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Ethical and legal concerns make it necessary for programs that may directly influence the life of
people (via, e.g., legal or health counseling) to justify in human-understandable terms the advice
given. Answer Set Programming has a rich semantics that makes it possible to very concisely
express complex knowledge. However, justifying why an answer is a consequence from an ASP
program may be non-trivial — even more so when the user is an expert in a given domain, but
not necessarily knowledgeable in ASP. Most ASP systems generate answers using SAT-solving
procedures on ground rules that do not match how humans perceive reasoning. We propose using
s(CASP), a query-driven, top-down execution model for predicate ASP with constraints to generate
justification trees of (constrained) answer sets. The operational semantics of s(CASP) relies on
backward chaining, which is intuitive to follow and lends itself to generating explanations that are
easier to translate into natural language. We show how s(CASP) provides minimal justifications for,
among others, relevant examples proposed in the literature, both as search trees but, more importantly,
as explanations in natural language. We validate our design with real ASP applications and evaluate
the cost of generating s(CASP) justification trees.

1 Introduction and Motivation

Since the European Union approved the General Data Protection Regulation (GDPR) [7], every person
affected by a decision made by an automated process has the right to obtain an explanation of the decision
reached and to challenge the decision (Art. 71). Therefore, the uptake of current Artificial Intelligence
(AI) systems is restricted by their limitation to explain their decisions in a way amenable to human
understanding. For example, Al systems based on machine learning may give accurate outcomes, but
they work as a black box without providing an intuitive high-level description of how they reach a
decision. It is therefore hard for users and/or programmers to understand or verify the principles that
govern them. In the context of Explainable Artificial Intelligence [6] (XAI), the USA Department of
Defense (DoD) is facing challenges that demand XAl to understand, appropriately trust, and effectively
manage an emerging generation of artificially intelligent machine partners.

Answer Set Programming (ASP) is a successful paradigm for developing intelligent applications
and has attracted much attention due to its expressiveness, ability to represent knowledge, incorporate
non-monotonicity, and model combinatorial problems. ASP uses the stable model semantics [12] for
programs with negation. It is a declarative paradigm where the programmer specifies rules that describe
the problem to be solved and the ASP system computes the solution. The solution of the program is an
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answer set that satisfies the rules of the program under the stable model semantics. Most ASP systems
follow bottom-up executions that require a grounding phase where the variables of the program are
replaced with their possible values. During the grounding phase, links between variables are lost and
therefore an explanation framework for these systems must face many challenges to provide a concise
justification of why a specific answer set satisfies the rules (and which rules). Some of the most relevant
approaches to justification are:

* Off-line and on-line justifications [16] provide a graph-based explanation of the truth value (i.e.,
true, false, or assume) of a literal. The explanation assume is used for literals whose truth value is
not being requested. This proposal provides a basic theory to support debugging of ASP programs.

* Causal Graph Justification [2] explains why a literal is contained in an answer set, but not why a
negated literal is not contained. It can be used to formalize and reason with causal knowledge (i.e.,
it relies on a causal interpretation of rules and the idea of causal chain).

* Labeled ABA-Based Answer Set Justification, LABAS [17] explains the truth value of an extended
literal with respect to a given answer set. A literal is in the answer set if a derivation of this literal
is supported and is not in the answer set if all derivations of this literal are “attacked”. IL.e., a literal
is explained in terms of the (negated) literals necessary for its derivations, rather than in terms of
the whole answer set.

However, these approaches are applied to grounded versions of the programs and they may produce
unwieldy justifications. The explanation of answers from ASP programs with constraint (both under
discrete or dense domains) is even more challenging since the grounding phase removes the relationships
among constrained variables, in the case of dense domains, because of the difficulty of representing the
ranges of the variables.

On the other hand, systems that follow a top-down execution can trace which rules have been used to
obtain the answers more easily. One such system is ErgoAl (https://coherentknowledge.com), based
on XSB [19], that generates justification trees for programs with variables. ErgoAl has been applied to
analyze streams of financial transactions in near real-time providing explanations in English that are
fully detailed and interactively navigable. However, default negation in ErgoAl is based on the well-
founded semantics [11] and therefore ErgoAl is not a framework that can explain the answers from ASP
programs.

In this work we propose the use of s(CASP) [1], a goal-directed interpreter for ASP with constraints
(CASP), to explain the results of CASP programs. The top-down evaluation does not require a grounded
program. Moreover, the execution of an s(CASP) program returns partial stable models that are the
relevant subsets of the ASP stable models which include only the (negated) literals necessary to support
the initial query. To the best of our knowledge, s(CASP) is the only system that exhibits the property of
relevance [15].

This paper shows how s(CASP) can use top-down evaluation trees to generate minimal justifications
where it is possible to control which literals should appear. We also provide a mechanism to present the
justifications with natural language using a generic translation and the possibility of customizing it with
directives that provide translation patterns. Both plain text and user-friendly, expandable HTML can be
generated. Additionally, the translation into natural language can be used with the program text itself,
thereby making it easier for experts without a programming background to understand both the program
and the results of its execution.

We validate the design and the expressiveness of the s(CASP) justification trees with examples from
the literature and with complex applications such as a Physician Advisory System for Chronic Heart
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Failure Management. Finally, we evaluate the cost of generating the s(CASP) justification trees. All the
program and files used or mentioned in this paper are available at http://www.cliplab.org/papers/
sCASP-ICLP2020/.

2 Background: s(CASP)

Answer Set Programming is a logic programming and modelling language that evaluates normal logic
programs under the stable model semantics [12]. s(CASP) [1], based on s(ASP) [14], is a top-down,
goal-driven ASP system, that can evaluate Constraint ASP programs with function symbols (functors)
and constraints without grounding them either before or during execution. Grounding is a procedure
that substitutes program variables with the possible values from their domain. For most classical ASP
solvers, grounding is a necessary pre-processing phase. Grounding, however, requires program variables
to be restricted to take values in a finite domain. As a result, modeling continuous change is challenging
for ASP solvers, while it is easier for s(CASP). Constraints improve both expressiveness and efficiency
in logic programming. As a result, s(CASP) is more expressive and faster than s(ASP).
An s(CASP) program is a set of clauses of the form:

h:-cy, ..., c, by, ..., by, not by, ..., not b,.

where h and by, ..., b, are atoms, not corresponds to default negation, and c;, ..., c; are constraints in
some constraint system.

In s(CASP), and unlike Prolog’s negation as failure, not p(X) is a constructive negation that can
return bindings for X on success. Unlike in ASP, the variable X does not need to appear in any positive
literal. Both are possible because s(CASP) resolves negated atoms not b; against dual rules of the
program [1, 14]. Non-ground calls to not p(X) return the bindings for which the call p(X) would have
failed. We summarize here the synthesis of the dual of a logic program P: Clark’s completion [5] is first
performed and then De Morgan’s laws are applied.

1. The i-th rule of the predicate defining p/n is p;(X) « B; (i =1,...,k). B;is a conjunction of
positive (b; ;) or negative (—b; ;) literals. Let y; be the list of variables that occur in the body B; but
do not occur in the head. The first-order formula corresponding to the rule is VX (p;(X) < 3y; B;).

2. With the rules for a predicate we construct its Clark’s completion:

VE(p(X) <= pi@) V- V(X))
VX ( pl(f) — El)_); (bi.l AR /\bi.m/\_‘ bim-‘rl A AT bi.n) )

3. Their semantically equivalent duals —p/n, —p;/n are:

VX (—p(X) +— (pi(X)V-- V(X))
VX (—pi(X) «— 23 (bia A Abim A= bimi1 A+ A= biy) )

4. Applying De Morgan’s laws we obtain:
VX(—p(X) <— —p1(XD)A--Apr(X))
VX (—pi(X)  — Wi (2bia V-V bimV bimy1 VeV big) )

This provides a definition for —p(X) via a clause with head —p;(X) for each original clause with
head p;(X). A construction (C- forall ) to implement the universal quantifier introduced in the body
of the dual program [1, Section 3.4] is provided by the metainterpreter.
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Definitions for negated literals in P and for each of the newly negated literals are thus synthesized.
At the end of the chain, constraints are negated and handled by the constraint solver. After removing
explicit quantifiers (as in Horn clauses), the dual program is then executed in a top-down fashion by
a meta-interpreter [1, 14] which does not implement SLD semantics. Instead, its main distinguishing
points are:

Global constraints: The s(CASP) compiler automatically generates a global_constraint predicate

that captures all the global constraints written by the programmer (e.g., constructions of the form

- p, q to express that p and q cannot hold simultaneously). This goal is always executed by the
metainterpreter to ensure that models are consistent.

Loop handling: Two different cases are distinguished.

* When a call eventually invokes itself and there is an odd number of intervening negations
(asin,e.g., p:-q. q:-notr. r:- p.),theevaluation fails (and backtracks) to avoid
contradictions of the form p A —p.

e When there is an even number of intervening negations, as in
p:-notq. q:-r. r: notp. the metainterpreter generates two stable models,
{p, not q, not r} and {q, r, not p}.

Additionally, the s(CASP) compiler detects statically rules of the form r :- q, not r. and intro-
duces global constraints to ensure that the models satisfy —g V r, even if the literals r or q are not
needed to solve the query. Therefore, s(CASP) will state that the program

1 p :- not qg. 2 q :- not p. 3 r :- notr.

has no stable models, regardless of the initial query.

In addition to default negation, s(CASP) supports classical negation to capture the explicit evidence that
a literal is false. Classical negation is defined with the prefix '-', e.g., -p(a) would mean that it is not the
case that p(a) is true. When a literal p(X) and its explicit negation -p(X) appear in a program, s(CASP)
automatically adds the constraint :- -p(X), p(X) to ensure that they are not simultaneously true.

The execution of an s(CASP) program starts with a query of the form ?- c, 1y, ..., 1,,, where 1; are
(negated) literals and c, is a conjunction of constraint(s). This is followed by the evaluation of the global
constraints written by the user or introduced by the compiler. The answers to the query are partial stable
models where each one is a subset of a consistent stable model [12] including only the literals necessary
to support the query (see [1] for details). Additionally, for each partial stable model s(CASP) returns on
backtracking the justification tree and the bindings for the free variables of the query that correspond to
the most general unifier (mgu) of a successful top-down derivation consistent with this stable model.

s(CASP), available at https://gitlab.software.imdea.org/ciao-lang/scasp, is implemented in
Ciao Prolog [13].

3 Justification Trees of Goal-Directed Evaluations

We will show how s(CASP) execution trees can provide concise justifications for the models supporting
a query and how they address several challenges [8] arising in the context of XAL

Definition 1 (Minimal s(CASP) Justification Tree) Let Q be a query to a CASP program P. The
s(CASP) Justification Tree of a (partial) model of P is the ordered list of literals in the path of the
successful goal-driven proof of Q, conjoined with that of the proof of the global constraint under the
operational semantics of s(CASP).
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1 opera(D) :- not home(D). % EVALUATION TREE:
> home(D) :- not opera(D). opera(A|{A \= monday}) :-
3 home(monday) . not home(A|{A \= monday}) :-
not o_home 1(A|{A \= monday}) :-
% QUERY: chs(opera(A|{A \= monday})) .
7- opera(A). not o_home 2(A|{A \= monday}) :-
A \= monday.
% BINDINGS: global__constraint.
A \= monday
% MCLEL:

{ opera(A|{A \= monday}), not home(A|{A \= monday}) }

Figure 1: Code, query, bindings, model, and evaluation of opera.pl.

Note that for every model returned by s(CASP), its Justification Tree is minimal because it only
contains the literals needed to support Q and the consistency of the global constraints in P, i.e., the
subset of literals contained in a stable model that are relevant to Q.

Let us describe how an s(CASP) justification tree is to be understood. We will follow the evaluation of
an example query under s(CASP).

Example 1 The program in Fig. I, adapted from [9], represents Bob’s plans. Bob either goes to the
opera or stays home. Bob will stay at home on Monday and therefore the query 7- opera(A) returns
a partial stable model with the constraint A \=monday, meaning that opera(A) is valid for any A
except monday.

Constrained/unbound variables can appear in the top-down derivation steps, shown on the right. The
notation opera(A|{A \=monday}) expresses that opera(A) is valid when A # monday. Follow-
ing the evaluation trace, the query 7- opera(A) holds if not home(A) does. Being a negative literal,
it needs to be resolved against the dual' of home/1:

1 not home(A) :- not o home 1(A), 3 not o home 1(A) :- opera(A).

2 not o_home 2(A). 4 not o home 2(A) :- A \= monday.

not home(A) succeeds because the two goals in its body succeed: (i) not o_home_1(A) holds
because s(CASP) detects that opera(A) was called through an even number of intervening negations.
This is marked by wrapping it with chs/1. (ii) not o_home_2(A) succeeds because A is a free
variable and applying the constraint A \=monday succeeds. This constraint is automatically prop-
agated to the initial variable. Finally, since there are no global constraints to be checked, a partial
model is generated, including the constraint {A \=monday}.

Dual predicates, such as not o__home_ 1(A), are synthesized by the compiler and therefore not im-
mediately known by the user. While it is possible to control which predicates appear in the representation
of an evaluation tree (Section 3.4), they are necessary to fully understand all the details of a justification.
The s(CASP) compiler can output the original program together with its dual to help in this aspect.

3.1 Partial Models, Constraints, and Justifications

Conciseness usually makes understanding easier; the goal-directed strategy of s(CASP) contributes to
concise justifications:

'The dual of opera.pl is available at opera__dual.pl for the reader’s convenience.
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* s(CASP) computes partial stable models that contain only the literals relevant to a query. Ac-
cordingly, sS(CASP) justification trees only need to address the literals that appear in the partial
model.

* When there is more than one derivation tree that supports the query, justifications are given sepa-
rately. If only one is necessary, we do not have to compute all of them.

* Additionally, constraints can concisely and finitely represent infinitely many models.

Example 2 (Cont. Example 1) We adapted the program in Fig. | to evaluate Example | under
clingo [10]. A call to a domain predicate for the seven days of the week was added to the clauses
in lines 1 and 2 to ensure that they are safe. Thanks to the use of constraints, s(CASP) returns a single
model; however, clingo returns 64 models. Even with the more restrictive query ?- opera(tuesday),
clingo still generates 32 models. As a consequence, an explanation framework for clingo such as
xclingo [3], based on Causal Graph Justifications [2], takes 10 times longer than s(CASP) to justify
the results of opera.pl because it needs to process every single model.

3.2 Justifications of Negated Literals

Real-life domains often use rules such as “... when it is not the case that...”. In these cases, justifying
why a literal is not included in a model is necessary, especially in a non-monotonic reasoning framework
such as ASP. In s(CASP), classically-negated literals (those with rules specifying when they do not hold)
are evaluated and justified similarly to positive literals, with the proviso that global constraints are added
to ensure the consistency of the model. For default-negated literals, s(CASP) uses the dual program to
constructively determine when the default negation of a literal succeeds using the top-down evaluation
mentioned in Section 2.

For simplicity, we will use a propositional program to illustrate the justifications of negated predi-
cates. Note that thanks to the top-down evaluation and the usage of dual programs, s(CASP) can combine
justifications for constrained, non-ground evaluations (as in Fig. 1) with justifications for negated literals.

Example 3 Consider an ophthalmologist diagnosis system [17] (Fig. 2) that encodes knowledge about
optical treatments. For a given patient, Peter, intraocularLens are recommended. Fig. 2, bottom,
shows the partial model where the negated literals correspond to disrecommended treatments, these
contribute to making the model more understandable and also increase trust on the system’s advice,
because a doctor can check which treatments have been discarded. The s(CASP) justification tree
(Fig. 2, right, and at peter.html) justifies this recommendation. To help understand it, we include
here the dual of laserSurgery as generated by s(CASP):”

1 not o_laserSurgery_1 :- not shortSighted.

> not o_laserSurgery_1 :- shortSighted, tightOnMoney.
3 not o_laserSurgery__1 :- shortSighted, not tightOnMoney, correctiveLens.

Strictly speaking, clause 2 would only need to be  not o_laserSurgery__1 :- tightOnMoney.
However, including shortSighted, which appears negated in the previous clause, avoids unnecessary
search when generating models, and therefore it also helps remove redundant justifications.” Clause 3
belongs to a similar case.

2The dual of the ophthalmologist system is available at peter_ dual.pl.
3Generating justification trees for all the possible derivations boils down to not producing the optimized code shown above.
Since this requires additional search and execution time, it ought to be a command-line option.
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% JUSTIFICATION TREE:

1 % Treatments 19 % Auxiliar intraocularLens :-

2 intraocularLens :- 20 correctiveLens :- correctivelLens :-

3 correctivelLens, 21 shortSighted, shortSighted,

4 not glasses, 2 not laserSurgery. not laserSurgery :-

5 not contactLens. 23 tightOnMoney : - not o_laserSurgery_1 :-
¢ laserSurgery :- 24 student, proved(shortSighted),
7 shortSighted, 25 not richParents. tightOnMoney : -

8 not tightOnMoney, 26 caresPracticality :- student,

9 not correctivelLens. 27 likesSports. not richParents.
10 glasses :- 28 not glasses :-

11 correctivelLens, 29 % Peter, a patient not o_glasses_1 :-

12 not caresPracticality, 3 shortSighted. proved(correctiveLens),
13 not contactLens. 31 student. caresPracticality :-

14 contactlLens :- 32 likesSports. likesSports.

15 correctivelLens, 33 afraidToTouchEyes. not contactLens :-

16 not afraidToTouchEyes, 34 not o_contactLens 1 :-

17 not longSighted, 35 % QUERY: proved(correctiveLens),
18 not glasses. 36 7- intraocularLens. afraidToTouchEyes.

% MCDEL:

{ intraocularLens, correctiveLens, shortSighted, not laserSurgery, tightOnMoney,
student, not glasses, caresPracticality, likesSports, not contactLens, afraidToTouchEyes }

Figure 2: Code, query, model, and justification of an ophthalmologist system.

Note that although there are two ways of justifying not laserSurgery (i.e., using tight OnMoney or
correctiveLens), only one is necessary and generated. As mentioned before, the wrapper proved/1
marks literals already proven whose justification sub-tree can be omitted.

Some proposals such as LABAS [17] justify all the negated literals, which may provide too much
detail. Others, such as Causal Graph Justifications [2], treat negated literals as assumptions and give
no justification for them. s(CASP) provides a balance as it only justifies the negated literals needed to
support the answer to the query and avoids generating redundant justifications thanks to the way dual
rules are generated. Note that reducing the number of unnecessary justifications is relevant in practice:
justifying the literals that do not support the query may increase the number of justifications (and the
execution time) exponentially w.r.t. size of the program [8].

Additionally, the s(CASP) implementation includes ways to control which literals should appear in
the justification tree (Section 3.4). This makes it possible to tailor the contents and size of the justification
tree to better adapt it to specific cases.

3.3 Justifications of Global Constraints

Global constraints are introduced by the s(CASP) compiler (Section 2) to ensure model consistency in the
presence of classically-negated literals and of rules suchas p :- g, not p. Consistency rules written
by the user are also added to the global constraints. Therefore, it is necessary to generate justifications to
explain how models are compliant with global constraints.
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forall(C,not o_chk 1(C)) :-
not o_chk 1(B|{B \= tuesdayl}) :-
not baby(B|{B \= tuesdayl}) :-
not o_baby_1(B|{B \= tuesdayl}) :-
B \= tuesday.
not o_chk 1(tuesday) :-

opera(A|{A \= monday,A \= tuesday}) :-
not home(A|{A \= monday,A \= tuesdayl}) :-
not o_home 1(A|{A \= monday,A \= tuesday}) :-
chs(opera(A|{A \= monday,A \= tuesday})).
not o_home 2(A|{A \= monday,A \= tuesday}) :-

A \= monday. baby(tuesday) ,
global_ constraint :- not opera(tuesday) :-
not o_chk :- not o_opera_1(tuesday) :-
not o_chk 1 :- home(tuesday) :-

chs(not opera(tuesday)) .

Figure 3: s(CASP) justification of opera.pl with a global constraint.

Example 4 (Cont. Example 1) Let us modify the code in Fig. | by adding:

1 :- baby(D), opera(D). % When Bob's best friend comes with her baby, it is
2 % not a good idea to take the baby to the opera.
3 baby(tuesday) . % They come on Tuesday.

The answer for 7- opera(A) is now A \=monday,A \= tuesday because Bob always stays home
on Monday and Bob’s best friend comes with her baby on Tuesday. Fig. 3 shows the s(CASP) justifi-
cation tree including the global constraint checks. The first part of the justification tree is similar to
that in Fig. 1, left, with the addition that variable A is constrained not to be equal to tuesday. To
follow the justification of the user constraints, let us remember that  :- baby(D),opera(D). is
Vx - = (baby(x) N opera(x)). This is compiled into

| not o chk 1 :- 3 not o_chk 1(D) :- not baby(D).

2 forall(D, not o_chk 1(D)). 4 not o_chk 1(D) :- baby(D), not opera(D).

where the compiler introduced the predicate forall /2 [, Section 3.4] that succeeds if for all possible
values of D present in the program, the predicate not o__chk_ 1(D) holds. The justification tree
shows that:
* not o_chk 1(B) succeeds for B \= tuesday because not baby succeeds for B \= tuesday.
* not o__chk__1(tuesday) holds because baby(tuesday) is true and not opera(tuesday) suc-
ceeds (the variable A of opera/1 can be restricted to be different from tuesday). The resulting
constraint is {A \=monday,A \= tuesday}.

3.4 Controlling the Literals that Appear in an s(CASP) Justification Tree

ASP systems (and also s(CASP)) provide mechanisms to control which literals should be shown in a
model. Controlling which literals should appear in a justification tree is more challenging. A decision
based on hierarchy and predicate dependencies is not satisfactory, as we observed that in some cases
we may want to hide some literals but not their children in order to inspect the support for some con-
clusions. This means taking special care for some situations (e.g., having to remove repeated siblings)

while providing an interface to facilitate a flexible control.

The current implementation supports three levels of detail (short, mid,long) plus an additional
option (neg) that makes the interpreter include the default-negated literals:
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'‘opera' holds (for A), with A not equal monday, because
there is no evidence that 'home' holds (for A), with A not equal monday, because
'rule 1' holds (for A), because
it is assumed that 'opera' holds (for A), with A not equal monday.
'rule 2' holds (for A), because
A is not equal monday.

(a) Justification in English using predefined patterns.

Bob goes to the opera on a day A not equal monday, because
Bob does not stay at home on A not equal monday, because
'rule 1' holds (for A), because
it is assumed that Bob goes to the opera on a day A not equal monday.
'rule 2' holds (for A), because
A is not equal monday.

(b) Justification in English using user messages.

Figure 4: s(CASP) justification tree for opera.pl in natural language.

short shows the (negated) literals selected with #show directives.

mid adds the rest of user-defined predicates (positive and/or classically negated).

neg (only with short or mid) shows also the default-negated versions of the displayed predicates.

long generates the complete s(CASP) justification tree, including auxiliary predicates, forall , and
built-ins.

s(CASP) can generate justification trees as plain text or as expandable html, accessible through links in
this paper. In each of these cases, the three options mentioned above are available.

4 Presenting s(CASP) Justification Trees using Natural Language

Justification trees lend themselves to the generation of natural language explanations quite directly. This
is useful for domain experts that may not be familiar with logic rules. Predefined generic patterns are
used to generate simple translations. Additionally, more involved explanations, tailored to each particular
case, can be produced by adding natural-language explanations to the program. These offer a human-
readable meaning of the program at the individual rule level and can control which literals have to be
explained. They can be applied both to plain text and HTML generation.

4.1 Predefined Natural Language Patterns

Fig. 4a shows the s(CASP) pseudo-natural language justification for the program and query in Fig. 1
using only predefined patterns. Each line corresponds to a literal in the justification tree shown before
and is generated as follows:

name(Argl, ..., Argn): | 'name’ holds (for argy,..., and arg,)| where arg; are either the run-time

value for argument i or a variable name. For constrained variables, the constraints are also
translated and shown.

not name/n: ’ there is no evidence that |, followed by the pattern for name/n.

, followed by the pattern for name/n.

-name/n: ’ it is not the case that
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Table 1: Translation results with and without user annotations.

Var. State Mark Translation Mark Translation
Free eD) D @(D:day) D, aday
Constrained @(D) D not equal monday @(D:day) aday D not equal monday
Ground @(D) monday @(D:day) the day monday
The neck ' :- ' is translated into ‘because’ and the comma ',' into ‘and’. The mark chs(name/n) (a

loop with an even number of negations has succeeded) is translated into ‘it is assumed that’ followed by
the pattern for name/n, and the mark proved(name/n) (the literal has already been proved) is trans-
lated by adding ‘already justified’ to the pattern for name/n. For brevity, we will skip the description of
the translation patterns for forall, the built-ins, and the auxiliary predicates of the dual rules.

It is interesting to remark that, since the evaluation tree chains the application of program rules, these
predefined patterns can also be applied to translate the program code into natural language — the only
difference is that the neck ' :- ' is translated into ‘if’. The translation of the dual program of opera.pl
from Example | (including the dual rules and the global constraints) is available at opera__dual_NL.pl
for the reader’s convenience.

4.2 User-Defined Natural Language Patterns

Customizing the predefined patterns makes it possible to better describe the meaning of the predicates.
Our framework provides this possibility by allowing structured comments to be added to the literals
(either positive or negative) of the programs.* Let us consider the two following examples:

#pred opera(D) :: 'Bob goes to the opera on ©@(D:day)'.
#pred not home(D) :: 'Bob does not stay at home on @(D) '

Each explanation of a literal is introduced with the directive #pred followed by the (negated) literal and
a pattern indicating how to translate it. The marks @(D) indicates where the values of the arguments of
the literals should appear. A qualification such as @(D:day) gives additional information on the meaning
of the variable that is used to generate a more informative message depending on the instantiation state
of the variable. Table 1 shows an intuitive explanation.

Messages can be defined for different instantiation patterns of the same literal, as in

#pred is(pregnancy) :: 'the patient is pregnant or planning to get pregnant'.
#pred is(stage(S)) :: 'the patient is in ACCF stage ©@(S)'.
#pred is(E) :: 'the patient is @(E)'.

Literals are scanned from top to bottom and the message associated with the first matching head is
used. That makes it possible, for example, to write different explanations for every clause of a predicate
(from more particular to more general), as it is common (see the case above) that every clause treats a
different case. Translations for default-negated and classically-negated literals can also be provided.

Fig. 4b shows the s(CASP) justification tree for opera.pl (Fig. 1) using user-defined explanations.
The complete s(CASP) justification tree and the dual program, translated following the user-defined

“4There other proposals, similar in spirit, that allow adding information to programs without changing their meaning, e.g.
those of Ciao Prolog [13] or Clingo [10].


http://www.cliplab.org/papers/sCASP-ICLP2020/opera_dual_NL.pl
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the treatment ace_ inhibitors has been chosen, because
it is a recommendation to use ace__inhibitors, because
the patient is in AQTF stage C, and
the patient is diagnosed with heart failure with reduced ejection fraction, because
there is a measurement of lvef of 0.35.
there is no evidence that there is a danger in taking ace_inhibitors, because
there is no evidence that the patient has a history of angioedema, and
there is no evidence that the patient is pregnant or planning to get pregnant.
there is no evidence that the treatment ace__inhibitors is excluded, because
the treatment diuretics is concomitant if ace_ inhibitors is chosen, and
it is a recommendation to use diuretics, because
the patient is in ACQCF stage C, justified above, and
the patient is diagnosed with heart failure with reduced ejection fraction, justified above, and
there is no evidence that there is a danger in taking diuretics.
the treatment diuretics has been chosen, because
it is a recommendation to use diuretics, justified above, and
there is no evidence that the treatment diuretics is excluded, and
there is no evidence that diuretics is discarded.
the treatment aldosterone_ antagonist is incompatible with ace_ inhibitors, and
aldosterone_ antagonist is discarded, and
the treatment arbs is incompatible with ace_ inhibitors, and
arbs is discarded.
there is no evidence that ace__inhibitors is discarded.
The global constraints hold, because
the global constraint number 1 holds.

Figure 5: s(CASP) justification tree of the Physician Advisor System.

patterns, are available at opera_ just_ userNL.pl and opera_ dual_ userNL.pl.

s(CASP) generates natural language explanations with the command-line option --human. The
short version also shows the (negated) literals with user-defined predicates, even if they are not selected
in the #show directives.

5 A Real Application: the Physician Advisor System

We have evaluated the s(CASP) justification generation with the Physician Advisor System [4] (PAS), an
ASP program that recommends treatment choices for chronic heart failure (CHF). The system encodes
near 80 pages of rules into an ASP program. Medical advisory systems are relevant applications in the
context of XAlI, and the management of chronic diseases, such as CHF and others, is a major problem in
health care. The PAS has a modular implementation:

* The main module of the PAS (available at PAS_ rules.pl) implements the knowledge patterns
described in [4].

* The guide module (available at PAS__guide.pl) implements the CHF Guide.

* The patient module (available at PAS_ profile.pl) contains a patient profile: demographic data,
assessment evidences, particular contraindications, previous diagnosis, illness, medication history,
and different measurements.

To provide readable recommendations, we extended PAS with explanations for the relevant predicates


http://www.cliplab.org/papers/sCASP-ICLP2020/opera_just_userNL.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/opera_dual_userNL.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_rules.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_guide.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_profile.pl
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(available at PAS_ rules.pred.pl, PAS_ guide.pred.pl, and PAS_ patient.pred.pl). With them,
s(CASP) can generate concise justification trees in natural language.

5.1 Expressiveness of Justifications

Let us study one example: for the query ?- chose(ace_inhibitor) there is a unique minimal stable
model. Fig. 5 shows the natural language version of the s(CASP) justification tree for that query.” The
following points are worth mentioning:

* The justification tree supports the choice of ace_inhibitor based on evidence (positive literals),
e.g., “the patient is in ACCF stage C”, and on the absence of counter-evidence (negated literals),
e.g., “there is no evidence that there is a danger in taking ace_inhibitors”. As mentioned before,
providing justifications of negated literals is important because a doctor may want to double-check
them.

* The justification includes only the recommendations and choices of treatments that are required to
support the choice of ace_ inhibitor, e.g., the treatment with diuretics is chosen because it is
concomitant when ace__inhibitor is chosen.

* The justification also explains that some treatments have been discarded due to incompatibili-
ties. This information is essential since it would avoid future errors by preventing the use of
aldosterone__antagonist or arbs.

* s(CASP) supports dense domains which can directly represent physical quantities, such as the
measurements of /vef (0.35 in this example). This makes it possible to directly encode existing
regulations and use these measurements in the justifications.

We compared s(CASP) with xclingo [3]. >> chose(ace__inhibitors)
xclingo does not generate justifications for |__recommendation(ace_ inhibitors)
negated literals. The justification of the lit- |__ reason(ace_inhibitors)
eral chose(ace_inhibitors) (generated using |__evidence(accf_stage_c)

|___diagnosis(hf_ with_reduced_ ef)

the %!show_trace directive for chose(T) and
|__measurement(lvef,35)

discarded(T)) is shown in Fig. 6.

It can be noted that the information
related to negated literals, such as not
contraindication/1 and not exclude/1, is
absent. As a consequence, the justification generated by xclingo does not fully explain why diuretics
is chosen or why aldosterone_ antagonist and arbs are discarded in every model.® Since clingo does
not support decimals, the values of /vef have been normalized.

Figure 6: Fragment of xclingo justification.

5.2 Performance Evaluation

We have evaluated the additional cost of generating justifications in s(CASP) and also compared the
performance of our approach with that of other similar systems using, again, the PAS system. We used a
Debian 4.19 machine with a Xeon E5640 at 2.6GHz.

3QOther relevant queries to the PAS are listed in PAS_ query.pl and at ace_ inhibitors.html, beta_ blockers.html, and
anticoagulation.html.

The xclingo justification for one of the models for the query 7- chose(ace_inhibitors), including the justification of
every literal chose/1 and discarded/1 in the answer set, is available at PAS_ xclingo_ just.pl.


http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_rules.pred.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_guide.pred.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_patient.pred.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_query.pl
http://www.cliplab.org/papers/sCASP-ICLP2020/ace_inhibitors.html
http://www.cliplab.org/papers/sCASP-ICLP2020/beta_blockers.html
http://www.cliplab.org/papers/sCASP-ICLP2020/anticoagulation.html
http://www.cliplab.org/papers/sCASP-ICLP2020/PAS_xclingo_just.pl
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Table 2: Performance comparison of w.r.t. evaluation w.o. justification tree.

--html
--plain --human --plain --human
--tree --short 1.06 1.06 1.12 1.12
--tree --short --neg 1.06 1.07 1.12 1.13
--tree --mid 1.06 1.06 1.12 1.12
--tree --mid --neg 1.06 1.07 1.12 1.13
--tree --long 1.07 1.08 1.14 1.15

We used the query ?- chose(ace__inhibitors) to test the performance of the generation of justifi-
cations. Generating justifications in s(CASP) has a very small impact on execution time which we show
in Table 2 as speed-down (the larger the number, the slower the execution) and which is, at most, a 15%
slower, which can be considered perfectly acceptable. This is also true for absolute speed, since the
execution without justifications takes 340 ms.

For the same query, the program has 1024 models, because treatments unrelated with the query may
be selected or not. This makes xclingo need 1°53” to justify selected and discarded treatments, while
S(CASP) uses only 0.35 seconds, as only one partial model has to be generated.

6 Conclusion

We showed how s(CASP) can generate justifications for Constraint Answer Set programs, preventing
generating excessively many justifications thanks to its ground-free, top-down evaluation strategy and
the use of constraints. It can also justify negated literals and global constraints.

To the best of the authors’ knowledge, this approach is the only one that can provide full justifications
in natural language for ASP programs, including constraints and negated literals. Our approach also
makes it possible to control which literals should appear in the justification tree, improving the readability
of the justifications.

As part of our future work, we want to explore how s(CASP) justifications can be used to bring
XAI principles to a class of knowledge representation and reasoning systems, namely those based on
non-monotonic logic with a stable model semantics. These can range from rule-based systems capturing
expert knowledge [4] to ILP systems that generate ASP programs [18] or concurrent imperative programs
based on behavioral, observable specifications [20].
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