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Answer Set Programming (ASP) is a declarative logic formalism that allows to encode computa-
tional problems via logic programs. Despite the declarative nature of the formalism, some advanced
expertise is required, in general, for designing an ASP encoding that can be efficiently evaluated by
an actual ASP system. A common way for trying to reduce the burden of manually tweaking an ASP
program consists in automatically rewriting the input encoding according to suitable techniques, for
producing alternative, yet semantically equivalent, ASP programs. However, rewriting does not al-
ways grant benefits in terms of performance; hence, proper means are needed for predicting their
effects with this respect. In this paper we describe an approach based on Machine Learning (ML) to
automatically decide whether to rewrite. In particular, given an ASP program and a set of input facts,
our approach chooses whether and how to rewrite input rules based on a set of features measuring
their structural properties and domain information. To this end, a Multilayer Perceptrons model has
then been trained to guide the ASP grounder I -DLV on rewriting input rules. We report and discuss
the results of an experimental evaluation over a prototypical implementation.

1 Introduction

Answer Set Programming (ASP) [4, 12] is a declarative programming paradigm proposed in the area
of non-monotonic reasoning and logic programming. With ASP, computational problems are encoded
by logic programs whose intended models, called answer sets, correspond one-to-one to solutions of
the original problem. After several years of theoretical research, the scientific community reached a
general consensus regarding the foundations of ASP computation, and a number of efficient evaluation
methods and real systems are available today [11, 6]. Typically, the same computational problem can
be encoded by means of many different ASP programs which are semantically equivalent; however, real
ASP systems may perform very differently when evaluating each one of them.

Indeed, structural properties of a logic program can make computation easier or harder; furthermore,
specific aspects and features of the ASP system at hand might have significant impact on performance, as,
for instance, adopted algorithms and optimizations. As a result, some expert knowledge can be required
in order to select the “best” encoding when performance is crucial; this, in a certain sense, conflicts with
the declarative nature of ASP that, ideally, should free users from the burden of computational issues. For
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Figure 1: Decomposing a rule.

this reason, ASP systems tend to be endowed with pre-processing means aiming at making performance
less encoding-dependent; intuitively, this also fosters the usage of ASP in practice.

The idea of transforming logic programs has been explored in past literature, to different extents,
such as verification, performance improvements, etc. (see e.g., [14, 9] and related works); in this paper,
we focus on ASP and sketch a preliminary work on a Machine Learning (ML) strategy for automatically
optimizing ASP encodings. Such strategy relies on an adaptation of hypergraph tree decompositions
techniques for rewriting rules and inductively estimates whether decomposition is convenient or not.
We devised and experimentally tested a prototypical implementation relying on the system I -DLV [5].
Experimental results show that the approach is promising; indeed, despite the embryonal nature of the
system, performance are already comparable to the ones gained with well-assessed deductive heuristics.

2 Tree Decompositions for Rewriting ASP Rules

An ASP rule r can be represented as a hypergraph [2] HG(r) and be decomposed according to a tree
decomposition T D(r) of HG(r) into a set RD(r) of new rules that are equivalent to the original one,
yet typically shorter. Such technique is adopted in lpopt [2] to rewrite a program before it is fed to an
ASP system. In more details, a (undirected) hypergraph is a generalization of a (undirected) graph in
which an edge can join two or more vertices. HG(r) has a hyperedge for each literal l in the body and
in the head of r containing all variables in l. A tree decomposition of a hypergraph HG(r) is a tuple
(T D(r), χ), where T D(r) = (V (T D(r)),E(T D(r))) is a tree and χ : V (T D(r))→ 2V (HG(r)) is a function
mapping a set of vertices χ(t) ⊆ V (HG(r)) to each vertex t of the decomposition tree T D(r), such that
for each e ∈ E(HG(r)) there is a node t ∈V (T D(r)) such that e⊆ χ(t), and for each v ∈V (HG(r)) the
set {t ∈ V (T D(r))|v ∈ χ(t)} is connected in T D(r). Intuitively, a tree decomposition T D(r) of HG(r)
is a tree such that each vertex is associated to a bag, i.e., a set of nodes of HG(r), and such that each
hyperedge of HG(r) is covered by some bag, and for each node of HG(r) all vertices of T D(r) whose
bag contains it induce a connected subtree of T D(r).

A tree decomposition T D(r) induces a set of rules that rewrites r, called rule decomposition, and
denoted by RD(r) containing a fresh rule for each vertex v of T D(r). Roughly, each body literal l in
r, such that the set of variables in l is contained in v, is added to the body of the rule generated for
v. Moreover, some rules may be generated to guarantee safety. In general, more than one decomposi-
tion is possible for each rule. The following example illustrates these ideas. Let us consider the rule:

r1 : p(X ,Y,Z,S) :-s(S), a(X ,Y,S−1), c(D,Y,Z), f (X ,P,S−1), P >= D.
Figure 1 depicts the conversion of rule r1 into the hypergraph HG(r1) and two possible decomposi-

tions T D1(r1) and T D2(r1). According to T D1(r1), r1 can be decomposed into the set of rules RD1(r1):

r2 : p(X ,Y,Z,S) :-s(S), a(X ,Y,S−1), f (X ,P,S−1), f resh pred 1(P,Y,Z).
r3 : f resh pred 1(P,Y,Z) :-c(D,Y,Z), P >= D, f resh pred 2(P).
r4 : f resh pred 2(P) :-s(S), f ( ,P,S−1).
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The rule r2 has the same head of r1 and in the body all literals covering the first node of T D1(r1) with
variables {P,Y,Z,S,X}; r3 has in the head the fresh predicate f resh pred 1 that links it to r2. The body
of r2 contains the literals having as variables {D,P,Y,Z} appearing in the other node of T D1(r1). The
rule r4 ensures safety in r3: f resh pred 2(P) is added in the body of r3 and to the head of r4, whose
body has a set of literals coming from r1 and covers P. Intuitively, a different rewriting could be obtained
by differently handling safety: e.g., by adding the literals s(S) and f ( ,P,S− 1) to the body of r3 and
avoiding to introduce r4. Similarly, according to T D2(r1), r1 can be rewritten into RD2(r1):

r5 : p(X ,Y,Z,S) :-a(X ,Y,S−1),c(D,Y,Z), f resh pred 1(D,S,X).
r6 : f resh pred 1(D,S,X) :-s(S), f (X ,P,S−1),P >= D, f resh pred 2(D).
r7 : f resh pred 2(D) :-c(D, , ).

3 ML-guided Tree Decomposition Rewriting

The commonly adopted approach for the evaluation of ASP programs relies on a grounding (or instan-
tiation) module (grounder) that generates a propositional theory semantically equivalent to the input
program coupled with a subsequent module (solver), that uses propositional techniques for generating
answer sets. There are monolithic systems integrating both computational stages such as DLV [1] and
clingo [10], as well as systems performing only grounding or stand-alone solvers.

Among grounders, I -DLV [5] employs a heuristic-guided tree decomposition algorithm [7] aiming
at optimizing the instantiation process. Roughly, I -DLV possibly decomposes input rules into multiple
smaller ones according to the technique sketched in Section 2 on the basis of a formulas that estimates the
cost of joining body literals. This deductive heuristic relies on internally computed grounding statistics
such as the number of generated atoms or arguments’s selectivities (cfr. [7]). The technique proved
beneficial on both grounding and solving performance, permitting to mitigate the so-called grounding
bottleneck issue and to actually instantiate programs that cannot be grounded otherwise.

In this paper, in contrast with the aforementioned proposal, we present an approach relying on an in-
ductive heuristic. We still aim at properly deciding whether decomposing rules might improve grounding
performance but via a ML heuristic that considers only “static” information on the non-ground structure
of the input program. In particular, this new heuristic is based on a predictive model purposefully de-
signed and trained able to classify each input rule as: “better to decompose”, “better not to decompose”
or “indifferent” (i.e., applying or not decompositions has almost the same effect on performance).

3.1 Work-flow

As anticipated, we opted for classification. We recall that in such a task input data consists of a set of
records known as examples; each record (or example) is a tuple of form (X ,y), where X = {x1, · · · ,xn}
for n > 0 is a set of attributes and y is a class label, namely, the so-called target attribute. Classification
lies in learning a target function f : X 7→ y that maps a set of attributes X to a class label y. In our context,
for a rule r, X is the features described in Section 3.2 computed on r, while y can be either “better to
decompose”, “better not to decompose” or “indifferent”.

We chose a set of features by focusing only on easily computable non-ground structural properties
and domain information. The set of examples has been created by selecting all decomposable rules
from a large set of widely spread ASP benchmarks. We obtained an example from each selected rule
by computing features on it and associating a class label. The association has been done by taking into
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account the I -DLV grounding times when the considered rule is decomposed or not (see Section 3.3).
Once we achieved a consistent data set, an Artificial Neural Network (ANN) has been designed and
trained to build the classifier. Eventually, we experimentally evaluated the quality of the resulting model.

3.2 Feature Selection

In total, we devised 19 features involving information about non-ground properties, tree decomposition
structures and input facts. For brevity, we herein focus on the 6 features that showed a higher correlation
with class labels. The features, reported below, are defined via the following notations. Let P be an
ASP program, we indicate as FactsI(P) the set of input facts of P. We denote as EDB(P) the set of all
predicates in P defined only by facts and as IDB(P) the remaining ones. Let r be a rule, H(r) is the set of
atoms in the head of r, as B(r) the set of literals in body of r and as RD(r) a possible tree decomposition
of r. We denote as #sharedVars(r) the number of joins in B(r) i.e. the number of times each pair of
atoms in the rule shares the same variable. Let p be a predicate, we indicate as arity(p) the arity of p.

|FactsI(P)| |B(r)| |RD(r)|
∑

ri∈RD(r)
|B(ri)|

|RD(r)| ∑
ri∈RD(r)

#sharedVars(ri)
∑

pi∈IDB(P)
arity(pi)

|IDB(P)|

Intuitively, for a rule r, from left to right, the 6 features concern: (i) the number of input facts, (ii)
the body length, (iii) the number of rules in which r can be decomposed, (iv) the average length and (v)
the total number of joins in the rule decomposition, (vi) the average arity of IDB predicates.

3.3 Data Set Creation

We collected decomposable rules from benchmarks of the 3th, the 4th and the 6th official ASP competi-
tions as well as from the grounding-intensive 2-QBF domain [2]. Since often rules cannot be decomposed
as tree decomposition is applicable only on the basis of intrinsic structural rule properties, we tried to
enrich the set of examples. To this end, we performed a preprocessing step in which we applied to en-
codings techniques inspired by unfolding [15]. The aim was to obtain additional rules with longer bodies
which are more likely to be decomposable.

At this point, we computed the features over the so collected decomposable rules and then, we
properly associated a class label to each one. Labels have been assigned by first generating for each
considered rule an example program consisting of its non-decomposed version along with the set of
required input facts, and then by measuring I -DLV times when asked to instantiate the example program
when decomposition is disabled and forcibly activated. If the difference in instantiation times of two
versions is lower than 10%, the features set is labelled as “indifferent”; otherwise, the assigned label is
either “decomp” or “do-not-decomp”, depending on which version led to lowest grounding time.

The resulting data set is formed by 3852 examples: 3106 have been labeled as “indifferent”, 417
as “do-not-decomp” and the remaining 329 as “decomp”, with class distributions of 80,63%, 10,83%
and 8,54%, respectively. We observe unbalanced distributions that, in general, could make learning
about minority classes more tough and in turn, worsen the model quality. In Section 3.4 we describe our
countermeasures to mitigate this issue.

3.4 Model Design

To build the classifier, we adopted a Multilayer Perceptrons (MLPs) Neural Network [8]. MLPs are
commonly used for such tasks, as they often permit to reach a high accuracy by “learning” complex
implicit relationships within data. In classifications, the learning process of a neural network is guided by
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Class Precision Recall F1-score

“indifferent” 0.97 0.96 0.96
“do-not-decomp” 0.86 0.83 0.85

“decomp” 0.78 0.88 0.82
Cumulative

Avg method Precision Recall F1-score

macro 0.87 0.89 0.88
weighted 0.94 0.94 0.94

(a) Performance measures (b) Confusion Matrix (c) AUC-ROC curves

Figure 2: Model validation results.

a loss function that, in general, determines the quality of the model prediction. More specifically, during
the training phase, the internal network configuration undergoes through a series of transformations
aiming at minimizing the loss function. Since it is computed at each training step, the loss value gives
a clear indicator of how well the current configuration performs the task for which the network was
designed; in our case, a multi-class classification.

Given that we wanted to maintain the natural data set configuration, we adopted a cost-sensitive
learning method to deal with the imbalance issue. Such approach, instead of modifying the distribution
of training data, assigns different weights to classes in the loss function so that minority classes misclas-
sifications are more penalized; this commonly used adjustment allows to deal with the imbalance directly
into the learning algorithm itself. In particular, we implemented as custom loss function the α-balanced
focal loss for multi-classes classification [13]. Experimentally, this focal loss variant has proved to be
suitable for better classifying examples belonging to minority classes. For the loss function minimization
process, we used the adaptive learning rate optimization algorithm Adam as an optimizer.

3.5 Model Evaluation

The model has been trained over 300 epochs. As convention, 70% of the examples have been used as
training set and the remaining 30% as test set. In this splitting we carefully maintained the original
class distributions. Since we are dealing with an unbalanced data set, accuracy cannot be considered as
an appropriate performance measure. In this metric, the impact of the classification errors of minority
cases is reduced by the proper classification of majority cases. Thus, the quality of the model has been
assessed by means of the F1-score defined as F1 = 2 × (Precision × Recall)/(Precision+Recall)
which provides us with more information about the effectiveness of the model on correctly predicting
the instances belonging to minority classes [3]. The F1 value is high when both Precision and Recall are
high; the former indicates the proportion of cases classified as relevant that are actually relevant, while,
the latter measures the proportion of relevant cases classified among all the relevant ones.

The Receiver Operator Characteristic (ROC) curve examines the model capability of detecting True
Positives (TP) instances and compares it with False Positive (FP) predictions. The ROC curve plots TP
rate against FP rate on the vertical axis and on the horizontal axis, respectively. The larger the Area
Under the Curve (AUC) is, the higher is the quality of the model (i.e., AUC=1.0).

Figure 2a reports precision, recall and F1 scores both class by class and aggregated using macro
and weighted as average methods. Despite unbalance, the model achieves good performance also when
dealing with minority classes. Figure 2b shows the confusion matrix summarizing distributions of model
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Table 1: 4th Competition - number of grounded instances and average grounding times in seconds.

Problem I -DLV never I -DLV always I -DLV deduct I -DLV induct
Name # instances # Time # Time # Time # Time
Permutation Pattern Matching 30 28 58.69 30 63.90 30 64.83 30 63.89
Valves Location 30 30 4.11 30 4.09 30 4.10 30 4.11
Connected Still Life 10 10 0.10 10 0.10 10 0.10 10 0.10
Graceful Graphs 30 30 0.38 30 0.38 30 0.39 30 0.38
Bottle Filling Problem 30 30 4.07 30 4.31 30 4.33 30 4.33
Nomystery 30 30 34.86 30 18.92 30 35.66 30 18.84
Sokoban 30 30 2.68 30 2.76 30 2.77 30 2.85
Ricochet Robots 30 30 0.27 30 0.31 30 0.31 30 0.31
Crossing Minimization 30 30 0.10 30 0.10 30 0.10 30 0.10
Reachability 30 30 102,46 30 101,65 30 102,72 30 102,72
Strategic Companies 30 30 0,21 30 0,22 30 0,21 30 0,41
Solitaire 27 27 0.13 27 0.19 27 0.20 27 0.20
Weighted-Sequence Problem 30 30 2.83 30 9.50 30 2.90 30 11.16
Stable Marriage 30 30 27.72 30 2.54 30 2.54 30 2.47
Incremental Scheduling 30 12 295.62 21 219.97 21 222.00 21 214.59
Qualitative Spatial Reasoning 30 30 2.84 30 2.84 30 2.83 30 2.85
Chemical Classification 30 30 88.49 30 88.50 30 88.67 30 87.28
Abstract Dialectical Frameworks 30 30 0.13 30 0.13 30 0.13 30 0.13
Visit-all 30 30 0.13 30 0.13 30 0.13 30 0.14
Complex Optimization 29 29 34.89 29 34.23 29 35.15 29 35.51
Knight Tour with Holes 30 20 177.76 20 173.03 20 174.90 20 180.98
Maximal Clique 30 30 0.32 30 0.32 30 0.33 30 0.31
Labyrinth 30 30 1.47 30 1.39 30 1.48 30 0.71
Minimal Diagnosis 30 30 2.54 30 2.22 30 2.57 30 2.90
Hanoi Tower 30 30 0.22 30 0.23 30 0.23 30 0.23
Graph Colouring 30 30 0.10 30 0.10 30 0.10 30 0.10
Total 696 666 22.46 677 22.39 677 23.07 677 22.47

predictions. The AUC - ROC plot in Figure 2c evidences the model capability of distinguishing among
classes: an AUC very close to 1.0 suggests that in most cases the model correctly identifies when it is
convenient to decompose a rule or not.

4 Experimental Evaluation and Conclusions

In this section, we analyze the impact of the proposed inductive heuristic on I -DLV performance. Four
versions of I -DLV have been compared: (i) I -DLV never with decomposition disabled; (ii) I -DLV
always with decomposition always enabled; (iii) I -DLV deduct with decomposition applied according to
the internal deductive heuristic; (iv) I -DLV induct with decomposition guided by the inductive model.
The latter version has been externally implemented thanks to the capability of I -DLV to customize
its grounding process via annotations [5]. More in detail, the model communicates with I -DLV via
an external module which, given an encoding, for each rule r: first, invokes the model to determine
whether r has to be decomposed, and then accordingly, annotates r as to decompose or not. Eventually,
these annotated encodings are fed to I -DLV . We report in Table 1 results on the 4th competition. For
each version, the table details the number of grounded instances and the average instantiation times per
problem. Experiments have been performed on a NUMA machine equipped with two 2.8 GHz AMD
Opteron 6320 and 128 GiB of main memory, running Linux Ubuntu 14.04.4; memory limit has been set
to 15 GiB and time limit to 600 seconds per instance.

In general, the proposed method behaves consistently with the well-established deductive method
used in I -DLV . On the one side, we observe cases such as Nomystery in which the inductive heuristic
identifies benefits of applying decompositions: I -DLV deduct rewrites the input encoding in a way similar
to I -DLV never, while the I -DLV induct rewriting is comparable to that performed by I -DLV always. An
improvement is also gained in problem Labyrinth: I -DLV induct is faster than the other versions. On
the other side, there is the case of Weighted-Sequence Problem in which the proposed method causes a
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significant worsening because it does not recognize some decompositions as convenient. In the remaining
problems, I -DLV induct performance is in line with others.

In summary, one can note that, despite the embryonal nature of the work, performance are already
comparable to the ones obtained with well-assessed methods. Further studies will tell whether the induc-
tive approach is actually effective for improving performance of ASP grounders. In this respect, we plan
to enrich the set of classification features, experimenting with other classification algorithms and con-
sidering a larger set of benchmarks for both training and testing. Moreover, we plan to consider further
rewriting techniques besides tree decomposition, and to extend our implementation with the capability
of foreseeing effects of each single rewriting and/or combinations thereof.

References

[1] Mario Alviano, Francesco Calimeri, Carmine Dodaro, Davide Fuscà, Nicola Leone, Simona Perri, Francesco
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