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Paraconsistent logics constitute an important class of formalisms dealing with non-trivial reasoning

from inconsistent premisses. In this paper, we introduce uniform axiomatisations for a family of

nonmonotonic paraconsistent logics based on minimal inconsistency in terms of sequent-type proof

systems. The latter are prominent and widely-used forms of calculi well-suited for analysing proof

search. In particular, we provide sequent-type calculi for Priest’s three-valued minimally inconsistent

logic of paradox, and for four-valued paraconsistent inference relations due to Arieli and Avron.

Our calculi follow the sequent method first introduced in the context of nonmonotonic reasoning

by Bonatti and Olivetti, whose distinguishing feature is the use of a so-called rejection calculus for

axiomatising invalid formulas. In fact, we present a general method to obtain sequent systems for

any many-valued logic based on minimal inconsistency, yielding the calculi for the logics of Priest

and of Arieli and Avron as special instances.

1 Introduction

Paraconsistent logics reject the principle of explosion, also known as ex falso sequitur quodlibet, which

holds in classical logic and allows the derivation of any assertion from a contradiction. The motivation

behind paraconsistent logics is simple, as contradictory theories may still contain useful information,

hence we would like to be able to draw non-trivial conclusions from said theories. This is of course also

interesting in the context of artificial intelligence and especially in knowledge representation. Human

knowledge is often contradictory and yet it allows us to reason about the world.

The interest in nonmonotonic logics was born out of somewhat similar motivations—in particular,

from the desire to formalise instances of common-sense reasoning which are difficult to express in classi-

cal logic without falling into contradiction and thus triviality. However nonmonotonic logics do not reject

the principle of explosion but the monotony principle of classical logic. In those logics, inferences are in

general defeasible, meaning that conclusions which have been previously drawn might not be derivable

in the light of new information.

In this paper, we introduce sequent-type proof systems for inference relations which are paraconsis-

tent and nonmonotonic, based on propositional many-valued logics. The formalisms we consider are due

to Priest [25] and Arieli and Avron [4], and their nonmonotonic flavour is obtained by a circumscription-

like minimal-model reasoning, where models with less amount of inconsistency are in a sense preferred.

In order to obtain calculi for the mentioned inference relations, we adopt the sequent method of

Bonatti and Olivetti [15], who introduced proof systems for the central nonmonotonic formalisms, viz.

for default logic [26], autoepistemic logic [23], and circumscription [22]. A key feature of their approach

is their usage of a rejection calculus for axiomatising invalid formulas, i.e., of non-theorems, which
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makes these calculi arguably particularly elegant and suitable for proof-complexity elaborations [16, 12].

In a rejection calculus, the inference rules formalise the propagation of refutability instead of validity and

establish invalidity by deduction, i.e., in a purely syntactic manner. Rejection calculi are also referred

to as complementary calculi or refutation calculi in the literature and the first axiomatic treatment of

rejection was done by Łukasiewicz [21] in his formalisation of Aristotle’s syllogistic.

Analogous to the method of Bonatti [15], our calculi comprise three kinds of sequents each: (i) as-

sertional sequents for axiomatising validity in the respective underlying monotonic base logic, (ii) anti-

sequents for axiomatising invalidity for the underlying base logics, and (iii) sequents for representing

nonmonotonic conclusions.

In fact, we prove a somewhat stronger result in that we not only provide calculi for said formalisms,

but we give a uniform method to obtain such calculi for any many-valued entailment relation based on

minimal inconsistency.

As far as calculi for many-valued logics are concerned, different kinds of sequent-style systems

exist in the literature, like systems based on (two-sided) sequents [13, 8] in the style of the original

work by Gentzen [19] and employing additional non-standard rules, or using hypersequents [6], which

are tuples of Gentzen-style sequents. In our sequent and anti-sequent calculi, we follow the approach

of Rousseau [27], which is a natural generalisation for many-valued logics of the classical two-sided

sequent formulation of Gentzen. The respective calculi are obtained from a systematic construction for

many-valued logics as described by Zach [28] and by Bogojeski and Tompits [14].

It should be noted that other approaches exist for formalising the inference relations we study in

this work. Arieli and Denecker [5] describe a method to encode a theory in Belnap’s four-valued para-

consistent logic [10] into a classical theory. They then use circumscription to model multiple minimal

inconsistent inference relations. In a similar fashion, Besnard, Schaub, Tompits, and Woltran [11] encode

theories in Priest’s minimally inconsistent three-valued paraconsistent logic [25] in terms of quantified

boolean formulas (QBF). In difference to those approaches, we do not rely on any encoding into another

formalism but rather provide a direct proof-theoretic characterisation.

The rest of paper is organised as follows. In the next section, we establish the necessary preliminaries.

The general method to obtain sequent-type calculi for the inferences we are interested in is described in

Section 3. In Section 4, we provide concrete sequent systems obtained through our approach. Finally, in

Section 5, we give some concluding remarks.

2 Preliminaries

Syntax and Semantics of Finite-Valued Propositional Logics. A finite-valued propositional logic,

L , is defined over a set VL = {v1, . . . ,vm} of truth values, a set V
+

L
⊂ VL of designated truth values

(which are used to define modelhood), and a vocabulary AL consisting of (i) a countably infinite set P

of propositional constants and (ii) a collection of n-ary (n ≥ 0) primitive logical connectives. We assume

that VL always contains the truth values t and f (representing truth and falsity, respectively) such that

t ∈ V
+

L
and f 6∈ V

+
L

. A 0-ary logical connective is called a logical constant. Furthermore, the set P is

assumed fixed throughout this paper.

Formulas of the logic L are referred to as L -formulas and are inductively defined as follows: (i) ev-

ery propositional constant and every logical constant of AL is an L -formula; (ii) if ϕ1, . . . ,ϕn are

L -formulas and ◦ is an n-ary connective of AL (for n ≥ 1), then ◦(ϕ1, . . . ,ϕn) is an L -formula; and

(iii) L -formulas are constructed only according to (i) and (ii). In the following, binary connectives are

usually written infix to increase readability.
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An L -interpretation is a mapping I : P −→ VL assigning to each propositional constant a truth

value from VL . For a set Θ ⊆ P , we write I|Θ to denote the mapping resulting from I by restricting the

domain P to the propositional constants in Θ.

Given an L -interpretation I, by a valuation under I we understand a mapping vI
L
(·) which assigns

to each L -formula ϕ a truth value of VL = {v1, . . . ,vm} subject to the following conditions: (i) if

ϕ is a propositional constant of L , then vI
L
(ϕ) = I(ϕ); and (ii) if ϕ = ◦(ψ1, . . . ,ψn), for an n-ary

logical connective (n ≥ 0), then vI
L
(ϕ) = f◦(v

I
L
(ψ1), . . . ,v

I
L
(ψn)), where f◦ : V n

L
−→ VL is a function

representing the truth conditions of ◦ in L (if the arity of ◦ is 0, i.e., if ϕ is a logical constant, then f◦ is

some fixed element from VL ).

If vI
L
(ϕ) ∈ V

+
L

, then we say that I is an L -model of ϕ , which we also denote by I |=L ϕ . An

L -formula ϕ is called valid iff every L -interpretation of ϕ is also an L -model of ϕ . By ModL (ϕ) we

denote the set of all L -models of an L -formula ϕ .

By an L -theory we understand a set of L -formulas. An L -interpretation I is an L -model of an L -

theory Γ if I is an L -model of all elements of Γ. The set of all L -models of a L -theory Γ is denoted by

ModL (Γ). An L -formula ϕ is a semantic consequence of an L -theory Γ (in L ), denoted by Γ |=L ϕ ,

iff ModL (Γ) ⊆ ModL (ϕ). Furthermore, for two L -theories Γ and ∆, we define Γ |=L ∆ iff Γ |=L ϕ ,

for some ϕ ∈ ∆.

If it is clear from the context, to ease notation, we usually drop the prefix “L -” in the concepts

introduced above.

Three-Valued Paraconsistent Minimal Entailment. We define the three-valued paraconsistent en-

tailment relation |=min
LP , due to Priest [25], by means of the paraconsistent three-valued logic P, following

Avron [6].

The elements of P are as follows: (i) the truth values of P are given by VP = {f,b, t}, where b stands

for “both”, i.e., the truth value referring to inconsistency; it is assumed that the truth values are ordered

according to the stipulation that f < b < t; (ii) the designated truth values are V
+

P = {b, t}; (iii) the

primitive logical connectives of P are ¬, ∧, and the logical constant F; and (iv) the valuation function vI
P,

for an interpretation I, satisfies the following conditions:

• vI
P(p) = I(p), for a propositional constant p;

• vI
P(F) = f;

• vI
P(¬ϕ) = t if vI

P(ϕ) = f, vI
P(¬ϕ) = f if vI

P(ϕ) = t, and vI
P(¬ϕ) = b if vI

P(ϕ) = b;

• vI
P(ϕ ∧ψ) = min(vI

P(ϕ),vI
P(ψ)); and

• vI
P(ϕ ⊃ ψ) = vI

P(ψ) if vI
P(ϕ) ∈ V

+
P , and vI

P(ϕ ⊃ ψ) = t otherwise.

According to Avron [7], the connectives ¬, ∧, ⊃, and F are functionally complete, i.e., any truth func-

tion (or, equivalently, logical connective) can be expressed by a P-formula containing these connectives.

For example, the connective ∨ can be defined in the standard manner as ϕ ∨ψ := ¬(¬ϕ ∧¬ψ).

The logic of paradox, LP, due to Priest [24], is the sublogic of P obtained by excluding ⊃ from the

alphabet and using instead the defined implication ϕ →ψ :=¬ϕ∨ψ . For defining the relation |=min
LP [25],

let us call an LP-model I of a theory Γ minimally inconsistent iff there is no other LP-model J of Γ such

that {p ∈P | vJ
LP(p) = b}⊂ {p ∈P | vI

LP(p) = b}. Then, for theories Γ and ∆, Γ |=min
LP ∆ holds iff every

minimally inconsistent LP-model I of Γ is also a LP-model of some ϕ ∈ ∆. We also define analogously

an entailment for P, denoted by |=min
P .
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Figure 1: The FOUR bilattice.

Four-Valued Paraconsistent Minimal Entailment. The four-valued paraconsistent minimal entail-

ment relations |=min1

F and |=min2

F , due to Arieli and Avron [4], are defined in terms of the logic F (also

called FOUR), which was introduced by Belnap [9, 10] and extensively studied by Ginsberg [20], Fit-

ting [17, 18], and Arieli and Avron [1, 2, 3, 4]. Its truth values are VF = {f,b,n, t}, where b and t are

designated, i.e., V
+

F = {b, t}, and n can be read as “neither”. The truth values of VF are usually consid-

ered with respect to two partial orders: A truth order, ≤t , and a knowledge order, ≤k. A simple way to

depict both of those orders is to consider the truth values as elements of the bilattice as shown in Figure 1,

where ≤t is the order along the x-axis and ≤k the one along the y-axis.

Following Arieli and Avron [4], we take as primitive logical connectives of F the operators ¬,∧, ⊃,

and the logical constants B and N. Originally, ⊃ is not part of the primitive connectives of F but instead

∨ and the operators ⊕ and ⊗ are used, where the latter two work on the knowledge order rather than on

the truth order as the other connectives. However, the set of connectives we use are functionally complete

and ∨, ⊕, and ⊗ can thus be defined in terms of them.

The valuation function vI
F(·) of F is defined as follows:

• vI
F(p) = I(p), where p is a propositional constant;

• vI
F(B) = b and vI

F(N) = n;

• vI
F(ϕ ∧ψ) = mint(v

I
F(ϕ),vI

F(ψ)), where mint is the minimum with respect to ≤t ;

• vI
F(¬ϕ) = t if vI

F(ϕ) = f, vI
F(¬ϕ) = f if vI

F(ϕ) = t, otherwise vI
F(¬ϕ) = vI

F(ϕ); and

• vI
F(ϕ ⊃ ψ) = vI

F(ψ) if vI
F(ϕ) ∈ V

+
F , and vI

F(ϕ ⊃ ψ) = t otherwise.

From these conditions, we can define ϕ ∨ψ := ¬(¬ϕ ∧¬ψ), ϕ ⊗ψ := (ϕ ∧B)∨ (ψ ∧B)∨ (ϕ ∧ψ),
and ϕ ⊗ψ := (ϕ ∧N)∨ (ψ ∧N)∨ (ϕ ∧ψ). It can easily be seen that ∧ and ∨ correspond to the meet and

join of the ≤t-lattice whilst ⊗ and ⊕ correspond to the meet and join of the ≤k-lattice.

The inference relations |=min1

F and |=min2

F by Arieli and Avron [4] are now defined thus: Let us call

an F-model I of an F-theory Γ most consistent relative to a set I of truth values iff there is no other

F-model J such that {p ∈ P | vJ
F(p) ∈ I } ⊂ {p ∈ P | vI

F(p) ∈ I }. Then, for F-theories Γ and ∆,

Γ |=min1

F ∆ holds iff every F-model of Γ which is most consistent relative to I = {b} is also an F-model

of some formula in ∆, while |=min2

F is similarly defined but using I = {b,n} instead.

Example 2.1 Consider Γ = {p,¬(p∧¬q)}. Then, Γ 6|=P q as well as Γ 6|=F q, but Γ |=min
P q, Γ |=min1

F q,

and Γ |=min2

F q all hold. Furthermore, for Γ′ = Γ∪{¬q}, we have Γ′ 6|=min
P q, Γ′ 6|=min1

F q, and Γ′ 6|=min2

F q.

Hence, all those entailment relations are nonmonotonic. Note also that Γ′ is clearly inconsistent in the

sense of classical logic.
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3 Sequent Calculi for General Minimal Entailment

In order to obtain sequent-type calculi for the three- and four-valued paraconsistent entailment relations

as defined above, we actually provide a uniform method for obtaining sequent calculi for generalised

versions of these inference relations, given an arbitrary finite-valued logic as underlying base logic. The

calculi for |=min
LP , |=min

P , |=min1

F , and |=min2

F are then obtained as special instances of the general method.

Following the sequent method of Bonatti and Olivetti [15], which we adopt here, our calculi involve

three kinds of sequents, viz. assertional sequents for axiomatising validity in the underlying base logic,

anti-sequents for axiomatising invalid formulas, and special sequents representing minimal entailment.

We start with defining our general minimal entailment relations and providing the postulates of the

corresponding calculi, and afterwards we show soundness and completeness of the calculi. The concrete

systems for |=min
LP , |=min

P , |=min1

F , and |=min2

F will be given in Section 4.

Throughout this section, we assume to deal with a finite-valued logic L with truth values VL =
{t1, . . . , tn} and a fixed set I ⊆ VL representing truth values to be minimised. Our aim is to define a

minimal entailment relation |=I
L

and axiomatise it in terms of a sequent calculus.

Let us first define the relation |=I
L

.

Definition 3.1 Let I and J be L -interpretations and Θ ⊆ P be a set of propositional constants. Then,

the relation I ≤I ,Θ
L

J holds if {p ∈ Θ | vI
L
(p) ∈ I } ⊆ {p ∈ Θ | vJ

L
(p) ∈ I }. We write I <

I ,Θ
L

J if

I ≤I ,Θ
L

J but not J ≤I ,Θ
L

I.

An L -model of an L -theory Γ is (I ;Θ)-minimal if there is no L -model J of Γ such that J <
I ,Θ
L

I.

If Θ = P , then an (I ;Θ)-minimal model is simply referred to as being I -minimal.

For L -theories Γ and ∆, the relation Γ |=I
L

∆ holds if for every I -minimal L -model I of Γ, I is an

L -model of some ϕ ∈ ∆.

In the context of relation |=I
L

, L is also referred to as the inner logic. Clearly, we have that |=min
LP =

|=
{b}
LP , |=min

P = |=
{b}
P , |=min1

F = |=
{b}
F , and |=min2

F = |=
{b,n}
F .

As a first step towards our calculi, we now need sequent calculi for the inner logic L axiomatising,

on the one hand, consequence Γ |=L ∆ and, on the other hand, non-consequence Γ 6|=L ∆.

For axiomatising consequence in L , we use the method of Zach [28], who gave a general construc-

tion for obtaining sequent systems for any finite-valued logic, and for axiomatising non-consequence, we

use the anti-sequent method of Bogojeski and Tompits [14], who provided a similar systematic method

to obtain rejection systems for any finite-valued logic based on the method of Zach. These methods use

many-sided sequents, following the original proposal of Rousseau [27], which is a natural generalisation

for many-valued logics of the two-sided sequent method originally proposed by Gentzen [19] for classi-

cal and intuitionistic logic. More specifically, both approaches reduce many-valued logics to two valued

logic based on the concept of so-called partial normal forms. Intuitively, those partial normal forms

encode the many-valued semantics of the logical connectives into classical (two-valued) propositional

formulas. From those normal forms, the needed rules for the connectives can then be derived.

For the purposes of axiomatising |=I
L

, it is not necessary at this point to fully specify the postulates

of the calculi for L , we only need to assume that such calculi exist—concrete systems for P, LP, and F

will be given in Section 4. We provide the necessary details in the following.

Definition 3.2 An L -sequent for an n-valued logic L is an n-tuple S= Γ1 | · · · | Γn, where each Γi is a

finite set of L -formulas, called component of the sequent, and is associated with a truth value ti ∈ VL .

For an L -interpretation I, a sequent S is true under I if some component Γti contains some formula ϕ

such that vL (ϕ) = ti. Furthermore, a sequent is valid if it is true under any interpretation.
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Note that a standard sequent Γ ⊢ ∆ of classical logic in the sense of Gentzen [19] corresponds to the

sequent Γ | ∆ according to the above definition.

As customary, we write sequent components comprised of a singleton set {ϕ} simply as “ϕ” and

similarly Γ∪{ϕ} as “Γ,ϕ”.

Let us denote the sequent-type system for L based on L -sequents obtained from the method of

Zach [28] by SL . As these calculi do not encode logical consequence directly, but rather formalise truth

conditions, we need some further notation.

First of all, by En we denote the L -sequent /0 | · · · | /0. Moreover, for two L -sequents S1 = Γ1 | · · · |
Γn and S2 = ∆1 | · · · | ∆n, we define the combination of S1 and S2 by S1,S2 := Γ1,∆1 | · · · | Γn,∆n.

For a sequent S = Γ1 | · · · | Γn and a set ∆ of formulas, S, [i : ∆] denotes the L -sequent that has

the same components as S but additionally contains ∆ in its i-th component, i.e., S, [i : ∆] = Γ1 | · · · |
Γi,∆ | · · · | Γn. This notation can also be applied repeatedly to a sequent in the following manner: Let

S= Γ1 | · · · | Γn, then S, [i1 : ∆1], . . . , [im : ∆m] := Γ1 | · · · | Γi1 ,∆1 | · · · | Γim ,∆m | · · · | Γn.

Given an L -sequent S, a set ∆ of formulas, and a set M ⊆ {1, . . . ,n}, we define S, [M : ∆] :=S, [i1 :

∆], . . . , [im : ∆], where M = {i1, . . . , in}. For example, consider the three-component sequent S= Γ1 | Γ2 |
Γ3, an arbitrary set ∆ of formulas, and M = {1,3}. Then, S, [M : ∆] =S, [1 : ∆], [3 : ∆] =Γ1,∆ |Γ2 | Γ3,∆.

Definition 3.3 Let Γ and ∆ be L -theories. Then, by Γ⊢L ∆ we denote the L -sequent En, [M
− : Γ], [M+ :

∆], where M+ = {i | ti ∈ V
+

L
} and M− = {i | ti ∈ VL \V

+
L
}.

Note that for, e.g., L = P, Γ ⊢P ∆ denotes the P-sequent Γ | ∆ | ∆.

The following result was shown by Zach [28]:

Proposition 3.1 Γ ⊢L ∆ is provable in SL iff Γ |=L ∆.

Now we provide the necessary details of the method of Bogojeski and Tompits [14].

Definition 3.4 An L -anti-sequent for an n-valued logic L is an n-tuple A = Γ1 ∤ · · · ∤ Γn, where each

Γi is a finite set of L -formulas, again called component of the anti-sequent, and each component is

associated with a truth value ti ∈ VL . For an L -interpretation I, an anti-sequent A is refuted by I if

no component Γi contains some formula ϕ such that vL (ϕ) = ti. Furthermore, an L -anti-sequent is

refutable if it is refuted by some interpretation.

Clearly, an L -anti-sequent Γ1 ∤ · · · ∤ Γn is refutable iff the corresponding L -sequent Γ1 | · · · | Γn is valid.

Let us denote the anti-sequent calculus for L based on L -anti-sequents obtained from the method

of Bogojeski and Tompits [14] by RL . Furthermore, the notation for combining L -sequents is defined

mutatis mutandis for L -anti-sequents, where, instead of En, we use the L -anti-sequent Fn := /0 ∤ · · · ∤ /0.

We next give the pendants of Definition 3.3 and Proposition 3.1:

Definition 3.5 Let Γ and ∆ be L -theories. Then, by Γ ⊣L ∆ we denote the L -anti-sequent Fn, [M
− :

Γ], [M+ : ∆], where M+ = {i | ti ∈ V
+

L
} and M− = {i | ti ∈ VL \V

+
L
}.

Proposition 3.2 ([14]) Γ ⊣L ∆ is provable in RL iff Γ 6|=L ∆.

We are now in a position to define sequents capturing minimal entailment.

Definition 3.6 An MEI
L

-sequent is defined as a quadruple of the form Σ;Γ ⇒I
L

∆;Θ, where Σ,Θ ⊆ P ,

and Γ and ∆ are L -theories.

An MEI
L

-sequent Σ;Γ ⇒I
L

∆;Θ is true if, for every L -interpretation I, if I is an (I ;Θ∪Σ)-minimal

L -model of Γ such that for all ψ ∈ Σ, vI
L
(ψ) ∈ I holds, then I is an L -model of some ϕ ∈ ∆.
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Γ,CI
L

Θ ⊣L II
L

q
(m1)

q,Σ;Γ ⇒I
L

∆;Θ

II
L

Σ,Γ ⊢L ∆
(m2)

Σ;Γ ⇒I
L

∆;Θ

q,Σ;Γ ⇒I
L

∆;Θ Σ;Γ,CI
L

q ⇒I
L

∆;Θ
(m3)

Σ;Γ ⇒I
L

∆;Θ,q

where CI
L

Θ = {CI
L

p | p ∈ Θ} and II
L

Σ = {II
L

p | p ∈ Σ}

Figure 2: Additional rules of the sequent calculus ME
I
L .

The connection between MEI
L

-sequents and the consequence relation |=I
L

is established through the

following theorem, whose proof is straightforward.

Theorem 3.1 Let Γ and ∆ be L -theories. Then, Γ |=I
L

∆ iff /0;Γ ⇒I
L

∆;Var(Γ ∪ ∆) is true, where

Var(Γ∪∆) is the set of all propositional constants appearing in Γ or ∆.

We need one final definition towards defining our sequent systems for generalised minimal entailment:

Definition 3.7 For a many-valued logic L , a set I ⊆ VL of truth values, and a truth-value t ∈ VL ,

let II
L

be a unary connective such that vL (II
L

ϕ) = t if vL (ϕ) ∈ I , and vL (II
L

ϕ) = f otherwise.

Furthermore, let CI
L

be the complementary connective such that vL (CI
L

ϕ) = t if vL (ϕ) 6∈ I , and

vL (CI
L

ϕ) = f otherwise. Moreover, for a set Θ of propositional constants, let II
L

Θ = {II
L

p | p ∈ Θ}
and CI

L
Θ = {CI

L
p | p ∈ Θ}.

The motivation behind those connectives is that we want to be able fix the truth values of proposi-

tional constants. For example, if we require for an interpretation I that it is a model of II
L

p, then p has to

evaluate in I to a truth value in I . We will assume that any of our inner logics contains such connectives,

as we can always obtain corresponding rules for them in SL and RL using the constructions of Zach [28]

and Bogojeski and Tompits [14].

Having laid down the necessary concepts, we can now introduce the sequent-type calculus for mini-

mal entailment.

Definition 3.8 The postulates of the calculus ME
I
L for minimal entailment consists of the postulates for

the sequent calculus SL , the postulates for the anti-sequent calculus RL , and the additional inference

rules for MEI
L

-sequents depicted in Figure 2.

The intuitive meaning of the inference rules (m1), (m2), and (m3) of Figure 2 is as follows: If the

premiss of rule (m1) is true, then there exists a model I of Γ where all elements of Θ and q evaluate to

truth values not in L under I. The model I is clearly (I ;Θ∪Σ∪{q})-minimal and thus every model

of Γ where all elements of Θ and q evaluate to truth values in I cannot be minimal. Hence, the sequent

in the conclusion is vacuously true. Rule (m2) basically states that consequences of the inner logic L

are preserved under minimal entailment. Lastly, rule (m3) allows to infer an MEI
L

-sequent by case

distinction: the left premiss ensures that ∆ holds in every (I ;Θ∪Σ)-minimal model of Γ in which q

evaluates to a truth value in L , and the right premiss states that ∆ holds in every (I ;Θ∪Σ)-minimal

model of Γ in which q does not evaluate to a truth value in I . Thus, q can be safely added to the set of

constants to be minimised.

We next show the adequacy of our calculus. We start with the soundness of ME
I
L .
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Theorem 3.2 (Soundness) If Σ;Γ ⇒I
L

∆;Θ is provable in ME
I
L , then it is true.

Proof. The proof proceeds by showing the correctness of each rule.

We start with rule (m1). Suppose (i) its premiss Γ,CI
L

Θ ⊣L II
L

q is refutable but (ii) its conclusion

q,Σ;Γ ⇒I
L

∆;Θ is not true. By (ii), there is an (I ;Θ∪Σ∪{q})-minimal model I of Γ such that for all

p ∈ Σ∪{q}, vL (p)∈I . Similarly, by (i), there exists a model J of Γ∪CI
L

Θ such that vJ
L
(II

L
q) 6∈ V

+
L

,

or, equivalently, vJ
L
(q) 6∈ I . Trivially, J is a model of Γ and of CI

L
Θ, and J |=L CI

L
Θ implies for all

p ∈ Θ, vJ
L
(p) 6∈ I . Now, since all elements of Σ∪{q} evaluate to a truth value in I under I and all

elements of Θ∪{q} do not evaluate to a truth value in I under J, we have J ≤
I ;Θ∪Σ∪{q}
L

I. Furthermore,

since vJ
L
(q) 6∈ I but vI

L
(q) ∈ I , it even holds that J <

I ;Θ∪Σ∪{q}
L

I, which contradicts that I is an

(I ;Θ∪Σ∪{q})-minimal model of Γ. Hence, (ii) cannot be the case and the rule is indeed correct.

The correctness of rule (m2) is immediate, since any (I ;Θ∪Σ)-minimal model I of Γ for which

all elements of Σ evaluate to truth values in I is trivially an L -model of Γ. From the sequent in the

premiss, it then follows that I |=L ϕ , for some ϕ ∈ ∆. Hence, Σ;Γ ⇒I
L

∆;Θ is true.

To show the soundness of rule (m3), suppose that both sequents in its premiss are true. Furthermore,

consider an (I ;Θ∪{q}∪Σ)-minimal model I of Γ where all elements of Σ evaluate to truth values in

I . We distinguish two cases: either (i) vI
L
(q) ∈ I or (ii) vI

L
(q) 6∈ I . Suppose (i) holds. Then, I is a

(Θ∪Σ∪{q})-minimal model of Γ where all elements of Σ∪{q} evaluate to truth values in I . Since

I is an (I ;Θ∪Σ∪{q})-minimal model and vI
L
(q) ∈ I , it is also an (I ;Θ∪Σ)-minimal model of Γ,

and because q,Σ;Γ ⇒I
L

∆;Θ holds, I |=L ϕ follows, for some ϕ ∈ Σ. So, in case of (i), the conclusion

of the rule is true.

It remains to consider case (ii). Since q does not evaluate to any truth value in I , I |=L CI
L

q holds

by definition. So, I is an (I ;Θ∪Σ∪ {q})-minimal model of Γ∪ {¬Iq} such that all elements of Σ

evaluate to truth values in I , and thus also an (I ;Θ∪Σ)-minimal model. Since Σ;Γ,CI
L

q ⇒I
L

∆;Θ is

true, it follows that for some ϕ ∈ ∆, I |=L ϕ . Therefore, the conclusion of the rule also holds. �

Theorem 3.3 (Completeness) If Σ;Γ ⇒I
L

∆;Θ is true, then it is provable in ME
I
L .

Proof. Suppose S = Σ;Γ ⇒I
L

∆;Θ is true. We show the result by induction on |Θ|.

INDUCTION BASE. Assume |Θ|= 0, i.e., Θ = /0. If there is some q ∈ Σ such that Γ ⊣L II
L

q is refutable,

then S is provable by a single application of rule (m1). So, suppose that Γ ⊢L II
L

q is valid, for any

q ∈ Σ. Then, any model I of Σ∪Γ is an (I ;Θ∪Σ)-minimal model, since Θ = /0 and, by assumption, all

elements in Σ have to evaluate to truth values in I in every model of Γ. Now, since I is minimal and S

is true by hypothesis, I |=L ϕ , for some ϕ ∈ ∆. Hence, the L -sequent II
L

Σ,Γ ⊢L ∆ is valid and thus

provable by the completeness of SL . A single application of rule (m2) then yields a proof of S.

INDUCTION STEP. Assume |Θ|> 0 and that all true MEI
L

-sequents Σ′;Γ′ ⇒I
L

∆′;Θ′ with |Θ|= |Θ′|+1

are provable in ME
I
L . Suppose that Θ = Θ′ ∪{p}, for some propositional constant p such that p 6∈ Θ′.

We show that S1 := p,Σ;Γ ⇒I
L

∆;Θ′ and S2 := Σ;Γ,CI
L

p ⇒I
L

∆;Θ′ are both true and thus, by induction

hypothesis, also provable in ME
I
L . Let I be any (Θ′∪Σ∪{p})-minimal model of Γ where all elements

of Σ∪{p} evaluate to truth values in I . Trivially, I is an (I ;Θ∪Σ)-minimal model of Γ where all

elements of Σ evaluate to truth values in I . Since S is true, it follows that I |=L ϕ , for some ϕ ∈ ∆.

Hence, S1 is also true. On the other hand, suppose I is an (I ;Θ′∪Σ)-minimal model of Γ∪CI
L

p where

all elements of Σ evaluate to truth values in I . Now, I |=L CI
L

p implies vI
L
(p) 6∈ I , and therefore

I is trivially also a (I ;Θ∪Σ)-minimal model. On the other hand, the truth of S implies I |=L ϕ , for

some ϕ ∈ ∆, and thus S2 is true as well. Since S1 and S2 are both true, and thus provable in in ME
I
L by

induction hypothesis, a single application of rule (m3) yields a proof for S. �
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Γ | ∆ | Π,ϕ
(¬ : f)⊢

Γ,¬ϕ | ∆ | Π

Γ | ∆,ϕ | Π
(¬ : b)⊢

Γ | ∆,¬ϕ | Π

Γ,ϕ | ∆ | Π
(¬ : t)⊢

Γ | ∆ | Π,¬ϕ

Γ,ϕ ,ψ | ∆ | Π
(∧ : f)⊢

Γ,ϕ ∧ψ | ∆ | Π

Γ | ∆ | Π,ϕ Γ | ∆ | Π,ψ
(∧ : t)⊢

Γ | ∆ | Π,ϕ ∧ψ

Γ | ∆,ϕ ,ψ | Π Γ | ∆,ϕ | Π,ϕ Γ | ∆,ψ | Π,ψ
(∧ : b)⊢

Γ | ∆,ϕ ∧ψ | Π

Γ | ∆,ϕ | Π,ϕ Γ,ψ | ∆ | Π
(⊃: f)⊢

Γ,ϕ ⊃ ψ | ∆ | Π

Γ | ∆,ϕ | Π,ϕ Γ | ∆,ψ | Π
(⊃: b)⊢

Γ | ∆,ϕ ⊃ ψ | Π

Γ,ϕ | ∆ | Π,ψ
(⊃: t)⊢

Γ | ∆ | Π,ϕ ⊃ ψ

Γ | ∆ | Π
(w : f)⊢

Γ,ϕ | ∆ | Π

Γ | ∆ | Π
(w : b)⊢

Γ | ∆,ϕ | Π

Γ | ∆ | Π
(w : t)⊢

Γ | ∆ | Π,ϕ

Figure 3: Rules of the sequent calculus SP.

4 Calculi for Three- and Four-Valued Paraconsistent Logics

From the results in the previous section, we can obtain now concrete calculi for axiomatising |=min
LP , |=min

P ,

|=min1

F , and |=min2

F . We start with the three-valued case. Since LP is a sublogic of P, we only deal with

the case of |=min
P .

To begin with, following from the general construction of Zach [28] and Bogojeski and Tompits [14],

we obtain a sequent calculus SP and an anti-sequent calculus RP for P as follows:

(i) the axioms of SP are P-sequents of the form Γ1,ϕ | Γ2,ϕ |Γ3,ϕ and Γ1,F | Γ2 | Γ3, and the inference

rules of SP are those depicted in Figure 3; and

(ii) the axioms of RP are P-anti-sequents of the form Γ1 ∤ Γ2 ∤ Γ3, where Γ1,Γ2,Γ3 are sets of propo-

sitional and logical constants such that Γ1 ∩Γ2 ∩Γ3 = /0 and F 6∈ Γ1, and the inference rules of RP

are those depicted in Figure 4.

Note that the inference rules of SP and RP contain only those for the primitive logical connectives.

Furthermore, the rules (w : f)⊢, (w : b)⊢, and (w : t)⊢ are called weakening rules.

The intuition behind the postulates of SP and RP is the following: An axiom of SP of the form

Γ1,ϕ | Γ2,ϕ | Γ3,ϕ simply expresses the three-valuedness of the logic P, i.e., that any formula ϕ must

have one of the three truth values f, b, or t, while an axiom of the form Γ1,F | Γ2 | Γ3 is trivially valid

because the truth constant F is always false. The axioms of RP, on the other hand, represent basically the

complementary situation of atomic P-sequents, encoding a refuting interpretation. As for the inference

rules of both SP and RP, they intuitively express the truth-table conditions of the different connectives

obtained from a specification in two-valued logic. For instance, the rule (⊃: f)⊢ expresses the semantic

conditions when an implication ϕ ⊃ ψ is false, which is the case when ϕ has one of the designated truth

values b or t, and ψ is false. Note that the rules of RP are always unary as they intuitively correspond

to the branches of a systematic search for countermodels in the standard sequent calculus. Roughly
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Γ ∤ ∆ ∤ Π,ϕ
(¬ : f)⊣

Γ,¬ϕ ∤ ∆ ∤ Π

Γ ∤ ∆,ϕ ∤ Π
(¬ : b)⊣

Γ ∤ ∆,¬ϕ ∤ Π

Γ,ϕ ∤ ∆ ∤ Π
(¬ : t)⊣

Γ ∤ ∆ ∤ Π,¬ϕ

Γ,ϕ ,ψ ∤ ∆ ∤ Π
(∧ : f)⊣

Γ,ϕ ∧ψ ∤ ∆ ∤ Π

Γ ∤ ∆,ϕ ,ψ ∤ Π
(∧ : b1)⊣

Γ ∤ ∆,ϕ ∧ψ ∤ Π

Γ ∤ ∆,ϕ ∤ Π,ϕ
(∧ : b2)⊣

Γ ∤ ∆,ϕ ∧ψ ∤ Π

Γ ∤ ∆,ψ ∤ Π,ψ
(∧ : b3)⊣

Γ ∤ ∆,ϕ ∧ψ ∤ Π

Γ ∤ ∆, ∤ Π,ϕ
(∧ : t1)⊣

Γ ∤ ∆, ∤ Π,ϕ ∧ψ

Γ ∤ ∆, ∤ Π,ψ
(∧ : t2)⊣

Γ ∤ ∆ ∤ Π,ϕ ∧ψ

Γ ∤ ∆,ϕ ∤ Π,ϕ
(⊃: f1)⊣

Γ,ϕ ⊃ ψ ∤ ∆ ∤ Π

Γ,ψ ∤ ∆ ∤ Π
(⊃: f2)⊣

Γ,ϕ ⊃ ψ ∤ ∆ ∤ Π

Γ ∤ ∆,ϕ ∤ Π,ϕ
(⊃: b1)⊣

Γ ∤ ∆,ϕ ⊃ ψ ∤ Π

Γ ∤ ∆,ψ ∤ Π
(⊃: b2)⊣

Γ ∤ ∆,ϕ ⊃ ψ ∤ Π

Γ,ϕ ∤ ∆ ∤ Π,ψ
(⊃: t)⊣

Γ ∤ ∆ ∤ Π,ϕ ⊃ ψ

Figure 4: Rules of the anti-sequent calculus RP.

speaking, what is exhaustive search in the standard calculus amounts to nondeterminism in the anti-

sequent calculus.

From the general construction of Zach [28] and Bogojeski and Tompits [14], it follows that SP and RP

are sound and complete, i.e., a P-sequent Γ1 | Γ2 | Γ3 is valid iff it is provable in SP, and a P-anti-sequent

Γ1 ∤ Γ2 ∤ Γ3 is refutable iff it is provable in RP.

The calculus MEP for |=min
P comprises now the calculi SP and RP, and the inference rules for MEI

L
-

sequents as described in Figure 2, setting I = {b} and L = P. However, instead of the general rules

(m1) and (m2), we may use the following versions which directly encode the semantics of the operators

I
{b}
P and C

{b}
P , instead of providing explicit inference rules for them in the calculi RP and RP:

Γ ∤ Θ,Π,q ∤ /0
(m′

1)
q,Σ;Γ,C

{b}
P Π ⇒

{b}
P ∆;Θ

Σ,Γ | ∆,Π | ∆,Σ
(m′

2)
Σ;Γ,C

{b}
P Π ⇒

{b}
P ∆;Θ

Following from our results in Section 3, the calculus MEP is sound and complete. Hence, we get the

following corollary:

Theorem 4.1 Let Γ and ∆ be P-theories. Then, Γ |=min
P ∆ iff /0;Γ ⇒ ∆;Var(Γ∪∆) is provable in MEP,

where Var(Γ∪∆) is the set of propositional constants appearing in Γ or ∆.

Note that, if Γ and ∆ do not contain ⊃, then the above result holds also for |=min
LP .

Example 4.1 Recall the theory Γ = {p,¬(p∧¬q)} from Example 2.1. As Γ |=min
P q holds, the sequent

/0; p,¬(p∧¬q)⇒
{b}
P q; p,q is provable in MEP. A proof of the sequent is as follows:

p,q ∤ q, p ∤ /0
(¬ : t)⊣

p ∤ q, p ∤ ¬q
(∧ : t2)⊣

p ∤ q, p ∤ p∧¬q
(¬ : f)⊣

p,¬(p∧¬q) ∤ q, p ∤ /0
(m′

1)
p; p,¬(p∧¬q)⇒

{b}
P q;q

p | q, p | q, p

p,q | q, p | q
(¬ : t)⊢

p | q, p | q,¬q
(∧ : t)⊢

p | q, p | q, p | q, p∧¬q
(¬ : f)⊢

p,¬(p∧¬q) | q, p | q, p | q
(m′

2)
/0; p,¬(p∧¬q),C

{b}
P p ⇒

{b}
P q;q

(m3)
/0; p,¬(p∧¬q)⇒

{b}
P q; p,q
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Γ | ∆ | Π | Ω,ϕ
(¬ : f)⊢

Γ,¬ϕ | ∆ | Π | Ω

Γ | ∆,ϕ | Π | Ω
(¬ : n)⊢

Γ | ∆,¬ϕ | Π | Ω

Γ | ∆ | Π,ϕ | Ω
(¬ : b)⊢

Γ | ∆ | Π,¬ϕ | Ω

Γ,ϕ | ∆ | Π | Ω
(¬ : t)⊢

Γ | ∆ | Π | Ω,¬ϕ

Γ,ϕ ,ψ | ∆,ϕ ,ψ | Π | Ω Γ,ϕ ,ψ | ∆ | Π,ϕ ,ψ | Ω
(∧ : f)⊢

Γ,ϕ ∧ψ | ∆ | Π | Ω

Γ | ∆,ϕ ,ψ | Π | Ω Γ | ∆,ϕ | Π | Ω,ϕ Γ | ∆,ψ | Π | Ω,ψ
(∧ : n)⊢

Γ | ∆,ϕ ∧ψ | Π | Ω

Γ | ∆ | Π,ϕ ,ψ | Ω Γ | ∆ | Π,ϕ | Ω,ϕ Γ | ∆ | Π,ψ | Ω,ψ
(∧ : b)⊢

Γ | ∆ | Π,ϕ ∧ψ | Ω

Γ | ∆ | Π | Ω,ϕ Γ | ∆ | Π | Ω,ψ
(∧ : t)⊢

Γ | ∆ | Π | Ω,ϕ ∧ψ

Γ | ∆ | Π,ϕ | Ω,ϕ Γ,ψ | ∆ | Π | Ω
(⊃: f)⊢

Γ,ϕ ⊃ ψ | ∆ | Π | Ω

Γ | ∆ | Π,ϕ | Ω,ϕ Γ | ∆,ψ | Π | Ω
(⊃: n)⊢

Γ | ∆,ϕ ⊃ ψ | Π | Ω

Γ | ∆ | Π,ϕ | Ω,ϕ Γ | ∆ | Π,ψ | Ω
(⊃: b)⊢

Γ | ∆ | Π,ϕ ⊃ ψ | Ω

Γ,ϕ | ∆,ϕ | Π | Ω,ψ
(⊃: t)⊢

Γ | ∆ | Π | Ω,ϕ ⊃ ψ

Γ | ∆ | Π | Ω
(w : f)⊢

Γ,ϕ | ∆ | Π | Ω

Γ | ∆ | Π | Ω
(w : n)⊢

Γ | ∆,ϕ | Π | Ω

Γ | ∆ | Π | Ω
(w : b)⊢

Γ | ∆ | Π,ϕ | Ω

Γ | ∆ | Π | Ω
(w : t)⊢

Γ | ∆ | Π | Ω,ϕ

Figure 5: Rules of the sequent calculus SF.

Note that the top-most sequents are axioms in SP and RP, respectively.

Let us now consider the calculi for |=min1

F and |=min2

F . For the inner logic F, we obtain the calculi SF

and RF as follows:

(i) the axioms of SF are F-sequents of the form

Γ1,ϕ | Γ2,ϕ | Γ3,ϕ | Γ4,ϕ , Γ1 | Γ2,N | Γ3 | Γ4, and Γ1 | Γ2 | Γ3,B | Γ4,

and the inference rules of SF are those given in Figure 5, and

(ii) the axioms of RF are F-anti-sequents of the form Γ1 ∤ Γ2 ∤ Γ3 ∤ Γ4, where Γ1, Γ2, Γ3, and Γ4 are sets

of propositional and logical constants such that Γ1 ∩Γ2 ∩Γ3 ∩Γ4 = /0, N 6∈ Γ2, and B 6∈ Γ3, and the

inference rules of RF are given in Figure 6.

Again, these calculi are sound and complete and the intuition behind the axioms and rules is similar

to that of the postulates of SP and RP, respectively. Also, for the calculi ME
1
F for |=min1

F and ME
2
F for

|=min2

F , which includes the calculi SF and RF, we use the instance of rule (m3) for the logics at hand and

variants of rules (m1) and (m2) which again directly encode the semantic properties of the operators II
L

and CI
L

as follows: for ME
1
F, we use the rules
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Γ ∤ ∆ ∤ Π ∤ Ω,ϕ
(¬ : f)⊣

Γ,¬ϕ ∤ ∆ ∤ Π ∤ Ω

Γ ∤ ∆,ϕ ∤ Π ∤ Ω
(¬ : n)⊣

Γ ∤ ∆,¬ϕ ∤ Π ∤ Ω

Γ ∤ ∆ ∤ Π,ϕ ∤ Ω
(¬ : b)⊣

Γ ∤ ∆ ∤ Π,¬ϕ ∤ Ω

Γ,ϕ ∤ ∆ ∤ Π ∤ Ω
(¬ : t)⊣

Γ ∤ ∆ | Π ∤ Ω,¬ϕ

Γ,ϕ ,ψ ∤ ∆,ϕ ,ψ ∤ Π ∤ Ω
(∧ : f1)⊣

Γ,ϕ ∧ψ ∤ ∆ ∤ Π ∤ Ω

Γ,ϕ ,ψ ∤ ∆ ∤ Π,ϕ ,ψ ∤ Ω
(∧ : f2)⊣

Γ,ϕ ∧ψ ∤ ∆ ∤ Π ∤ Ω

Γ ∤ ∆,ϕ ,ψ ∤ Π ∤ Ω
(∧ : n1)⊣

Γ ∤ ∆,ϕ ∧ψ ∤ Π ∤ Ω

Γ ∤ ∆,ϕ ∤ Π ∤ Ω,ϕ
(∧ : n2)⊣

Γ ∤ ∆,ϕ ∧ψ ∤ Π ∤ Ω

Γ ∤ ∆,ψ ∤ Π ∤ Ω,ψ
(∧ : n3)⊣

Γ ∤ ∆,ϕ ∧ψ ∤ Π ∤ Ω

Γ ∤ ∆ ∤ Π,ϕ ,ψ ∤ Ω
(∧ : b1)⊢

Γ ∤ ∆ ∤ Π,ϕ ∧ψ ∤ Ω

Γ ∤ ∆ ∤ Π,ϕ ∤ Ω,ϕ
(∧ : b2)⊣

Γ ∤ ∆ ∤ Π,ϕ ∧ψ ∤ Ω

Γ ∤ ∆ ∤ Π,ψ ∤ Ω,ψ
(∧ : b3)⊣

Γ ∤ ∆ ∤ Π,ϕ ∧ψ ∤ Ω

Γ ∤ ∆ ∤ Π ∤ Ω,ϕ
(∧ : t1)⊣

Γ ∤ ∆ ∤ Π ∤ Ω,ϕ ∧ψ

Γ ∤ ∆ ∤ Π ∤ Ω,ψ
(∧ : t2)⊣

Γ ∤ ∆ ∤ Π ∤ Ω,ϕ ∧ψ

Γ,ϕ ∤ ∆,ϕ ∤ Π ∤ Ω,ψ
(⊃: t)⊣

Γ ∤ ∆ ∤ Π ∤ Ω,ϕ ⊃ ψ

Γ ∤ ∆ ∤ Π,ϕ ∤ Ω,ϕ
(⊃: f1)⊣

Γ,ϕ ⊃ ψ ∤ ∆ ∤ Π ∤ Ω

Γ,ψ ∤ ∆ ∤ Π ∤ Ω
(⊃: f2)⊣

Γ,ϕ ⊃ ψ ∤ ∆ ∤ Π ∤ Ω

Γ ∤ ∆ ∤ Π,ϕ ∤ Ω,ϕ
(⊃: n1)⊣

Γ ∤ ∆,ϕ ⊃ ψ ∤ Π ∤ Ω

Γ ∤ ∆,ψ ∤ Π ∤ Ω
(⊃: n2)⊣

Γ ∤ ∆,ϕ ⊃ ψ ∤ Π ∤ Ω

Γ ∤ ∆ ∤ Π,ϕ ∤ Ω,ϕ
(⊃: b1)⊣

Γ ∤ ∆ ∤ Π,ϕ ⊃ ψ ∤ Ω

Γ ∤ ∆ ∤ Π,ψ ∤ Ω
(⊃: b2)⊣

Γ ∤ ∆ ∤ Π,ϕ ⊃ ψ ∤ Ω

Figure 6: Rules of the anti-sequent calculus RF.

Γ ∤ Γ ∤ Θ,Π,q ∤ /0
(m†

1)
q,Σ;Γ,C

{b}
F Π ⇒

{b}
F ∆;Θ

Σ,Γ | Σ,Γ | Π,∆ | Σ,∆
(m†

2)
Σ;Γ,C

{b}
F Π ⇒

{b}
F ∆;Θ

and for ME
2
F, we use the rules

Γ ∤ Γ,Θ,Π,q ∤ Θ,Π,q ∤ /0
(m‡

1)
q,Σ;Γ,C

{b,n}
F Π ⇒

{b,n}
F ∆;Θ

Σ,Γ | Π,Γ | Π,∆ | Σ,∆
(m‡

2)
Σ;Γ,C

{b,n}
F Π ⇒

{b,n}
F ∆;Θ

In view of our general construction in Section 3, we have the following result:

Theorem 4.2 Let Γ and ∆ be F -theories. Then,

(i) Γ |=min1

F ∆ iff /0;Γ ⇒
{b}
F ∆;Var(Γ∪∆) is provable in ME

1
F, and

(ii) Γ |=min2

F ∆ iff /0;Γ ⇒
{b,n}
F ∆;Var(Γ∪∆)) is provable in ME

2
F,

where Var(Γ∪∆) is the set of propositional constants appearing in Γ or ∆.

To conclude our discussion, we give an example illustrating a proof in ME
1
F.

Example 4.2 Consider again the theory

Γ = {p,¬(p∧¬q)}

from Example 4.1. As Γ |=min1

F q holds, the sequent

/0; p,¬(p∧¬q)⇒
{b}
F q; p,q

is provable in ME
1
F. A proof, β , of this sequent is given below, using the subproof α:
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• Proof α:

p,q | p, p,q | p,q | q
(¬ : n)⊢

p,q | p, p,¬q | p,q | q p,q | p, p | p,q | q, p

p,q | p, p,q | p,q | q,¬q
(¬ : n)⊢

p,q | p, p,¬q | p,q | q,¬q
(∧ : n)⊢

p,q | p, p∧¬q | p,q | q
(¬ : t)⊢

p | p, p∧¬q | p,q | q,¬q

• Proof β :

p,q ∤ p,q ∤ q, p ∤ /0
(¬ : n)⊣

p,q ∤ p,¬q ∤ q, p ∤ /0
(w : n)⊣

p,q ∤ p, p,¬q ∤ q, p ∤ /0
(∧ : n)⊣

p,q ∤ p, p∧¬q ∤ q, p ∤ /0
(¬ : t)⊣

p ∤ p, p∧¬q ∤ q, p ∤ ¬q
(∧ : t)⊣

p ∤ p, p∧¬q ∤ q, p ∤ p∧¬q
(¬ : n)⊣

p ∤ p,¬(p∧¬q) ∤ q, p ∤ p∧¬q
(¬ : f)⊣

p,¬(p∧¬q) ∤ p,¬(p∧¬q) ∤ q, p ∤ /0
(m1)

p; p,¬(p∧¬q)⇒
{b}
F q;q

p | p, p∧¬q | p,q | q, p α
(∧ : t)⊢

p | p, p∧¬q | p,q | q, p∧¬q
(¬ : n)⊢

p | p,¬(p∧¬q) | p,q | q, p∧¬q
(¬ : t)⊢

p,¬(p∧¬q) | p,¬(p∧¬q) | p,q | q
(m2)

/0; p,¬(p∧¬q),C
{b}
F p ⇒

{b}
F q;q

(m3)
/0; p,¬(p∧¬q)⇒

{b}
F q; p,q

5 Conclusion

In this paper, we introduced a general method for obtaining sound and complete sequent-type calculi for a

whole class of nonmonotonic minimal-entailment relations in the style of the proof-theoretical approach

due to Bonatti and Olivetti [15]. We obtained particular calculi for well-known paraconsistent logics as

special instances of our general method.

Concerning future work, it would be interesting to develop a similar proof-theoretical approach for

more general lattice-based entailment relations than the one studied here, like those discussed by Gins-

berg [20]. Moreover, generalisations to the predicate-logic case would be a worthwhile endeavour too.
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