
B. Bogaerts, E. Erdem, P. Fodor, A. Formisano,
G. Ianni, D. Inclezan, G. Vidal, A. Villanueva,
M. De Vos, F. Yang (Eds.): International
Conference on Logic Programming 2019 (ICLP’19).
EPTCS 306, 2019, pp. 210–223, doi:10.4204/EPTCS.306.25

c© V. Barichard & I. Stéphan
This work is licensed under the
Creative Commons Attribution License.

Quantified Constraint Handling Rules

Vincent Barichard
LERIA, University of Angers

Angers, France
vincent.barichard@univ-angers.fr

Igor Stéphan
LERIA, University of Angers

Angers, France
igor.stephan@univ-angers.fr

We shift the QCSP (Quantified Constraint Satisfaction Problems) framework to the QCHR (Quanti-
fied Constraint Handling Rules) framework by enabling dynamic binder and access to user-defined
constraints. QCSP offers a natural framework to express PSPACE problems as finite two-players
games. But to define a QCSP model, the binder must be formerly known and cannot be built dy-
namically even if the worst case won’t occur. To overcome this issue, we define the new QCHR
formalism that allows to build the binder dynamically during the solving. Our QCHR models exhibit
state-of-the-art performances on static binder and outperforms previous QCSP approaches when the
binder is dynamic.

1 Introduction

We shift the QCSP (for Quantified Constraint Satisfaction Problems) framework to the QCHR (for Quan-
tified Constraint Handling Rule) framework. Such shift is motivated by the difficulties for developing
real applications in QCSP.

QCSP [7, 26, 15, 4, 22, 20, 3] are a generalization of Constraint Satisfaction Problems (CSP) in
which variables may be quantified existentially (as in CSP) and universally. A QCSP is an alternation
of existentially and universally quantified variables over finite domains, the binder, followed by a CSP.
Universally quantified variables represent uncontrollable parameters such as meteorological events. A
QCSP may be seen as a two-players game in which the existentially quantified variables stand for a
player A and universally quantified variables stand for a player B. QCSP+ [4] was proposed to make
QCSP more practical from the modeling point of view. QCSP+ uses restricted quantification sequences
instead of standard quantification sequences. A QCSP/QCSP+ is valid if player A has a strategy to win
i.e. a strategy for setting the existentially quantified variables such that no matter what setting the player B
chooses the CSP is true. QCSP/QCSP+ is a rich modeling framework which leads to succinct modeling.
But this extension also increases the complexity of solving from NP-complete to PSPACE-complete. To
fit a real problem in a QCSP/QCSP+, one has to model every part of the problem and everything must
be a priori stated. There are problems (tic-tac-toe, reversi, connect-four) that fit this requirement, but
others (checkers, chess) just do not. QCSP/QCSP+ cannot be used to model games and problems whose
number of moves is not formerly known. In addition, even if everything can be statically stated, the
QCSP model involves all possibles moves and overestimates the number of moves to the worst case.
For example, it is difficult to encode games such that some rules constrain future moves depending on
past moves [5]: the QCSP will look for solutions for any possible move of player B while some of them
have been made impossible by previous moves. When a QCSP/QCSP+ is defined, the solving relies on
a QCSP solver [15, 3, 26]. A QCSP/QCSP+ solver is a black box program that solves a given model. As
most QCSP/QCSP+ solvers are based on CSP solvers, there is no easy way to help the solving process
by taking into account the specific properties of a quantified problem. In this work, we propose a new
framework to model quantified problems in a dynamic way.

http://dx.doi.org/10.4204/EPTCS.306.25
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

V. Barichard & I. Stéphan 211

CHR (for Constraint Handling Rules) [9, 10, 14, 11, 12, 13] are a committed-choice language con-
sisting of multiple-heads guarded rules that replace constraints by more simple constraints until they are
solved. CHR are a special-purpose language concerned with defining declarative constraints in the sense
of Constraint logic programming [17, 18, 19]. CHR are a language extension that allows to introduce
user-defined constraints, i.e. first-order predicates, into a given host language as Prolog, Lisp, Java, or
C/C++. CHR define simplification of user-defined constraints, which replaces constraints by more sim-
ple constraints while preserving logical equivalence. CHR define also propagation over user-defined
constraints that adds new constraints; this constraints are logically redundant but may cause further sim-
plifications. CHR allow to use guards that are sequences of host language statements. CHR finally
define simpagation over user-defined constraints that mixes and subsumes simplification and propaga-
tion. CHR (simpagation) rules are applied on multi-sets of constraints. Repeated application of those
rules on a multi-set of initial constraints incrementally solves these constraints. The committed-choice
principle expresses a don’t care nondeterminism, which leads to efficient implementations. CHR have
been extended to CHR∨ [1] that introduces the don’t know nondeterminism in CHR [6]. This nonde-
terminism is freely offered when the host language is Prolog. This nondeterminism allows to specify
easily problems from the NP complexity class but it is not the case for the rest of the Polynomial Hier-
archy and, in general, any problem expressed with alternating quantifications (although the formalism is
Turing-complete).

We propose in this paper to extend CHR with quantification. We call this new formalism QCHR
(for Quantified Constraint Handling Rules). We propose to extend the simpagation rule to an existential
simpagation rule but also to a universal simpagation rule. The existential (resp. universal) simpagation
has the same conditions to be applied as a simpagation rule but the body is existentially (resp. universally)
quantified on a variable over a (finite) domain. We obtain a formalism for which it is not necessary to
declare a priori the alternation of quantifiers but where the quantifiers are generated when they are
needed. This property offers an ease of programming compared to QCSP/QCSP+ where you always
need to declare a finite binder. In QCHR, one can specify some potentially infinite games by recursion.

Section 2 presents intuitively the syntax of our QCHR formalism, illustrates on two emblematic
examples why it is not always appropriate to model and solve with QCSP/QCSP+, and shows the ease
of modeling and efficiency of solving of our new formalism. Section 3 presents our proposal, the QCHR
language, with its proof-theoretical semantics. Section 4 presents a discussion about the link between
QCHR and some other related works. Section 5 presents our implementation of the QCHR language into
the C++ host language and some experiments. Section 6 concludes and draws some perspectives.

2 Motivating examples

Our main purpose is to be able to model quantified problems when the binder can be built dynamically
during the solving. Two well known problems are used: the Nim game and the Connect-four as motivat-
ing examples. Informally, CHR formalism is extended with two new rules: the existential (simpagation
QCHR) rule

name@K1, . . . ,Km\D1, . . . ,Dn<∃>[it, l,u] guard |Ω

and the universal (simpagation QCHR) rule

name@K1, . . . ,Km\D1, . . . ,Dn<∀>[it, l,u] guard |Ω

212 Quantified Constraint Handling Rules

The head (K1, . . . ,Km\D1, . . . ,Dn), the body Ω and the guard of these rules are interpreted in the
same way as in the CHR formalism: Constraints K1, . . . ,Kn are kept like in propagation and constraints
D1, . . . ,Dm are deleted like in simplification; the constraints of the body Ω = B1, . . . ,Bp are the added
constraints; if Ω = true, nothing is added; if Ω = false, the computation fails. The two symbols l and
u denotes, respectively, the lower bound and the upper bound of an integer interval. The variable it is
supposed to appear in the body Ω. The informal semantics of those rules is as follows: The body Ω of
the existential rule leads to a success (resp. failure) if at least one value (resp. all values) v taken in the
interval [l..u] leads the body [it← v](Ω) (where the occurrences of it in Ω are replaced by v) to a success
(resp. failure). In the same way, the body Ω of the universal rule leads to a success (resp. failure) if all
values (resp. at least one value) v taken in the interval [l..u] leads the body [it← v](Ω) to a success (resp.
failure). If an existential (resp. universal) QCHR rule keeps all the constraints of its multiple-head, it is
an existential (resp. universal) propagation rule and is denoted by (K1, . . . ,Km\ <∃>[it, l,u] guard | Ω)
(resp. (K1, . . . ,Km\ <∀>[it, l,u] guard |Ω); if an existential (resp. universal) QCHR rule keeps none of
the constraints of its multiple-head, it is an existential (resp. universal) simplification rule and is denoted
by (\D1, . . . ,Dn<∃>[it, l,u] guard |Ω) (resp. (\D1, . . . ,Dn<∀>[it, l,u] guard |Ω).

The Nim game. The Nim game is a two-players game played with a heap of coins or matches. The
object of the game is to take the last match. Each player can take one to three matches. With the
Fibonacci variant, the minimum number is one match and the maximum on the first play is one less
than the initial number of matches. Then each player may take from one to twice as many as matches
as the adversary at the preceding turn. Player A begins. For example with 4 matches, player A takes
1 match. Then player B can take 3 matches but if he does he loses immediately since he cheated.
Then player B can take 1 or 2 matches. But whatever he takes, he loses since player A will take the
remaining matches. The longest possible party has 4 turns : each player takes one match at each turn.
Then QCSP has 4 quantifiers since the binder is defined statically. With an even number p of matches,
the QCSP specification is as follows (xi, resp. yi, is the number of matches chosen by player A, resp.
B, at turn i): RA(1) is true (player A chooses between 1 and p− 1 matches) and for all i, 1 < i ≤ p

2 ,
RA(i) = (1 ≤ xi ≤ 2 ∗ yi−1)∧ (xi + Σ1≤ j<i(x j + y j) ≤ p) and for all i, 1 ≤ i ≤ p

2 , RB(i) = (1 ≤ yi ≤
2∗ xi)∧ (Σ1≤ j≤i(x j + y j)≤ p) (each player takes from one to twice as many matches as the adversary at
the preceding turn) [3]:

∃x1∀y1 . . .∃x p
2
∀y p

2
∃o1 . . .∃o p

2

RA(1)∧ (RB(1)→ o1)∧ (o1↔ (RA(2)∧o2))∧
(o2↔ (RB(2)→ o3))∧ . . .∧ (o p

2
↔ (RB(

p
2)→⊥))

with x1,y1, . . . ,x p
2
,y p

2
∈ [1..p−1] and o1, . . . ,o p

2
Boolean variables. For each initial number of matches,

one has to instantiate the general scheme. For example, with p = 4, the following QCSP is obtained:

∃x1∀y1∃x2∀y2∃o1∃o2
(((y1 ≤ 2∗ x1)∧ (x1 + y1 ≤ 4))→ o1)∧
(o1↔ (((x2 ≤ 2∗ y1)∧ (x1 + y1 + x2 ≤ 4))∧o2))∧
(o2↔ (((y2 ≤ 2∗ x2)∧ (x1 + y1 + x2 + y2 ≤ 4))→⊥))

with x1,y1,x2,y2 ∈ {1,2,3} and o1,o2 Boolean variables. This QCSP is valid if the first player has a
strategy for setting the existentially quantified variables such that no matter what setting the adversary
chooses for its universally quantified variables, this first player wins (i.e. the CSP is true).

V. Barichard & I. Stéphan 213

The following QCHR program solves the Nim game with the Fibonacci variant of an even or odd
number of matches (N represents the number of matches chosen by a player and R represents the remain-
ing number of matches into the heap):

u@ \nim fibo forall player(N,R)<∀>[it,1,min(N,R)] nim fibo exists player(2∗ it,R− it)
e@ \nim fibo exists player(N,R)<∃>[it,1,min(N,R)] nim fibo forall player(2∗ it,R− it)

These rules are built in the same way: they are existential/universal simplification rules with an
omitted empty guard, the definition of the lower and upper bounds, and the body that expresses that
if a player has chosen to take it matches, his adversary may only choose between 1 and min(2 ∗ it,R)
matches. The first player may freely choose between 1 and the initial number of matches minus one:

l@nim fibo(R)⇒ nim fibo exists player(R−1,R)
The binder is not defined statically as for QCSP but dynamically. Note that the base case of the

recursion is hidden into the semantics of the universal rule when the lower bound becomes larger than
the upper bound.

The Connect-four game. The connect-four game is a two-players game in which the players first
choose a color. It is played on a vertically suspended grid. At each turn, a player drops one colored coin
from the top into a column of the grid. The coins fall straight down, occupying the lowest available slot
within the column. The winner is the first player to form a horizontal, vertical, or diagonal line of four
of one’s own coins.

The connect-four game can also be modeled with a QCSP. In order to model every game, a grid
is built for each player turn. There are as many game turns as there are slots in the grid. As a result,
the QCSP model involves number of rows×number of columns grids linked with each others with con-
straints (see [21] more details about the QCSP model). Furthermore, constraints has to be added to detect
full columns, invalid moves and winning grids. But, even if a QCSP can be used, the binder is dynamic
(a player may win the game without completely filling the board) and the model is big and not very
understandable. In comparison, the QCHR model is more suitable, lightweight and more readable. Let
NC be the number of columns of the grid. The following QCHR model computes a winning strategy if
such a strategy exists:

i f> @ ifRule(>,)⇔ true
i f⊥ @ ifRule(⊥,N)⇔ coin(N),cfe(isWon(N))
u> @ cfu(>)⇔ true
u⊥ @ \cfu(⊥)<∀>[it,1,NC] ifRule(isFull(it), it)
e> @ cfe(>)⇔ false
e⊥ @ \cfe(⊥)<∃>[it,1,NC] coin(it),cfu(isWon(it))

Where coin(), isFull() and isWon() are built-in constraints: coin() sets a coin to the given column
and raises a failure if the column is full; isFull() returns> if the column is full and⊥ otherwise; isWon()
returns > if an alignment of four coins is found and ⊥ otherwise. These functions rely on a grid board
which is filled according to the players moves.

The binder is not defined statically as for QCSP but dynamically. As a result, the size of the binder
is equal to the number of moves done during the game and not the worst possible case.

214 Quantified Constraint Handling Rules

3 The QCHR language

A constraint is considered to be a first-order predicate. Only one kind of predefined (built-in) constraint
is required: the syntactic equality constraint denoted by .

= with an equality theory denoted ET for
variables and constants1. For two sequences of user-defined constraints K1, . . . ,Km

.
= K′1, . . . ,K

′
m means

K1
.
= K′1, . . . ,Km

.
= K′m and for two constraints c(t1, . . . , tn)

.
= c(s1, . . . ,sn) means t1

.
= s1, . . . , tn

.
= sn. If S

is a set of constraints, [S] denotes the set of equality constraints of S.
In order to define the (proof-theoretical) semantics of QCHR, two reserved constraints are first de-

fined.

Definition 3.1 (<∃> and <∀> constraints) The <∃> and <∀> constraints are constituted (in this or-
der) of an integer variable, two integers (the lower and upper bounds) and a sequence of user-defined
constraints.

The ω∃∀ system is based on the following kind of sequents:

Definition 3.2 (ω∃∀ sequent) An ω∃∀ sequent is a quadruple (Γ I Ω J S↑ ` S↓) where S↓, the down
store, and S↑, the up store, are two stores of constraints, Γ is a sequence of CHR rules and Ω, the goal,
is a sequence of constraints.

The intuitive meaning of a sequent (Γ I Ω J S↑ ` S↓) is to try and consume the constraints Ω with
the sequence of CHR rules Γ thanks to the store S↑. The elements of the store S↓ are the unconsumed
constraints: the constraints of S↑ that have not been consumed and those produced by the rules applied
over Ω but not consumed during this production.

The ω∃∀ system is based on ten ω∃∀ inference rules. The following first five rules below are adapted
from the sequent calculus system of [25] for CHR. This implies that a QCHR program may contain CHR
rules. In the following, some constraints (A, K1, . . . ,Km, D1, . . . ,Dn), some stores of constraints (S, SK ,
SD, S′, S′↑, . . .) and some sequences of constraints (Ω, Ω′) are used.

The Apply inference rule:

Γ I ΩB J SK ,SO,SK .
= SK′ ,SD .

= SD′ ` S′,S′′ Γ I Ω′ J S′′ ` S↓ ⇔
Γ I A J SD,SK ,SO ` S↓

with

• (K′1, . . . ,K
′
m\D′1, . . . ,D′n⇔ guard |ΩB) a rule of Γ;

• SK = {K1, . . . ,Km}, SD = {D1, . . . ,Dn} and there exists j such that

– either 1≤ j ≤ n, D j = A,
– or 1≤ j ≤ m, K j = A;

• ET |= ([SO]→∃X(guard∧(SK .
= SK′)∧(SD .

= SD′))) (X the set of variables of SK′ = {K′1, . . . ,K′m}
and SD′ = {D′1, . . . ,D′n});

• Ω′ is a sequence composed of all the elements of S′ ⊆ SK .

1We do not use functional symbols but the language is richer than simply variables and constants since one can use the
statements of the host language that are evaluated before equality is applied on a completely instantiated expression. It is the
case for arithmetic operation in the modelling of Nim game or for more ad hoc functions like isFull and isWon in the modelling
of the Connect-Four game.

V. Barichard & I. Stéphan 215

The Apply inference rule applies a QCHR rule on a constraint A since there are two sub-stores SK and
SD of the store S↑= SK]SD]SO such that SK]SD]{A}= {K1, . . . ,Km, D1, . . . ,Dn}modulo the equality
constraints of SO and such that the sequence of host statements and equalities of the guard, guard, are
verified. The solving of the constraint A is reduced to the solving of the goal ΩB = B1, . . . ,Bp of the CHR
rule and eventually the solving of the constraints of Ω′ in the case that constraints from S′ ⊆ SK were not
consumed during the process of consumption/production of ΩB. A part of the resources SO is allocated to
solve the goal ΩB, the rest of the constraints and those produced by ΩB but unconsumed, S′′, are allocated
to a sequence Ω′ over S′. Since the ω∃∀ system only applies a QCHR rule if one of the constraints of its
head is focused on, the calculus of (Γ I Ω′ J S′′ ` S↓) is necessary to the completeness of ω∃∀ w.r.t.
the semantics of CHR for non-quantified CHR programs (see Example 3.1.1 where S′ = {a}). But, S′

may be empty if all the resources have been consumed (see Example 3.1.2 where S′ is empty). If the
applied rule is a simplification rule (i.e. SK is empty) or S′ is empty then Ω′ is empty and the right above
sequent is omitted (and S↓ = S′′). The Apply inference rule realizes in fact a hidden use of the cut-rule of
the linear-logic sequent calculus [16]: A lemma is computed by the left sub-proof and used in the right
sub-proof2.

The Left-elimination-of-conjunction inference rule:

Γ I A J S↑ ` SO Γ I Ω J SO ` S↓
⊗L

Γ I A,Ω J S↑ ` S↓

If the current goal is a sequence of constraints, the Left-elimination-of-conjunction inference rule is
applied: The first constraint A of the sequence is isolated and a part of the resources S↑ are allocated
to solve the constraint; the rest of the constraints and those produced by A but unconsumed, SO, are
allocated to the remaining sequence of constraints. This inference rule realizes also, in fact, a hidden use
of the cut-rule of the linear-logic sequent calculus: The S↓ is a lemma computed by the left sub-proof
and used in the right sub-proof.

The Inactivate axiom:

↑
Γ I A J S ` A,S

with no QCHR rule (K′1, . . . ,K
′
m\D′1, . . . ,D′n ⇔ guard | Ω) of Γ such that j, (1 ≤ j ≤ n, D j = A or

1≤ j ≤m, K j = A), SD = {D1, . . . ,Dn} ⊆ S, SK = {K1, . . . ,Km} ⊆ S\SD; and ET |= ([S]→∃X(guard∧
(SK .

= SK′)∧ (SD .
= SD′))) (X the set of variables of SK′ = {K′1, . . . ,K′m} and SD′ = {D′1, . . . ,D′n}).

If there is no QCHR rule to consume the current user-defined constraint A by an apply rule, the
Inactivate axiom stores the constraint into the store.

The true axiom:

true
Γ I true J S ` S

If the current goal is the true constraint then no constraint is consumed and the true axiom is applied.

2see [25] for a discussion about the linear-logic properties of this rule

216 Quantified Constraint Handling Rules

The Equality inference rule:

Γ I ΩX ,Y J SO,(X .
= Y) ` S↓

=

Γ I (X .
= Y) J SO,SX ,Y ` S↓

with {SO,SX ,Y} a partition of the store such that SX ,Y is the set of identified user-defined constraints that
contain either the variables X or Y , ΩX ,Y a sequence over SX ,Y , and with the proviso that the equality
constraint (X .

= Y) is consistent with the equivalence classes [SO] according to ET .
If the current goal is only an equality constraint (X .

= Y) then no constraint is consumed and the
Equality inference rule is applied: The equality constraint is added to the store of constraints SO and a
sequence ΩX ,Y of constraints, over all the constraints SX ,Y of the store with occurrences of variables X
or Y , is inserted into the goal part of a sequent. Since equivalence classes for the variables are modified,
some rules might be applied from now on.

Example 3.1

1 Let Γ be the CHR program (a\b⇔ true), (a,c⇔ true) and the goal b,c,a then

true
Γ I true J a,c ` a,c

true
Γ I true J ` ⇔
Γ I a J c `

⇔
Γ I a J b,c `

2 Let Γ be the CHR program (a,b\c⇔ d), (a,b,d⇔ true) and the goal a,b,c then

true
Γ I true J ` ⇔
Γ I d J a,b `

⇔
Γ I c J a,b `

Below, the five rules that are specific to manage the quantifiers are described.

The ∃-Apply inference rule:

Γ I <∃>(it, l,u,ΩB) J SK ,S,SK .
= SK′ ,SD .

= SD′ ` S↓
∃⇔

Γ I A J SD,SK ,S ` SK ,S

with

• (K′1, . . . ,K
′
m\D′1, . . . ,D′n<∃>[it, l,u] guard |ΩB) is a QCHR rule of Γ;

• SK = {K1, . . . ,Km}, SD = {D1, . . . ,Dn} and there exists j such that

– either 1≤ j ≤ n, D j = A,
– or 1≤ j ≤ m, K j = A;

• ET |= ([S]→∃X(guard∧ (SK .
= SK′)∧ (SD .

= SD′))) (X the set of variables of SK′ = {K′1, . . . ,K′m}
and SD′ = {D′1, . . . ,D′n}).

The ∃-Apply inference rule applies, in the same conditions as an Apply rule, an existential QCHR
rule but introduces only one constraint: an existential constraint since the elimination of a quantified
constraint is part of the mechanism of the semantics.

V. Barichard & I. Stéphan 217

The ∀-Apply inference rule:

Γ I <∀>(it, l,u,ΩB) J SK ,S,SK .
= SK′ ,SD .

= SD′ ` S↓
∀⇔

Γ I A J SD,SK ,S ` SK ,S
with

• (K′1, . . . ,K
′
m\D′1, . . . ,D′n<∀>[it, l,u] guard |ΩB) is a QCHR rule of Γ;

• SK = {K1, . . . ,Km}, SD = {D1, . . . ,Dn} and there exists j such that

– either 1≤ j ≤ n, D j = A,
– or 1≤ j ≤ m, K j = A;

• ET |= ([S]→∃X(guard∧ (SK .
= SK′)∧ (SD .

= SD′))) (X the set of variables of SK′ = {K′1, . . . ,K′m}
and SD′ = {D′1, . . . ,D′n}).

In the same way, the ∀-Apply inference rule applies, in the same conditions as an Apply rule, an
universal QCHR rule but introduces only one constraint: an universal constraint.

The ∃-elimination inference rule:

Γ I Ωit J S ` S↓
∃

Γ I <∃>(it, l,u,(B1, . . . ,Bp)) J S ` S

with l ≤ u, x ∈ [l..u] and Ωit = [it← x](B1), . . . , [it← x](Bp).
If the goal is a unique existential constraint, then the ∃-elimination inference rule is applied: A value

x into the interval [l..u] is chosen and assigned to the variable it of the constraints B1, . . . , Bp (this is the
meaning of [it ← x](Bi),1 ≤ i ≤ p). If l > u then, there is no possible sub-proof from this sequent. The
resulting store S↓ is ignored after the proof of the Ωit : production and consumption are local.

The ∀-elimination inference rule:

Γ I Ωit J S ` Sl Γ I U l+1 J S ` Sl+1
∀

Γ I <∀>(it, l,u,(B1, . . . ,Bp)) J S ` S

with l ≤ u and U l+1 =<∀>(it, l +1,u,(B1, . . . ,Bp)), Ωit = [it← l](B1), . . . , [it← l](Bp).
If the goal is a unique universal constraint, then the ∀-elimination inference rule is applied and leads

to two sub-proof trees: The lower bound of the interval [l..u], l ≤ u, is assigned to the variable it of the
constraints B1, . . . , Bp and the sequent (Γ I [it ← l](B1), . . . , [it ← l](Bp) J S ` Sl) has to be proved;
and the lower bound is increased by 1 and the sequent (Γ I <∀>(it, l +1,u,(B1, . . . ,Bp)) J S ` Sl+1)
has also to be proved. The resulting stores Sl and Sl+1 are ignored after the proofs of Ωit and U l+1:
production and consumption are local.

The ∀-true axiom:

∀-true
Γ I <∀>(it, l,u,B) J S ` S

with u < l.
Finally, if the goal is a unique universal constraint with u < l, then the ∀-true axiom is applied since

the logic formula (x ∈ [l..u]→ B) is equivalent to true.
Now, the ω∃∀ sequent calculus is defined:

218 Quantified Constraint Handling Rules

Definition 3.3 (ω∃∀ sequent calculus system) The ω∃∀ sequent calculus system is the given of the ten
previous inference rules and axioms.

Restricted to the first four items (ie. Apply, Left-elimination-of-conjunction and Inactivate inference
rules and true axiom), the system is equivalent to the proof-theoretical semantics of CHR of [25] lifted
to first order thanks to the Equality inference rule.

Example 3.2 The QCHR program N that solves the Nim game, one of the motivating examples of
Section 2, is recalled (N represents the number of matches chosen by a player and R represents the
remaining number of matches into the heap):

u@ \nim fibo forall player(N,R)<∀>[it,1,min(N,R)] nim fibo exists player(2∗ it,R− it)
e@ \nim fibo exists player(N,R)<∃>[it,1,min(N,R)] nim fibo forall player(2∗ it,R− it)

and a proof of (N I nim fibo(4) J `) is given:

∀-true
N I <∀>(i,1,0,nim fibo exists player(2∗ i,0− i)) J `

∀⇔
N I nim fibo forall player(4,0) J `

∃
N I <∃>(i,1,2,nim fibo forall player(2∗ i,2− i)) J `

∃⇔
N I nim fibo exists player(2,2) J ` ∇

∀
N I <∀>(i,1,2,nim fibo exists player(2∗ i,3− i)) J `

∀⇔
N I nim fibo forall player(2,3) J `

∃
N I <∃>(i,1,3,nim fibo forall player(2∗ i,4− i)) J `

∃⇔
N I nim fibo exists player(3,4) J `

⇔
N I nim fibo(4) J `

with ∇:

∀-true
N I <∀>(i,1,0,nim fibo exists player(2∗ i,0− i)) J `

∀⇔
N I nim fibo forall player(2,0) J `

∃
N I <∃>(i,1,1,nim fibo forall player(2∗ i,1− i)) J `

∃⇔
N I nim fibo exists player(4,1) J ` ∇′

∀
N I <∀>(i,2,2,nim fibo exists player(2∗ i,3− i)) J `

and ∇′:

∀-true
N I <∀>(i,3,2,nim fibo exists player(2∗ i,3− i)) J `

4 Discussion

All the state-of the-art QCSP solvers have the same drawback: they explore much larger combinatorial
spaces than the natural search space of the original problem. In [3], the meaning of the “Achilles’heel”
notion, initially introduced for Quantified Boolean Formulas (QBF) [8, 23, 28, 29] in [2] as the diffi-
culty to detect that the Boolean constraints are necessarily true under some partial assignment, has been
extended for QCSP to the larger problem of how to avoid the exploration of combinatorial spaces that
are known to be useless by construction. This definition includes the capture of the illegal actions of

V. Barichard & I. Stéphan 219

the player B but also for example the end of the game before the last turn that is also a source of over-
sized explored search space. Already cited, [4, 27] proposes the new QCSP+ language that use restricted
quantification sequences instead of standard quantification sequences. Some other approaches propose to
modify more or less the QCSP/QCSP+ language to overcome the different drawbacks: [5] proposes the
new Strategic CSP language where universal variables adapt their domain to be compatible with previous
choices; [22] proposes also a new language but restricted to Markovian Game-CSP, based explicitly on
the notion of state, in order to efficiently model and solve control problems for completely observable
and Markovian dynamic systems. Those language are easily and efficiently expressed in QCHR (see
Subsection 5 ”The Nim Game” to a discussion about states in QCHR to improve efficiency).

5 Implementation and Experiments

To evaluate the QCHR approach, three well known problems3 are modelled and solved in QCSP and
QCHR. Then, the results obtained by two solvers are compared: QuaCode [3] for the solving of the
QCSP models and our solver QCHR++ for the solving of the QCHR models. QCHR++ is a QCHR solver
based on the CHR++ solver4. The latter has been extended by adding two new items to its grammar:
exists and forall. Item exists allows you to browse the domain of a variable by successively
trying each of its values in search of success. Item forall makes it possible to browse the domain of
a variable by making sure that each of the values leads to a success. They implement the ∃-elimination
and ∀-elimination rules previously defined.

Each experiment has been run 10 times and the average of the running times and number of failures
are reported in the tables. Notice that there is no random parameter or value used for both solvers. As a
consequence, for a given instance, the number of failures is always the same and the standard deviation of
the running times is quite low. All experiments have been run on an Intel Xeon-E5, 2.1-3.3GHz, 128GB
RAM running Linux. Maximum computation time is set to 300 seconds. All benchmarks used here are
provided with CHR++ sources.

The matrix game is a two-players game of d turns. It is played on a 0/1 square matrix of size 2d . At
each turn, player A cuts the matrix in half horizontally and decides to keep the top or bottom part. Player
B then cuts the matrix in half vertically and keeps the left or right part. If the last cell contains a 1, player
A wins.

The matrix game is well suited to the QCSP approach because the binder does not take benefit from
being defined dynamically. Indeed, the number of moves of a matrix game is fixed and only depends
on the matrix size. Although it does not belong to our motivating examples, it is used as a use case to
evaluate the efficiency of our approach on static binders. Let M be the input matrix of size 2d such that
M[i, j] ∈ {0,1}, i, j ∈ [0;

√
2d−1]. The following QCHR program finds a winning strategy to the matrix

game:

u @ \mgu(d)<∀>[it,0,1] updateCorner∀(it),mge(d−1)
e0 @ mge(0)⇔M[CornerULx,CornerULy] = 1
e @ \mge(d)<∃>[it,0,1] updateCorner∃(it),mgu(d−1)

With CornerUL and CornerLR the coordinates of the upper left and lower right corners of the relevant
part of the matrix. The relevant part is the remaining part after a player turn. Constraints updateCorner∀()

3We used the matrix game, the nimfibo game and the connect-four game to carry our experiments.
4CHR++ is a CHR solver built on the top of the C++ language, it can be downloaded at https://gitlab.com/vynce/chrpp

https://gitlab.com/vynce/chrpp

220 Quantified Constraint Handling Rules

Depth QuaCode QCHR++
Failures Time (s) Failures Time (s)

4 14 <1 22 <1
6 40 <1 50 <1
8 235 3.9 366 <1
9 447 59.53 705 <1

10 TL TL 1340 <1

Table 1: Results for the Matrix game

and updateCorner∃() are built-in constraints that update the upper left and lower right corners of the
relevant part of the matrix. The initial call is mge(2∗d).

The matrix game has already been modeled as a QCSP and solved with a QCSP solver. Random
matrices are used as input for the instances and computed the average execution time and number of
failures of each solver. Results are reported in Table 1.

Both models are quite equivalent and the solving takes no benefit from propagation of QCSP con-
straints. The number of failures encountered by QuaCode is smaller than that of QCHR++. Indeed, the
propagation done in QuaCode prevents the last branching steps of search. But the cost is huge compared
to the price of propagating the previous choices during the whole search. In comparison, QCHR++ does
not propagate the choices thanks to the constraints but its model is quite simple to test and each basic
operation is constant in time. Indeed, it only has to update the corner variables and to check at the end
if it is a 1 or a 0. That is why QCHR++ is able to solve the instance of depth 10 while QuaCode reaches
the time limit. As a result, we show that the QCHR model combined with QCHR++ is lighter and can be
more efficient than a QCSP model with QuaCode.

The Nim game is our first motivating example which has been introduced in Section 2. It can be
modeled in QCHR in a very intuitive way. But the QCHR model can do even more. Indeed, thanks to
its dynamic way of modeling, it is possible to make a top-down evaluation with tabling [24]. A top-
down evaluation with tabling consists in storing states of sub-trees already explored. If such a sub-tree is
encountered another time, its result will be used instead of exploring it again.

For the experiments, we compare three solving approaches: QuaCode for the QCSP/QCSP+ solving,
QCHR++ for the QCHR solving and QCHR++ (Mem) for the solving of the QCHR model with tabling.
We first observe on Figure 1 that QuaCode cannot solve instances of more than 40 matches without
exceeding the time limit (i.e. 300s). We notice that QuaCode and QCHR++ encountered the same
number of failures. Indeed, they are both based on same model and there is no constraint to propagate.
But, as seen on Figure 1, QCHR++ performs better. We now compare with QCHR++ with tabling and
see on Figure 1 that all instances are solved in less than 1 second. This huge improvement is explained
by the tabling process. Indeed, a Nim game state5 can be encountered many times during the search.
Recording such states will prevent the algorithm to explore them again in the future and increases a lot
the efficiency of the search. As the current state of a Nim game is Markovian (i.e. the current state does
not depend on the whole history of events), similar results are achieved in [22].

The connect-four game is our second motivating example. It has been presented at Section 2. The
QCSP+ model for the connect-four is big and not very understandable compared to the QCHR model.
The QCHR model involves a dynamic binder which is built during the solving.

5A Nim game state is given by the player number, the number of matches

V. Barichard & I. Stéphan 221

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

ti
m

e
(s

)

Number of matches

Quacode
CHR++

CHR++ (Mem)

Figure 1: Nim execution time

Board size QuaCode QCHR++
Failures Time (s) Failures Time (s)

4 4 2123 <1 28818 <1
4 5 26754 9.53 327561 <1
5 4 312580 105.75 5373028 2.17
5 5 TL TL 120470758 75.83

Table 2: Connect-four

222 Quantified Constraint Handling Rules

For the experiments, QuaCode for the QCSP solving and QCHR++ for the QCHR solving are com-
pared. As shown Table 2, the number of failures encountered by QuaCode is smaller than that of
QCHR++. Indeed, as for the matrix game, the propagation done in QuaCode prevents the last branching
steps of search. But the cost is huge compared to the benefit of avoiding a few branching steps. The re-
sults show that QCHR++ performs better than QuaCode. It is more than 50 times faster and can even find
solution before the time limit on the last instance. For larger boards, computing times become enormous,
exceeding the maximum allowed time.

6 Conclusion

This paper proposed the new QCHR formalism which is an extension of CHR with quantification. QCHR
allows to model dynamic binders. This overcomes one of the main drawbacks of the QCSP framework.
We also presented some very intuitive QCHR models and we solved them with a QCHR solver, QCHR++.
The experiments showed that QCHR++ always outperforms the QCSP solver and sometimes by many
orders of magnitude.

We believe that this new formalism gives an easier way to model constrained problems with quan-
tifications and offers a new way when the binder cannot be statically deduced. In the future, we plan to
tackle problems that cannot be dealt with QCSP such as problems where a static binder cannot be found.

References

[1] S. Abdennadher & H. Schütz (1998): CHR: A Flexible Query Language. In: Proceedings of the 3rd Interna-
tional Conference on Flexible Query Answering Systems, pp. 1–14, doi:10.1007/BFb0055987.

[2] C. Ansotegui, C. Gomes & B. Selman (2005): Achilles’ Heel of QBF. In: Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI’05), pp. 275–281.

[3] V. Barichard & I. Stéphan (2014): The cut tool for QCSP. In: Proceedings of the 26th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’14), pp. 883–890, doi:10.1109/ICTAI.2014.135.

[4] M. Benedetti, A. Lallouet & J. Vautard (2007): QCSP made Practical by virtue of Restricted Quantification.
In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07), pp. 38–43.

[5] C. Bessiere & G. Verger (2006): Strategic constraint satisfaction problems. In: Proceedings of the Workshop
on Modelling and Reformulation.

[6] H. Betz & T.W. Frühwirth (2013): Linear-Logic Based Analysis of Constraint Handling Rules with Disjunc-
tion. ACM Transactions on Computational Logic 14(1), doi:10.1145/2422085.2422086.

[7] L. Bordeaux & E. Monfroy (2002): Beyond NP: Arc-Consistency for Quantified Constraints. In: Proceedings
of the 8th International Conference on Principles and Practice of Constraint Programming (CP’02), pp. 371–
386, doi:10.1007/3-540-46135-3 25.

[8] M. Cadoli, A. Giovanardi & M. Schaerf (1998): An Algorithm to Evaluate Quantified Boolean Formulae. In:
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI’98), pp. 262–267.

[9] T.W. Frühwirth (1992): Constraint Handling Rules. Technical Report, ECRC.

[10] T.W. Frühwirth (1994): Constraint Handling Rules. In: Constraint Programming: Basics and Trends, pp.
90–107, doi:10.1007/3-540-59155-9 6.

[11] T.W. Frühwirth (2009): Constraint Handling Rules. Cambridge University Press,
doi:10.1017/CBO9780511609886.

[12] T.W. Frühwirth & S. Abdennadher (2003): Essentials of Constraint Programming. Springer-Verlag,
doi:10.1007/978-3-662-05138-2.

http://dx.doi.org/10.1007/BFb0055987
http://dx.doi.org/10.1109/ICTAI.2014.135
http://dx.doi.org/10.1145/2422085.2422086
http://dx.doi.org/10.1007/3-540-46135-3_25
http://dx.doi.org/10.1007/3-540-59155-9_6
http://dx.doi.org/10.1017/CBO9780511609886
http://dx.doi.org/10.1007/978-3-662-05138-2

V. Barichard & I. Stéphan 223

[13] T.W. Frühwirth & F. Raiser, editors (2011): Constraint Handling Rules: Compilation, Execution, and Anal-
ysis.

[14] T.W. Frühwirth (1998): Theory and Practice of Constraint Handling Rules. Journal of Logic Programming
37(1-3), pp. 95–138, doi:10.1016/S0743-1066(98)10005-5.

[15] I.P Gent, P. Nightingale, A. Rowley & K. Stergiou (2008): Solving quantified constraint satisfaction prob-
lems. Artificial Intelligence 172(6-7), pp. 738–771, doi:10.1016/j.artint.2007.11.003.

[16] J.-Y. Girard (1987): Linear Logic. Theoretical Computer Science 50, pp. 1–102, doi:10.1016/0304-
3975(87)90045-4.

[17] P. Van Hentenryck (1991): Constraint logic programming. Knowledge Engineering Review 6(3), pp. 151–
194, doi:10.1017/S0269888900005798.

[18] J. Jaffar & J.-L. Lassez (1987): Constraint Logic Programming. In: Proceedings of the 14th Annual ACM
Symposium on Principles of Programming Languages, pp. 111–119, doi:10.1145/41625.41635.

[19] J. Jaffar & M.J. Maher (1994): Constraint Logic Programming: A Survey. Journal of Logic Programming
19/20, pp. 503–581, doi:10.1016/0743-1066(94)90033-7.

[20] N. Mamoulis & K. Stergiou (2004): Algorithms for Quantified Constraint Satisfaction Problems. In: Pro-
ceedings of the 10th International Conference on Principles and Practice of Constraint Programming (CP’04),
pp. 752–756, doi:10.1007/978-3-540-30201-8 60.

[21] P. Nightingale (2007): Consistency and the quantified constraint satisfaction problem. Ph.D. thesis, Univer-
sity of St. Andrews. Available at https://research-repository.st-andrews.ac.uk/handle/10023/759.

[22] C. Pralet & G. Verfaillie (2011): Beyond QCSP for Solving Control Problems. In: Proceedings of the
17th International Conference on Principles and Practice of Constraint Programming (CP’11), pp. 744–758,
doi:10.1007/978-3-642-23786-7 56.

[23] M. Rabe & L. Tentrup (2015): CAQE: A Certifying QBF Solver. In: Formal Methods in Computer-Aided
Design (FMCAD’15), pp. 136–143.

[24] T. Schrijvers & D.S. Warren (2004): Constraint Handling Rules and Tabled Execution. In: Proceedings of
the 20th International Conference on Logic Programming (ICLP’04), pp. 120–136, doi:10.1007/978-3-540-
27775-0 9.

[25] I. Stéphan (2018): A New Proof-theoretical Linear Semantics for CHR. In: Proceedings of the 34nd
International Conference on Logic Programming (ICLP’18), Technical communication, 64, pp. 4:1–4:18,
doi:10.4230/OASIcs.ICLP.2018.4.

[26] G. Verger & C. Bessiere (2006): BlockSolve: a Bottom-Up Approach for Solving Quantified CSPs. In:
Proceedings of the 12th International Conference on Principles and Practice of Constraint Programming
(CP’06), pp. 635–649, doi:10.1007/11889205 45.

[27] G. Verger & C. Bessiere (2008): Guiding Search in QCSP+ with Back-Propagation. In: Proceedings of the
14th International Conference on Principles and Practice of Constraint Programming (CP’08), pp. 175–189,
doi:10.1007/978-3-540-85958-1 12.

[28] L. Zhang (2006): Solving QBF with Combined Conjunctive and Disjunctive Normal Form. In: Proceedings
of the 21th National Conference on Artificial Intelligence (AAAI’06).

[29] L. Zhang & S. Malik (2002): Conflict Driven Learning in a Quantified Boolean Satisfiability Solver.
In: Proceedings of the International Conference on Computer Aided Design (ICCAD’02), pp. 442–449,
doi:10.1145/774572.774637.

http://dx.doi.org/10.1016/S0743-1066(98)10005-5
http://dx.doi.org/10.1016/j.artint.2007.11.003
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1017/S0269888900005798
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1016/0743-1066(94)90033-7
http://dx.doi.org/10.1007/978-3-540-30201-8_60
https://research-repository.st-andrews.ac.uk/handle/10023/759
http://dx.doi.org/10.1007/978-3-642-23786-7_56
http://dx.doi.org/10.1007/978-3-540-27775-0_9
http://dx.doi.org/10.1007/978-3-540-27775-0_9
http://dx.doi.org/10.4230/OASIcs.ICLP.2018.4
http://dx.doi.org/10.1007/11889205_45
http://dx.doi.org/10.1007/978-3-540-85958-1_12
http://dx.doi.org/10.1145/774572.774637

	1 Introduction
	2 Motivating examples
	3 The QCHR language
	4 Discussion
	5 Implementation and Experiments
	6 Conclusion

