Most General Variant Unifiers

Santiago Escobar
(VRAIN, Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València)
Julia Sapiña
(VRAIN, Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València)

Equational unification of two terms consists of finding a substitution that, when applied to both terms, makes them equal modulo some equational properties. Equational unification is of special relevance to automated deduction, theorem proving, protocol analysis, partial evaluation, model checking, etc. Several algorithms have been developed in the literature for specific equational theories, such as associative-commutative symbols, exclusive-or, Diffie-Hellman, or Abelian Groups. Narrowing was proved to be complete for unification and several cases have been studied where narrowing provides a decidable unification algorithm. A new narrowing-based equational unification algorithm relying on the concept of the variants of a term has been developed and it is available in the most recent version of Maude, version 2.7.1, which provides quite sophisticated unification features. A variant of a term t is a pair consisting of a substitution sigma and the canonical form of tsigma. Variant-based unification is decidable when the equational theory satisfies the finite variant property. However, it may compute many more unifiers than the necessary and, in this paper, we explore how to strengthen the variant-based unification algorithm implemented in Maude to produce a minimal set of most general variant unifiers. Our experiments suggest that this new adaptation of the variant-based unification is more efficient both in execution time and in the number of computed variant unifiers than the original algorithm available in Maude.

In Bart Bogaerts, Esra Erdem, Paul Fodor, Andrea Formisano, Giovambattista Ianni, Daniela Inclezan, German Vidal, Alicia Villanueva, Marina De Vos and Fangkai Yang: Proceedings 35th International Conference on Logic Programming (Technical Communications) (ICLP 2019), Las Cruces, NM, USA, September 20-25, 2019, Electronic Proceedings in Theoretical Computer Science 306, pp. 154–167.
Published: 19th September 2019.

ArXived at: https://dx.doi.org/10.4204/EPTCS.306.21 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org