquely identifies the value of the continuous random variable. In this way, the position

in the sequence of random variables is exactly identified.

This situation can be straightforwardly extended to programs in which there are multiple continuous

random variables as input: for instance, in Example 6, the variance for X in clause value/3 can be

sampled from another distribution instead of being fixed to 2.

In other cases, when the value of a continuous random variable is used as variable for another term,

but not as a parameter for a distribution, the semantics is ill-defined. Consider the following modification

to Example 6:



D. Azzolini & F. Riguzzi 23

value(X) : gaussian(X,1,5).

value(_,M) : gaussian(M,2,2).

res(M) :- value(X), value(X,M).

Here, X in clause res/1 is the value of a continuous random variable but it is not used as parameter

for the distribution of M. The continuous random variable M cannot be associated with a term that uniquely

identifies it, so the program is ill-defined. The difference with Example 6 is that in Example 6 the term

variable used as index (I) can be associated with a ground logical term, while here it is associated with a

real value (X). If in this last example the variable X is a discrete random variable rather than a continuous

one, the program would be well-defined, since X is associated with a ground logical atom.

To see how to compute the probability in this situation, consider the following simple program (a

simplification of Example 6, where Gaussian distribution are replaced by Uniform distributions identified

by uniform dens/3):

Example 7 angle_a(_,X,Y) : uniform_dens(Y,X,2).

angle_b(X) : uniform_dens(X,0,1).

success(I) :- angle_b(X), angle_a(I,X,Y), Y < 1.5.

Here, the variable X in angle b/1 follows a uniform distribution between 0 and 1. For variable Y in

angle a/1, its lower bound is sampled from another uniform distribution. The probability distribution

defined by the two random variables can be considered as a joint distribution between the two, so they

can be treated as one multivariate random variable in the sequence of random variables, indexed by the

logical term unified with I. Their joint density function is given by

fXY (x,y) =
1

1−0
·

1

2− x
=

1

2− x

and thus the probability of the query success(0) is

P(success(0)) = P[Y < 1.5] =
∫ 1

0

1

2− x

(

∫ 1.5

x
1 dy

)

dx =

=

∫ 1

0

1.5− x

2− x
dx = 1−

ln(2)

2
≈ 0.653

As said in Section 2, the range-restrictedness property ensures that the answers of a query are always

ground instantiations of it. However, there can be some exceptions. Consider the first three lines of

Example 3, reported here for clarity:

1/3 :: spades(_).

1/2 :: clubs(_).

angle(_,X) : uniform_dens(X,0,6.28).

Both discrete and continuous probabilistic facts are not range restricted, since they contain an input

variable (anonymous) that is not ground. To ensure that the answers of a query are always ground instan-

tiations of it, we need to make sure that, when these types of facts are called, all the input variables are

ground. We then impose that the arguments of probabilistic facts that are not ground must be variables

that appear in previous literal in the body: the preceding calls will bind these variables, so the proba-

bilistic facts will be called with all input arguments ground, and a probability value will be assigned to a

ground query. The order of the terms is fundamental: the variables in a probabilistic fact must appear in

a preceding literal, to ensure the well-definedness. Consider the following clarifying example:
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a(1).

f(_,X) : uniform_dens(X,0,6).

g0(X):- a(X), f(X,V), V > 1.

g1(X):- f(X,V), V > 1, a(X).

For the query g0(X), when f(X,Y) is called, X has already been substituted with 1, and f/2 has a ground

input variable. This does not hold for query g1(X) (even if the terms in the body are the same, they are

in different order), since f/2 is called with the input variable not instantiated, thus violating the syntactic

requirements.

To sum up, if we consider the following simple program:

ud(_,V) : uniform_dens(V,0,6).

1/2 :: a(_).

b(X,1):- a(X).

b(X,2):- \+a(X).

n(1).

f_0(X):- a(X).

f_1:- a(1).

f_2(X):- n(X), a(X).

f_3:- a(_).

f_4(X):- b(X,V), a(V),

f_5:- ud(1,V), V > 2.

the answers of the queries f 0(1), f 1, f 2(X), and f 5 are ground instantiations of them, since the

input term variable for probabilistic facts a/1 and ud/2 is bounded to 1 in all the queries. Similarly

happens for f 4(1), where V can unify with 1 or 2, depending on the truth value of a. On the contrary,

the answers for f 0( ), f 3, and f 4( ) are not ground instantiations, since the term variable of the

probabilistic fact a is not ground (for the first two queries) or the input variable X of b/2 is not ground

(for the third query).

5 Conclusions

In this paper, following the semantics proposed in [3], we delineated a precise syntax and explained the

necessary syntactic conditions to maintain the well-definedness for hybrid probabilistic logic programs.

We covered several cases in which ill-definedness may arise, providing examples and counterexamples.

As future work, we plan to develop algorithms to automatically check these properties as well as devel-

oping new inference algorithms that can manage infinite domains [5].
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