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Algebraic characterization of logic programs has received increasing attention in recent years. Re-

searchers attempt to exploit connections between linear algebraic computation and symbolic com-

putation in order to perform logical inference in large scale knowledge bases. This paper proposes

further improvement by using sparse matrices to embed logic programs in vector spaces. We show

its great power of computation in reaching the fixpoint of the immediate consequence operator from

the initial vector. In particular, performance for computing the least models of definite programs is

dramatically improved in this way. We also apply the method to the computation of stable models

of normal programs, in which the guesses are associated with initial matrices, and verify its effect

when there are small numbers of negation. These results show good enhancement in terms of perfor-

mance for computing consequences of programs and depict the potential power of tensorized logic

programs.

1 Introduction

For decades, Logic Programming (LP) representation has been considered mainly in the form of symbolic

logic [9], which is useful for declarative problem solving and symbolic reasoning. Logic programming

starts gaining more attention recently in order to build explainable learning models, whereas it still has

some limitations in terms of computation. In other words, symbolic computation is not an efficient way

when we need to combine it with other numerical learning models such as Artificial Neural Network

(ANN). Recently, several studies have been done on embedding logic programs to numerical spaces

so that we can exploit great computing resources ranging from multi-threaded CPU to GPU. The linear

algebraic approach is a robust way to manipulate logic programs in numerical spaces. Because linear

algebra is at the heart of many applications of scientific computation, this approach is promising to

develop scalable techniques to process huge relational Knowledge Base (KB) [18], [12]. In addition, it

enables the ability to use efficient parallel algorithms of numerical linear algebra for computing LP.

In [5], Cohen described a probabilistic deductive database system in which reasoning is performed

by a differentiable process. With this achievement, they can enable novel gradient-based learning algo-

rithms. In [14], Sato presented the use of first-order logic in vector spaces for Tarskian semantics. He

demonstrates how tensorization realizes the efficient computation of Datalog. In [15], Sato proposed

linear algebraic approach to datalog evaluation. In this work, the least Herbrand model of DB, is com-

puted via adjacency matrices. He also provided theoretical proofs for translating a program into a system

of linear matrix equations. This approach achieves O(N3) time complexity where N is the number of

variables in a clause. Continuing to this direction, Sato et al. developed linear algebraic abduction to

abductive inference in Datalog [16]. They did empirical experiments on linear and recursive cases and

indicated that this approach can derive base relations.
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Using a linear algebraic method, Sakama et al. [13] define relations between LP and multi-dimensional

array (tensor) then propose algorithms for computation of LP models. The representation is done by

defining a series of conversions from logical rules to vectors and then the computation is done by ap-

plying matrix multiplication. Later, elimination techniques are applied to reduce the matrix size [11]

and gain impressive performance. In [3], a similar idea using 3D-tensor was employed to compute so-

lutions of abductive Horn propositional tasks. In addition, Aspis built upon previous works on matrix

characterization of Horn propositional logic programs to explore how inference from logic programs

can be done by linear algebraic algorithms [2]. He also proposed a new algorithm for non-monotonic

deduction, based on linear algebraic reducts and differentiable deduction. These works prove that the

linear algebraic method is promising for logic inference on large scale but has not yet been done much

in experiments, to the best of our knowledge.

In this paper, we continue Sakama et al.’s idea of representing logic programs by tensors [13]. Al-

though the method is well-defined, there are some problems, which limit the performance of the approach

and have not been solved. First, the obtained matrix after conversion is sparse but sparsity analysis was

not considered. Second, the experiments were limited with small-size logic programs that are not suf-

ficient to prove the robustness of matrix representation. In this research, we further raise the bar of

computing performance by using sparse representation for logic programs in order to reach the fixpoint

of the immediate consequence operator from the initial vector. We are able to do experiments on larger

size logic programs to demonstrate the performance for computing least models of definite programs.

Further, we also conduct experiments on computation of stable models of normal programs with a small

number of negations.

Accordingly, the rest of this paper is organized as follows: Section 2 reviews and summaries some

definitions and computation algorithms for definite and normal programs, Section 3 discusses sparsity

problem in tensorized logic programs and proposes a method to represent LP, Section 4 demonstrates

experimental results with definite and normal programs, Section 5 gives final conclusions and future

works.

2 Preliminaries

2.1 Definite programs

We consider a language L that contains a finite set of propositional variables. Given a logic program

P, the set of all propositional variables appearing in P is called the Herbrand base of P (written BP). A

definite program is a finite set of rules of the form:

h← b1∧ ·· ·∧bm (m ≥ 0) (1)

where h and bi are propositional variables (atoms) in L .

A rule r is called an OR-rule if r is the form:

h← b1∨ ·· ·∨bm (m ≥ 0) (2)

where h and bi are propositional variables in L .

A standardized program is a finite set of rules that are either (1) or (2). Note that the rule (2) is a

shorthand of m rules: h← b1, . . ., h← bm, so a standardized program is considered a definite program.

For each rule r of the form (1) or (2), define head(r) = h and body(r) = {b1, . . . ,bm}.
1 A rule r is

called a fact if body(r) = /0.

1We assume bi 6= b j ∀ i 6= j.
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Definition 1 Singly-Defined (SD) program: A definite program P is called a SD program if head(r1) 6=
head(r2) for any two rules r1 and r2 (r1 6= r2) in P.

Any definite program can be transformed to a standardized program by introducing new propositional

variables. That is, if there are several rules with the same head but different bodies: h← body(r1), . . .,
h← body(rk), then we replace all these rules by h← b1∨ . . .∨bk, b1← body(r1),... bk← body(rk). In

this paper, a program means a standardized program unless stated otherwise.

A set I ⊆ BP is an interpretation of P. An interpretation I is a model of a standardized program P

if {b1, . . . ,bm} ⊆ I implies h ∈ I for every rule (1) in P, and {b1, . . . ,bm}∩ I 6= /0 implies h ∈ I for every

rule (2) in P. A model I is the least model of P if I ⊆ J for any model J of P. A mapping TP : 2BP → 2BP

(called a TP-operator) is defined as: TP(I) = {h | h← b1 ∧ ·· · ∧ bm ∈ P and {b1, . . . ,bm} ⊆ I } ∪ {h |
h← b1∨ ·· ·∨bn ∈ P and {b1, . . . ,bn}∩ I 6= /0}.

The powers of TP are defined as: T k+1
P (I) = TP(T

k
P (I)) (k ≥ 0) and T 0

P (I) = I. Given I ⊆ BP, there is

a fixpoint T n+1
P (I) = T n

P (I) (n≥ 0). For a definite program P, the fixpoint T n
P ( /0) coincides with the least

model of P [17].

Definition 2 Matrix representation of standardized programs [13]: Let P be a standardized program

and BP = {p1, . . ., pn}. Then P is represented by a matrix MP ∈ R
n×n such that for each element ai j

(1≤ i, j ≤ n) in MP,

1. ai jk =
1
m

(1≤ k ≤ m; 1≤ i, jk ≤ n) if pi← p j1 ∧ ·· ·∧ p jm is in P;

2. ai jk = 1 (1≤ k ≤ l; 1≤ i, jk ≤ n) if pi← p j1 ∨ ·· ·∨ p jl is in P;

3. aii = 1 if pi← is in P;

4. ai j = 0, otherwise.

MP is called a program matrix. We write rowi(MP) = pi and col j(MP) = p j (1≤ i, j ≤ n).
To better understand Definition 2, let’s consider a concrete example.

Example 1 Consider the definite program P = {p← q∧ r, p← s∧ t, r← s, q← t, s←, t←}.
P is not an SD program because there are two rules p← q∧ r and p← s∧ t having the same head,

then P is transformed to the standardized program P′ by introducing new atoms u and v as follows:

P′ = {u← q∧ r, v← s∧ t, p← u∨ v, r← s, q← t, s←, t ←}. Then by applying Definition 2, we

obtain:





















p q r s t u v

p 0 0 0 0 0 1 1

q 0 0 0 0 1 0 0

r 0 0 0 1 0 0 0

s 0 0 0 1 0 0 0

t 0 0 0 0 1 0 0

u 0 1/2 1/2 0 0 0 0

v 0 0 0 1/2 1/2 0 0





















Sakama et al. further define representation of interpretation by using interpretation vector (Definition

3). This vector is used to store the truth value of all propositions in P. The starting point of interpretation

vector is defined as the initial vector (Definition 4).

Definition 3 Interpretation vector [13]: Let P be a program and BP = {p1, . . . , pn}. Then an interpre-

tation I ⊆ BP is represented by a vector v = (a1, . . . ,an)
T where each element ai (1 ≤ i ≤ n) represents

the truth value of the proposition pi such that ai = 1 if pi ∈ I; otherwise, ai = 0. We write rowi(v) = pi.
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Definition 4 Initial vector: Let P be a program and BP = {p1, . . . , pn}. Then the initial vector of P is

an interpretation vector v0 = (a1, . . . ,an)
T such that ai = 1 (1≤ i≤ n) if rowi(v0) = pi and a fact pi←

is in P; otherwise, ai = 0.

In order to compute the least model in vector space, Sakama et al. proposed an algorithm which

is equivalent to the result of computing least models by the TP-operator. This algorithm is presented in

Algorithm 1.

Definition 5 θ -thresholding: Given a value x, define θ(x) = x′ where x′ = 1 if x≥ 1; otherwise, x′ = 0.

Similarly, the θ -thresholding is extended in an element-wise way to vectors and matrices.

Algorithm 1 Matrix computation of least model

Input: a definite program P and its Herbrand base BP = {p1, p2, ..., pn}
Output: a vector v representing the least model

1: transform P to a standardized program Pδ = Q∪D with BPδ = {p1, p2, ..., pn, pn+1, ..., pm} where Q

is an SD program and D is a set of OR-rules.

2: create matrix MPδ ∈ R
m×m representing Pδ

3: create initial vector v0 = (v1,v2, ...,vm)
T of Pδ

4: v = v0

5: u = θ(MPδ v) {refer to Definition 5}
6: while u 6= v do

7: v = u

8: u = θ(MPδ v) {refer to Definition 5}
9: end while

10: return v

2.2 Normal programs

Normal programs can be transformed to definite programs as introduced in [1]. Therefore, we transform

normal programs to definite programs before encoding them in matrices.

Definition 6 Normal program: A normal program is a finite set of normal rules:

h← b1∧b2∧ ...∧bl ∧¬bl+1∧ ...∧¬bm (m≥ l ≥ 0) (3)

where h and bi(1≤ i≤ m) are propositional variables (atoms) in L .

P is transformed to a definite program by rewriting the above rule to the following form:

h← b1∧b2∧ ...∧bl ∧bl+1∧ ...∧bm (m≥ l ≥ 0) (4)

where bi is a new proposition associated with bi.

In this part, we denote P as a normal program with an interpretation I ⊆ BP. The positive form P+

of P is obtained by applying the above transformation. Since a definite program P+ is transformed to its

standardized program, then we can apply Algorithm 1 to compute the least model. [1] proved that if P

is a normal program, I is a stable model of P iff I+ is the least model of P+∪ I. We should note that I+

is interpretation of P+ which is a definite program. We can obtain P+ by applying Algorithm 1 to the

transformed program P+. Define Ī = {p̄ | p ∈ BP \ I}, then I+ = I∪ Ī.
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Definition 7 Matrix representation of normal programs [11]: Let P be a normal program and BP =
{p1, . . ., pn} and its positive form P+ with BP+ = {p1, . . . , pn,qn+1, . . . ,qm}.

Then P+ is represented by a matrix MP ∈ R
m×m such that for each element ai j (1≤ i, j ≤ m):

1. aii = 1 for n+1≤ i≤ m;

2. ai j = 0 for n+1≤ i≤ m and 1≤ j ≤ m such that i 6= j;

3. Otherwise, ai j (1≤ i≤ n; 1≤ j ≤ m) is encoded as in Definition 2.

MP is called a program matrix. We write rowi(MP) = pi and col j(MP) = p j (1≤ i, j ≤ n).

Example 2 Consider a program P = {p← q∧ s, q← p∧ t, s←¬t, t←, u← v}.
First, we need to transform P to P+ such that P+ = {p← q∧ s, q← p∧ t, s← t, t ←, u← v}. Then

applying Definition 7, we obtain:





















p q s t u v t

p 0 1/2 1/2 0 0 0 0

q 1/2 0 0 1/2 0 0 0

s 0 0 0 0 0 0 1

t 0 0 0 1 0 0 0

u 0 0 0 0 0 1 0

v 0 0 0 0 0 0 0

t 0 0 0 0 0 0 1





















Instead of the initial vector in the case of definite programs, the notion of an initial matrix is intro-

duced to encode positive and negative facts in a program.

Definition 8 Initial matrix [11]: Let P be a normal program and BP = {p1, . . . , pn} and its positive

form P+ with BP+ = {p1, . . . , pn, qn+1, . . . ,qm}.
The initial matrix M0 ∈ R

m×h(1≤ h≤ 2m−n) is defined as follows:

1. each row of M0 corresponds to each element of BP in a way that rowi(M0) = pi for 1≤ i≤ n and

rowi(M0) = qi for n+1≤ i≤ m;

2. ai j = 1 (1≤ i≤ n, 1≤ j ≤ h) iff a fact qi← is in P; otherwise ai j = 0;

3. ai j = 0 (n+1 ≤ i ≤ m, 1≤ j ≤ h) iff a fact qi is in P; otherwise, there are two possibilities 0 and

1 for ai j , so it is either 0 or 1.

Each column of M0 is a potential stable model in the first stage. We update M0 by applying matrix

multiplication with the matrix representation obtained by Definition 7 as Mk+1 = θ(MPMk). Then, the

algorithm for computing the stable models is presented in Algorithm 2.

This method requires extra steps on transforming and finding stable models of a program. In ad-

dition, the initial matrix size grows exponentially by the number of negations m− n. Therefore this

representation requires a lot of memory and the algorithm performs considerably slower than the method

for definite programs if there are many negations appear in the program. But we will later show that this

method still has the advantage when there are a small number of negations.
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Algorithm 2 Matrix computation of stable models

Input: a normal program P and its Herbrand base BP = {p1, p2, ..., pn}
Output: a set of vectors V representing the stable models or P

1: transform P to a standardized program P+ with BP+ = {p1, . . . , pn,qn+1, . . . ,qm}.
2: create the matrix MP ∈ R

m×m representing P+

3: create the initial matrix M0 ∈ R
m×h

4: M = M0, U = θ(MPM) {refer to Definition 5}
5: while U 6= M do

6: M =U , U = θ(MPM) {refer to Definition 5}
7: end while

8: V = find stable models of P {refer to Algorithm 3}
9: return V

3 Sparse representation of logic programs

The idea of representing logic programs in vector spaces could minimize the work with symbolic com-

putation and utilize better computing performance. Besides that, this method copes with the curse of

dimension when a matrix representing logic programs becomes very large. Previous works on this topic

only consider dense matrices for their implementation and it seems not very impressive in terms of per-

formance even on small datasets [11]. In order to solve this problem, this paper focuses on analyzing the

sparsity of logic programs in vector spaces and proposes improvement using sparse representation for

logic programs.

3.1 Sparsity of logic programs in vector spaces

A sparse matrix is a matrix in which most of the elements are zero. The level of sparseness is measured

by sparsity which equals the number of zero-valued elements divided by the total number of elements

[4]. Because there are a large number of zero elements in sparse matrices, we can save the computation

by ignoring these zero values [8]. According to the conversion method of linear algebraic approach, we

can calculate the sparsity of a program P 2. This calculation is done by counting the number of nonzero-

valued elements of each rule in P, then let 1 minus the fraction of the number of nonzero-valued elements

and the matrix size.

By definition, the sparsity of a program P is computed by the following equation:

sparsity(P) = 1−

∑
r∈P

|body(r)|

n2
(5)

where n is the number of elements in BP and |Br| is the length of body of rule r.

Accordingly, the representation matrix becomes a high level of sparsity if matrix size becomes larger

while the length of body rule is insignificant. In fact, a rule r in a logic program rarely has a body length

approx n, therefore, |Br| ≪ n. In short, we can say that the matrix representation of a logic program

according to the linear algebraic approach is highly sparse.

2We only consider the programs in Definition 2 and Definition 7.
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Algorithm 3 Find stable models of P

Input: program matrix M

Output: a set of vectors V representing the stable models of P

1: V = /0

2: for i from 1 to h do

3: v = (a1, . . .an,an+1, . . . ,am)
T (ith-column of M)

4: for j from n+1 to m do

5: q j = row j(M)
6: for l from 1 to n do

7: if rowl(M) = q j then

8: if al +a j 6= 1 then break;

9: end if

10: end for

11: if l ≤ n then break;

12: end for

13: if j ≤ m then break;

14: else V =V ∪{v}
15: end for

16: return V

3.2 Converting logic programs to sparse matrices

There are several sparse matrix representations. Compressed Sparse Row (CSR) is one of the most

efficient, robust and widely adopted by many programming libraries among those [4]. Hence, in this

paper, we propose CSR for representing logic programs.

In order to understand the CSR format, firstly we need to mention the Coordinate (COO) format

which is simple using 2 arrays of coordinates and 1 array of values. The length of these arrays is equal to

the number of nonzero elements. The first array stores the row index of each value, and the second array

stores the row and column indices of each value, while the third array stores the values in the original

matrix. We can imagine that the ith nonzero element in a matrix is represented by a 3-tuple extracted

from these 3 arrays at index i. Example 3 illustrates sparse representation in COO format for the program

P in Example 1. We should note that in Example 3, zero-based indexing is used.

Example 3 COO representation for P in Example 1

Row index 0 0 1 2 3 4 5 5 6 6

Col index 5 6 4 3 3 4 1 2 3 4

Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

Noticeably, in the row index array, it is possible for a value to be repeated consecutively because the

nonzero elements may appear in the same row for many times. We may reduce the size of the row index

array by considering CSR format. In this format, while the column index and the value arrays remain

the same, we compress the row index array by storing the index of the row only where nonzero elements

appear. That means we do not need to store 2 consecutive 0 and 2 consecutive 5 as in Example 3. Instead,

we store the index of the next row, then finally point the last index to the end of the row (which equals

to the number of nonzero elements). Concretely in the row index array, the first element is starting index
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which is 0. The last element is an extra element to indicate the end of this array which is equal to the

number of nonzero elements. We need 2 consecutive values in row index array to extract the nonzero

elements in this row. To be specific, we need to interpret row start and row end of the ith row from the

compressed value in row index array: row starti = row index[i],row endi = row index[i+1].

Example 4 illustrates this method. For the first row (i = 0), we have row start0 = 0,row endi = 2,

then we extract 2 values 0 and 1 for the nonzero element in the first row. These start and end will

be used to extract column index and value of nonzero elements. Similarly, the second row (i = 1), we

have row start1 = 2,row end1 = 3 then we have only one nonzero element at index 2. Continue this

interpretation until we reach the final row (i = 6), we have row start6 = 8,row end6 = 10 then we extract

last two nonzero elements at index 8 and 9 for the final row.

Example 4 CSR representation for P in Example 1

Row index 0 2 3 4 5 6 8 10

Col index 5 6 4 3 3 4 1 2 3 4

Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

As we can see in Example 4, the row index array now has only 8 indices rather than 10 in Example

3. We save storing repeatedly indices in the row index array by storing only the position where it starts

and ends. This phenomenon does not always encourage the reduction in terms of array size. Imagine the

situation where each row has only one nonzero element, then we save nothing with this representation.

Actually for a sparse matrix of the size m× n, the CSR format saves on memory only when nnz <
(m(n− 1)− 1)/2 (where nnz is number of nonzero elements). Fortunately, in case of linear algebraic

method, each rule normally has many atoms in the body, therefore the matrix representation has many

nonzero elements in a single row. That is why CSR format could considerably save memory. In fact, we

can save up to 20% of the size of the row index array using CSR format. Accordingly, in our method, we

propose to implement CSR rather than COO not only because it saves more memory, but also because it

is widely adopted by many programming libraries.

Because a logic program P is highly sparse, applying Algorithm 1 and Algorithm 2 on sparse repre-

sentation is remarkably faster than the dense matrix. Moreover, sparse representation saves the memory

space as well, therefore enabling the ability to deal with large scale KBs. We are going to reveal the

performance gain by using sparse representation in the next section.

Note that only the matrix representation of the program is sparse, while the initial vector and the

initial matrix are not sparse. Thus, in our methods, we will keep the dense format for interpretation

matrices.

4 Experimental results

In this section, we conduct two experiments on finding the least models of definite programs and comput-

ing stable models of normal programs. In order to evaluate the performance of linear algebraic methods,

we complete the implementations of Algorithm 1 and Algorithm 2 with (i) TP-operator and (ii) Clasp

(Clingo v5.4.1 running with flag −−method=clasp). Our implementations are done with (iii) dense ma-

trices and (iv) sparse matrices. Except Clasp, all implementations are implemented on C++ with CPU

x64 as a targeted device (we do not use GPU accelerated code). In terms of matrix representations

and operators, we use Eigen 3 library [7]. The computer running experiments has the following con-
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figurations: CPU: Intel Cote i7-4770 (4 cores, 8 threads) @3.4GHz; RAM: 16GB DDR3 @1333MHz;

Operating system: Ubuntu 18.04 LTS 64bit.

Focusing on analyzing the performance of sparse representation, we first evaluate our method by

conducting experiments on randomized logic programs. We use the same method of LP generation

conducted in [11] that the size of logic program defined by the size n = |BP| of the Herband base BP

and the number of rules m = |P| in P. The rules are uniformly generated based on the length (maximum

length is 8) of rule body according to Table 1.

Table 1: Proportion of rules in P based on the number of propositional variables in their bodies.

Body length 0 1 2 3 4 5 6 7 8

Allocated proportion < n/3 3 4% 4% 10% 40% 35% 4% 2% 1%

We further generate denser matrices in order to analyze the efficacy of the sparse method. While

keeping the same proportion of facts and rules with body length are 1 and 2, we generate the rest 70 ∼
80% rules such that their body length is around 5% of the number of propositions. This method leads to

the lower sparsity level of generated matrices with approximate 0.95.

Also based on the generation method for definite programs, we generate normal programs by ran-

domly changing k (4 ≤ k ≤ 8) literals to negations. The important difference from [11] is we do ex-

periments on much larger n and m, because our method, which is implemented on C++, is dramatically

more efficient than Nguyen et al.’s implementation using Maple. The largest size of the logic program in

this experiment reaches thousands of propositions and hundreds of thousands of rules. Further, we also

compare our method with one of the best Answer Set Programming (ASP) solvers - Clasp [6] running

in the same environment. All methods are conducted 30 times on each LP to obtain mean values of

execution time.

In addition, we also conduct a further experiment using non-random problems with definite programs

using transitive closure problem. The graph we use is selected from the Koblenz network collection [10].

This dataset contains binary tuples and we compute transitive closure of them using the following rules:

path(X ,Y )← edge(X ,Y ) and path(X ,Y )← edge(X ,Z)∧ path(Z,Y )

4.1 Definite programs

The final results on definite programs are illustrated in Table 2. We can see in the results, Dense matrix

method is the slowest method and being unable to run with very large programs. Overall, Sparse matrix

method is very efficient which is 10 ∼ 15 faster than Clasp. We should mention that all the codes are

executed on single-threaded CPU without using GPU boost or any other parallel computing techniques.

3This is the proportion of facts in P.
4n′ is the size of the Herbrand base of a standardized program

http://konect.uni-koblenz.de/networks/
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Table 2: Details of experimental results on definite programs of TP-operator, Clasp and linear algebraic

methods (with dense and sparse representation). n′ indicates the actual matrix size after transformation.

No. n m n′ 4 Sparsity TP-operator Clasp
Dense

matrix

Sparse

matrix

1 1000 5000 5788 0.99 0.0402 0.1680 2.0559 0.0071

2 1000 10000 10799 0.99 0.1226 0.2940 17.9986 0.0127

3 1600 24000 25198 0.99 0.3952 1.8480 73.3541 0.0357

4 1600 30000 31285 0.99 0.4793 2.5360 116.1158 0.0605

5 2000 36000 37596 0.99 0.7511 3.1690 155.4312 0.0692

6 2000 40000 41936 0.99 0.9763 5.1610 187.6549 0.0675

7 10000 120000 127119 0.99 18.5608 9.0720 - 0.3798

8 10000 160000 167504 0.99 25.6532 15.7760 - 0.4832

9 16000 200000 211039 0.99 57.0223 19.9760 - 0.8643

10 16000 220000 231439 0.99 60.4486 24.7860 - 0.9429

11 20000 280000 297293 0.99 104.9978 30.5730 - 0.9048

12 20000 320000 337056 0.99 108.5883 34.4030 - 1.0614

Table 3: Details of experimental results on definite programs (with lower sparsity level) of TP-operator,

Clasp and linear algebraic methods (with dense and sparse representation). n′ indicates the actual matrix

size after transformation.

No. n m n′ Sparsity TP-operator Clasp
Dense

matrix

Sparse

matrix

1 1000 5000 5876 0.95 0.1044 0.3970 2.3102 0.0384

2 1000 10000 10243 0.95 0.3613 0.9160 17.5917 0.0519

3 1600 24000 25712 0.95 0.9478 2.2540 70.0931 0.1634

4 1600 30000 31430 0.95 1.1817 3.0130 120.5195 0.3772

5 2000 36000 36612 0.95 1.7335 4.7810 152.9104 0.5499

6 2000 40000 41509 0.95 2.0378 6.3260 192.3609 0.6284

7 10000 120000 125692 0.95 27.8011 10.8930 - 1.0816

8 10000 160000 166741 0.95 47.2419 18.6050 - 2.2907

9 16000 200000 210526 0.95 89.5501 21.7110 - 3.7931

10 16000 220000 230178 0.95 108.1297 28.5370 - 4.8605

11 20000 280000 298582 0.95 144.8006 35.0920 - 5.3361

12 20000 320000 335918 0.95 183.5328 42.8420 - 5.9182

The benchmark on denser matrix are presented in Table 3. As can be seen in the results, denser

matrices require more computation for Sparse matrix method while it does not affect the same scale on

other competitors. Despite of that fact, Sparse matrix method still holds the first place in this benchmark.

In terms of analyzing the sparseness level of logic programs, we hardly find a program in which the

sparsity is less than 0.97. This observation strongly encourages the use of sparse representation for logic

programs.

We next show the comparison for computing transitive closure. We assume that a dataset contains

edges (tuples of nodes), then first perform grounding two rules of defining path. The obtained results are
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demonstrated in Table 4. In this non-randomized problem, we can see that the matrix representations are

very sprase. Therefore, it is no doubt that Sparse matrix method outperforms Dense matrix method. Ac-

cordingly, we only highlight the efficiency of sparse representation and omit the dense matrix approach.

Surpringly, Sparse matrix method surpasses Clasp once again in this experiment by a large margin.

Table 4: Details of experimental results on transitive closure problem of TP-operator, Clasp and sparse

representation approach. n′ indicates the actual matrix size after transformation.

Data name

(|V |, |E|)
n m n′ Sparsity TP-operator Clasp

Sparse

matrix

Club membership

(65, 95)
1200 14492 15600 0.99 0.8397 0.3370 0.0255

Cattle

(28, 217)
1512 20629 21924 0.99 0.9541 0.5060 0.0365

Windsurfers

(43, 336)
4324 99788 103776 0.99 3.6453 3.3690 0.1824

Contiguous USA

(49, 107)
4704 113003 117600 0.99 4.2975 3.8830 0.1830

Dolphins

(62, 159)
7564 230861 238266 0.99 12.3067 9.3820 0.4019

Train bombing

(64, 243)
8064 254259 262080 0.99 15.2257 10.6350 0.4524

Highschool

(70, 366)
9660 333636 342930 0.99 19.9622 15.8010 0.6618

Les Miserables

(77, 254)
11704 445006 456456 0.99 27.7931 21.9560 0.8300

As can be witnessed in the results, Dense matrix method is the slowest, even slower than Tp-operator,

in terms of computation time due to wasting of computation on a huge amount of zero elements. This

could be explained by the high level of sparsity of logic programs provided in Table 2, Table 3 and Table

4. Moreover, large dense matrices consume a huge amount of memory therefore the method is unable to

run with large scale matrix size. Overall, sparse matrix method is effective in computing the fixpoint of

definite programs. On the other hand, the performance would be improved if we use GPU accelerated

code and exploit parallel computing power. The results indicates a potential for logical inference using

an algebraic method.

4.2 Normal programs

In our current method, the number of columns in the initial matrix (Definition 8) grows exponentially

by the number of negations, we limit the number of negations in this benchmark by 8 as specified in the

experiment setup.
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Table 5: Details of experimental results on normal programs of TP-operator, Clasp and linear algebraic

methods (with dense and sparse representation). n′ indicates the actual matrix size after transformation.

No. n m n′ k 5 Sparsity TP-operator Clasp
Dense

matrix

Sparse

matrix

1 1000 5000 6379 8 0.99 0.0472 0.3070 3.9560 0.0119

2 1000 10000 12745 8 0.99 0.1838 1.0920 28.1806 0.0178

3 1600 24000 30061 8 0.99 0.5525 3.2760 105.4931 0.0559

4 1600 30000 36402 7 0.99 0.6801 4.3050 168.8044 0.0832

5 2000 36000 42039 5 0.99 1.2378 6.7180 203.2749 0.0897

6 2000 40000 48187 8 0.99 1.5437 7.1800 256.9701 0.0991

7 10000 120000 171967 6 0.99 27.3162 7.6820 - 0.7124

8 10000 160000 207432 7 0.99 32.5547 24.6990 - 0.8424

9 16000 200000 250194 5 0.99 70.3114 30.7180 - 1.5603

10 16000 220000 278190 6 0.99 86.5192 35.4050 - 1.8314

11 20000 280000 357001 4 0.99 133.7881 50.1970 - 1.9170

12 20000 320000 396128 4 0.99 150.3377 58.6090 - 2.1066

Table 6: Details of experimental results on normal programs (with lower sparsity level) of TP-operator,

Clasp and linear algebraic methods (with dense and sparse representation). n′ indicates the actual matrix

size after transformation. h indicates the column size of the initial matrix.

No. n m n′ k Sparsity TP-operator Clasp
Dense

matrix

Sparse

matrix

1 1000 5000 6385 7 0.95 0.1680 0.3680 3.7791 0.1133

2 1000 10000 12294 8 0.95 0.2453 1.4940 30.0642 0.1867

3 1600 24000 33172 7 0.95 0.6819 3.7830 102.5389 0.2219

4 1600 30000 35091 8 0.95 0.7741 5.9120 174.5192 0.3462

5 2000 36000 44145 8 0.95 2.3194 7.1020 197.3004 0.4131

6 2000 40000 49080 7 0.95 3.2665 8.6690 250.0876 0.4895

7 10000 120000 181550 8 0.95 36.9532 10.4530 - 3.2504

8 10000 160000 203576 6 0.95 54.1106 33.1920 - 4.0186

9 16000 200000 246159 4 0.95 86.3571 48.1860 - 7.2193

10 16000 220000 282734 5 0.95 106.0275 56.9150 - 8.3059

11 20000 280000 365190 4 0.95 163.0558 78.1790 - 9.0177

12 20000 320000 387094 4 0.95 202.5501 84.3270 - 11.5203

First, we perform benchmarks on normal programs which has 0.99 sparsity level. Table 5 illustrates

the execution time in detail. As can be witnessed in the results, Sparse matrix method is still faster

than Clasp but with a smaller scale it did in definite programs. It is needed to mention that the initial

matrix size is remarkably larger due to the limitation of representation. We have to initialize all possible

combinations of an atom which appeared with its negation form in the program. There is no doubt

that with a larger number of negations, the space complexity of linear algebraic method is exponential.

5The number of negations.
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Accordingly, the performance of Sparse matrix method is only better than Clasp with a small fraction of

negations.

In the next experiments, we compare different methods on denser matrix. Table 6 presents the data

for this benchmark. Once again, with a limited number of negations, Sparse matrix method holds the

winner position.

Noticeably, execution time on normal programs is generally greater than that on definite programs.

This is obvious because we have a larger size of initial matrices as well as the need of extra computation

on transforming and finding the least models as described in Algorithm 2. Then the weakness of the

linear algebraic method is that we have to deal with all combinations of truth assignments in order to

compute the stable model. Accordingly, the column size of the initial matrix exponentially increases

by the number of negations. Thus, in the benchmark on randomized programs, we limit the number of

negations for all benchmarks so that the matrix can fit in memory. This limitation will become clearer

in real problems which have many negations. This is a major problem that we are investigating to do

further research.

5 Conclusion

In this paper, we analyze the sparsity of matrix representation for LP and then propose an improvement

for logic programming in vector space using sparse matrix representation. The experimental results

on computing the least models of definite programs demonstrate very significant enhancement in terms

of computation performance even when compared to Clasp. This improvement remarkably reduced

the burden of computation in previous linear algebraic approaches for representing LP. Whereas in

finding stable models of normal programs, the efficacy of linear algebraic method is limited due to the

representation requires a huge amount of memory to store all possible combinations of negated atoms.

In spite of the fact, our method is efficient when there are small numbers of negation. However, matrix

computation could be more accelerated using GPU. We have tested our implementation in this way, and

obtained expected results too.

Sato’s linear algebraic method [15] is based on a completely different idea to represent logic pro-

grams, where each predicate is represented in one matrix and an approximation method is used to com-

pute the extension of a target predicate of a recursive program. We should note that this approximation

method is limited in a matrix size 10,000, while our exact method is comfortable with 320,000. Further

comparison is a future research topic, yet we could expect that Sato’s method can also be enhanced by

sparse representation.

The encouraging results open up rooms for improvement and optimization. In an extended version of

this paper, we will add more experimental results including a comparison on other benchmark programs

for ASP. Potential future work is to apply a sampling method to reduce the number of guesses in the

initial matrix for normal programs. An algorithm would be to prepare some manageable size of the initial

matrix, and if all guesses fail we do some local search and replace column vectors by new assignments

then repeat it until a stable model is found. Further research directions on implementing disjunctive LP

and abductive LP should be considered in order to reveal the applicability of tensor-based approaches for

LP. Additionally, more complex types of the program should be taken in to account to be represented

in vector space, for instance 3-valued logic programs and answer set programs with aggregates and

constraints.
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[12] Tim Rocktäschel, Matko Bosnjak, Sameer Singh & Sebastian Riedel (2014): Low-dimensional embeddings

of logic. In: Proceedings of the ACL 2014 Workshop on Semantic Parsing, pp. 45–49, doi:10.3115/v1/

W14-2409.

[13] Chiaki Sakama, Katsumi Inoue & Taisuke Sato (2017): Linear Algebraic Characterization of Logic Pro-

grams. In: Proceedings of the 10th International Conference on Knowledge Science, Engineering and

Management (KSEM 2017), Springer International Publishing, Lecture Notes in Artificial Intelligence, Vol.

10412, pp. 520–533, doi:10.1007/978-3-319-63558-3_44.

[14] Taisuke Sato (2017): Embedding Tarskian semantics in vector spaces. In: Workshops at the Thirty-First

AAAI Conference on Artificial Intelligence.

[15] Taisuke Sato (2017): A linear algebraic approach to Datalog evaluation. Theory and Practice of Logic

Programming 17(3), pp. 244–265, doi:10.1017/S1471068417000023.

[16] Taisuke Sato, Katsumi Inoue & Chiaki Sakama (2018): Abducing Relations in Continuous Spaces. In: IJCAI,

pp. 1956–1962, doi:10.24963/ijcai.2018/270.

[17] Maarten H Van Emden & Robert A Kowalski (1976): The semantics of predicate logic as a programming

language. Journal of the ACM (JACM) 23(4), pp. 733–742, doi:10.1145/321978.321991.

[18] Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao & Li Deng (2015):

Embedding Entities and Relations for Learning and Inference in Knowledge Bases.

In: Proceedings of the International Conference on Learning Representations (ICLR)

2015. Available at https://www.microsoft.com/en-us/research/publication/

embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/.

http://dx.doi.org/10.1016/S0743-1066(99)00065-5
http://dx.doi.org/10.1145/200836.200838
http://dx.doi.org/10.1016/C2013-0-10439-4
http://dx.doi.org/10.1016/C2013-0-10439-4
http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2
http://dx.doi.org/10.1145/355791.355796
http://dx.doi.org/10.1145/355791.355796
http://dx.doi.org/10.1145/1005937.1005947
http://dx.doi.org/10.1145/2487788.2488173
http://dx.doi.org/10.1007/978-3-030-03014-8_3
http://dx.doi.org/10.3115/v1/W14-2409
http://dx.doi.org/10.3115/v1/W14-2409
http://dx.doi.org/10.1007/978-3-319-63558-3_44
http://dx.doi.org/10.1017/S1471068417000023
http://dx.doi.org/10.24963/ijcai.2018/270
http://dx.doi.org/10.1145/321978.321991
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/

	1 Introduction
	2 Preliminaries
	2.1 Definite programs
	2.2 Normal programs

	3 Sparse representation of logic programs
	3.1 Sparsity of logic programs in vector spaces
	3.2 Converting logic programs to sparse matrices

	4 Experimental results
	4.1 Definite programs
	4.2 Normal programs

	5 Conclusion

