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Types in logic programming have focused on conservative approximations of program semantics by
regular types, on one hand, and on type systems based on a prescriptive semantics defined for typed
programs, on the other. In this paper, we define a new semantics for logic programming, where
programs evaluate to true, false, and to a new semantic value called wrong, corresponding to a run-
time type error. We then have a type language with a separated semantics of types. Finally, we
define a type system for logic programming and prove that it is semantically sound with respect to a
semantic relation between programs and types where, if a program has a type, then its semantics is
not wrong. Our work follows Milner’s approach for typed functional languages where the semantics
of programs is independent from the semantic of types, and the type system is proved to be sound
with respect to a relation between both semantics.

1 Introduction

Many-valued logics, in which there are more than two truth values, have been defined and applied to
several different scenarios. As examples, consider Kleene three-valued logic K3 [17], which includes
a third semantic value corresponding to undefined, and Bochvar’s internal three-valued logic (BI

3) [4],
also known as Kleene’s weak three-valued logic [16], where the intermediate truth value corresponds to
nonsense. The third value of Bochvar’s internal logic was reinterpreted by Beall [3] as off-topic.

Within the context of programming languages, we can observe that executing a program is meaning-
ful when values are within their expected semantic domains. This suggests that Bochvar’s third value
would match ill-typed programs. We argue that this formalism is particularly suited to logic programs.
First, using the third value for run-time type errors allows one to distinguish a program that simply has no
solution and a program that combines arguments in predicate calls haphazardly. Second, Bochvar’s logic
naturally propagates the errors. Based on this observation, we present a novel application of Bochvar’s
internal three-valued logic, to the definition of a new semantics for logic programming, where Bochvar’s
nonsense value stands for a type error at run-time. Inspired by Milner’s motto “Well-typed programs
can’t go wrong” [19], our reinterpretation of Bochvar’s third value corresponds to Milner’s notion of
wrong.

Our three-valued semantics uses a set of disjoint semantic domains. Given that unification is the
basic execution mechanism of logic programming, we define a run-time type error as an attempt to unify
terms belonging to different semantic domains or applying functions or predicates to terms whose values
are not on their domains.

In this view of logic programming, something may be false and still make sense (well-typed), while
something may be true, and yet nonsensical (ill-typed).

Example 1: Let p be the predicate defined as follows:

p(X) :- X = 1, X = 2.

If the constants 1 and 2 belong to the same semantic domain (intuitively, some set of integers) then
the predicate should be considered well-typed, in the sense that it will not produce a run-time type error.

http://dx.doi.org/10.4204/EPTCS.306.10
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Top-down execution in Prolog or a typed extension of Prolog just fails. Now suppose that we are using
the Herbrand interpretation where every semantic value belongs to a single domain: the set of all ground
terms, also known as the Herbrand universe. In this case there is also no type error in the program and
the result of executing it with any query would be false. On the other hand, suppose that the domain of
interpretation consists of singleton domains, each one containing exactly one different semantic value.
In this case, 1 and 2 would belong to different semantic domains and the program would generate a type
error at run-time for any query, since if X 6= 1 a type error would be reported on the first unification and
if X = 1, a type error would be reported on the second unification.

Example 2: Let q be a predicate defined as follows:

q(X) :- X = 1, X = a.

With this example we have the same situation that we had on the previous one, where the predicate
does not generate run-time type errors if there is only one domain containing all ground terms and it
would generate a type error at run-time if we have several singleton domains, each one containing one
value. But note that, in practice, we would use a set of domains which is more informative, i.e. it is
not one of the previously mentioned two extremes. In that case, one of these programs could generate
run-time type errors while the other could not. If our semantic domains correspond to types as they are
usually used in programming languages, then all integer numbers would belong to the same domain, as
would all floating-point numbers, characters and atomic constants, each belong to their own domain. In
this scenario, the program in example 1, although it fails, will not originate a type error at run-time. On
the other hand, the program in example 2 produces an error for any query, because, it will try to unify
values belonging to different semantic domains, in this case an integer and an atomic constant.

This view of logic programming, where queries may succeed, but generate type errors at run-time, is
compatible with the notion of intended interpretation defined in [21, 1]. A typical example of a Prolog
predicate which may not follow the programmer’s intended interpretation is the append predicate:

append([],X,X).

append([X|L],Y,[X|L1]) :- append(L,Y,L1).

This predicate succeeds for the query append([ ],1,1) without type checking, but this query does
not makes sense if the type implicitly intended by the programmer for the predicate is the expected one,
which is list(α)× list(α)× list(α), meaning three polymorphic lists.

The major novel contributions of our work are:

1. A new semantics for logic programming based on a three-valued logic which captures run-time
type errors, independently of failure or success;

2. A new type system for logic programming, which relates programs with types, defining statically
a well-typing relation;

3. A proof that our type system is sound with respect to the above-mentioned semantics and that the
semantics of well-typed logic programs cannot be wrong.

Previous work on declarative semantics for logic programming is based on model theory, where
some interpretation function either makes clauses true or false in a certain domain [7]. Here we extend
this model theory approach by using a three-valued logic. Using a specific semantic value for denoting
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erroneous programs goes back to early work on declarative debugging in logic programming [23]. In
these early works whether inadmissible atoms succeed or fail was not important. This idea was further
formalized through making explicit use of the third semantic value, in a previously defined three-valued
semantics for logic programming [22]. This previous semantics was based on a generalization of the
TP operator for the strong Kleene logic, which captured inadmissibility with respect to a specification
containing mode and type information. The main differences to our work is that we use the weak Kleene
logic to denote the propagating effect of type errors, which enables us to use our semantics to establish
the semantic soundness of a type system for logic programming, using the third semantic value as the
interpretation of ill-typed atoms. Previous semantics for typed logic programming, based on different
domains of interpretation, were defined before using many-sorted logics [18, 14]. These semantics were
defined for languages where type declarations formed an integral part of program syntax and were also
used to determine their semantics. Our work differs from these approaches by defining separate seman-
tics for untyped programs and types. Three-valued domains of interpretation revealed to be crucial in
this separation of both semantics.

In several previous works types approximated the success set of a predicate [31, 6, 30, 5, 9]. This
sometimes led to overly broad and even useless types, because the way logic programs are written can
be very general and accept more than what was initially intended. These approaches were different from
ours in the sense that in our work types can filter the set of terms accepted by a predicate. A different ap-
proach relied on ideas coming from functional programming languages [20, 18, 14, 27]. Other examples
of the influence of functional languages on types for logic programming are the prescriptive type systems
used in several functional logic programming languages [11, 28]. Along this line of research, a rather
influential type system for logic programs was Mycroft and O’Keefe type system [20], which was later
reconstructed by Lakshman and Reddy [18]. This system had types declared for the constants, function
symbols and predicate symbols used in a program. The semantics of these systems and our semantics
are quite different. Their semantics was itself typed, while our semantics uses independent semantics for
programs and types. Another difference is the type language used in these previous works and in our
work. In the Mycroft-O’Keefe type system, each clause of a predicate must have the same type. We
lift this limitation extending the type language with sums of types (union types), where the type of a
predicate is the sum of the types of its clauses. Other relevant works on type systems and type inference
in logic programming include types used in the logic programming systems CIAO Prolog [26, 29, 13],
SWI and Yap [27]. These systems were dedicated to the type inference problem and are not based on a
declarative semantics with an explicit notion of type error.

2 A Three-Valued Semantics for Logic Programming

In this section we present a declarative semantics for logic programming based on the three-valued logic
defined by Kleene [16] and further interpreted by Bochvar [4] and Beall [3]. The third logic value was
named nonsense in Bochvar’s work and interpreted as a meaningless statement that spreads its meaning-
lessness through every connective. This is the reason why whenever a connective joins nonsense with
any formula, the result is always nonsense. We can notice that there is a similarity between this behaviour
and the propagation of run-time errors in a programming language. Particularly in logic programming,
the use of this third semantic value for run-time type errors allows one to distinguish a program that
simply fails from a program that erroneously uses its function and predicate arguments. This change in
the semantics of logic programming from a two-valued semantics to a three-valued semantics captures
the notion of type error and type-safeness and thus it will be the key in establishing the precise meaning
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of what is a semantically sound type system for logic programming. We will consider that the semantics
of our programs follows a three-valued logic, where the values are true, false and wrong. The description
of the connectives in this three-valued logic is described in table 1.

∧∧∧ true false wrong
true true false wrong
false false false wrong

wrong wrong wrong wrong

∨∨∨ true false wrong
true true true wrong
false true false wrong

wrong wrong wrong wrong

Table 1: Connectives of the three-valued logic - conjunction and disjunction

The negation of logic values is defined as: ¬true = f alse, ¬ f alse = true and ¬wrong = wrong. And
implication is defined as: p =⇒ q≡ (¬p)∨q.

To understand the meaning of logic programs, here we define their semantics. We define a declar-
ative semantics, in the sense that it explains what logic programs compute, but not how logic programs
compute. So it abstracts from the details of the computation and focuses on the logical meaning of predi-
cates, when interpreted in the logic described above. As we shall see later, this will significantly simplify
the task of defining a sound type system with respect to a semantic relation between programs and types.

Normalized Programs: in order to simplify further processing we reduce every predicate to a nor-
mal form [25]. In this representation, each predicate is defined by a single clause (H : −B), where the
head H contains distinct variables as arguments and the body B is a disjunction (represented by the sym-
bol ;) of sequences of goals. We assume that there are no common variables between sequences of goals,
except for the variables that occur in the head of the clause, without loss of generality.

Example 3: Let add be a predicate defined by:

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

The normal form of this predicate is:

add(X1,X2,X3) :- ( X1 = 0, X2 = X, X3 = X ) ;

( X1 = s(X’), X2 = Y, X3 = s(Z),

X4 = X’, X5 = Y, X6 = Z, add(X4,X5,X6) ) .

Note that it is always possible to normalize a program using program transformation [25]. In the rest
of this paper we will assume that predicate definitions are always in normal form.

Semantics: we assume the existence of several distinct domains of interpretation, consisting of non-
empty sets of semantic values. We include a singleton set W containing a value wrong as the only
element, corresponding to a type error at run-time. Errors are generated dynamically by trying to unify
terms from different domains, or applying functions or predicates to terms whose values are not on their
domains.

Let Val be the set of semantic values of our term language. We will consider a disjoint union of
domains:

Val = B1 + . . .+Bn +A1 + . . .+Am +F+Bool+W

Domains Bi are called basic domains and are the domains of constant symbols. Domains Ai are the tree
domains of semantic values consisting of finite trees. The distinction between them is purely from their
nature and not from their functionality or role in the semantics. Bool is the domain which contains values
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true and f alse. F is the domain of all semantic functions, such that each semantic function maps a tuple
of basic or tree domains, whose arity is the arity of the function, into a basic domain, a tree domain or
Bool. A domain will be represented throughout the paper by D or Di, for some i.

Each ground term in our language will be associated with a semantic value, contained in a semantic
domain, by a semantic interpretation function. Let Var be an infinite and enumerable set of variables,
Func be an infinite and enumerable set of function symbols and Pred be an infinite and enumerable set
of predicate symbols.

There is an interpretation function I : Func∩Pred→ Val which associates each constant to their
semantic value and each function symbol and predicate symbol to a functional value f . Functions as-
sociated with predicate symbols always have the domain Bool as co-domain. Note that, because I is a
function, for a given I, each constant, function symbol and predicate symbol can only be associated with
one semantic value. Therefore, since domains are disjoint, meaning ∀i, j.i 6= j =⇒ Di ∩D j = /0, each
semantic value belongs to a unique domain. From now on we will write domain(v) to denote the domain
which contains v, if v is not a function, or to denote the tuple with the domains of the arguments of v, if
v is a function.

We shall now introduce the concept of a state which will associate variables with their current value.
We shall represent a state as a function from variables to values. Each state σ specifies a value, written
σ(X), for each variable X of Var.

Note that in clauses in normal form q(X1, . . . ,Xn) :−sg1; . . . ;sgm., the same variable symbols X1, . . . ,Xn

are used in the body sg1; . . . ;sgm but denote different possible values in the different sequences of goals
sg1; . . . ;sgm. Thus, to define its semantics, we will need a list of possible different states. Each state
σ1, . . . ,σm in the definition of the semantics of a clause [[q(X1, . . . ,Xn) : −sg1; . . . ;sgm.]]I,[σ1,...,σm]

will
correspond to different variants of variables X1, . . . ,Xn, one for each query sgi, for 1≤ i≤ m.

For simplicity of presentation, throughout the rest of this paper we will use σ for a list with a single
state σ , and σ̄ for a list with several states, which can also appear explicitly σ̄ = [σ1, . . . ,σn]. The se-
mantics of a logic term, given an interpretation I and a list of states is defined as follows:

[[X ]]I,σ = σ(X)
[[k]]I,σ = I(k)
[[ f (t1, . . . , tn)]]I,σ = if (domain([[t1]]I,σ ), . . . ,domain([[tn]]I,σ ))⊆ domain(I( f ))

then I( f )([[t1]]I,σ , . . . , [[tn]]I,σ )
else wrong

The semantics for a predicate p with arity n corresponds to a function fp, given by I, that given values
from semantic domains D1×·· ·×Dn outputs values in Bool, or in case the values do not belong to the
domains of the function, gives as error, wrong.

[[p]]I,σ = I(p) = fp, where fp :: D1×·· ·×Dn→ Bool.

Given this, the semantics for programs is given as follows:

[[t1 = t2]]I,σ = if ([[t1]]I,σ = [[t2]]I,σ ∧ [[t1]]I,σ 6= wrong)
then true
else if (domain([[t1]]I,σ ) = domain([[t2]]I,σ )∧ [[t1]]I,σ 6= wrong )

then f alse
else wrong



J. Barbosa, M. Florido & V. Santos Costa 41

[[p(t1, . . . , tn)]]I,σ = if (domain([[t1]]I,σ ), . . . ,domain([[tn]]I,σ ))⊆ domain([[p]]I,σ )
then [[p]]I,σ ([[t1]]I,σ , . . . , [[tn]]I,σ )
else wrong

[[g1, . . . ,gn]]I,σ = [[g1]]I,σ ∧ . . .∧ [[gn]]I,σ
[[sg1; . . . ;sgm]]I,[σ1,...,σm]

= [[sg1]]I,σ1
∨ . . .∨ [[sgm]]I,σm

[[q(X1, . . . ,Xn) :−sg1; . . . ;sgm.]]I,[σ1,...,σm]
= ([[sg1; . . . ;sgm]]I,[σ1,...,σm]

=⇒
([[q(X1, . . . ,Xn)]]I,[σ1]

∧ . . .∧ [[q(X1, . . . ,Xn)]]I,[σm]
))

Note that conjunction, disjunction and implication in the previous definitions are interpreted in the
three-valued logic defined by the truth tables previously presented in this section. Also note that, as
different states are only needed for disjunctions, in the previous rules, the number of states in the list of
states is one, except for the last two cases.

Next function, called or degree, gives the number of states needed for the semantics of disjunctions.

Definition 1(or degree): Let M be a term, a goal or a clause. Its or degree is defined as follows:

• or degree(M) = k, if M = sg1; . . . ;sgk or M = p(X1, . . . ,Xn) :−sg1; . . . ;sgk.

• or degree(M) = 1, otherwise.

3 Types

Here we define a new class of expressions, which we shall call types, build from an infinite enumerable
set of type variables, a finite set of base types, an infinite and enumerable set of type constants and an
infinite and enumerable set of type function symbols. Simple types can be:

• a type variable (α,β ,γ, . . . )

• a type constant (1, [ ], ‘c’, · · · ∈ TCons)

• a base type (int, f loat, · · · ∈ T Base)

• a sum of simple types (τ1 + . . .+ τn)

• a recursive type definition, where τ is a simple type and α occurs in τ (µα.τ)

• a type function symbol f ∈ T Func associated with an arity n applied to an n-tuple of simple types
( f (1, [ ],g(α))).

A predicate type is a functional type from a tuple of simple types to the type bool (τ1×·· ·×τn→ bool).
For recursive types we use a recursive operator µ . For example, the traditional type for lists of integers
can be written as: µα.([ ]+ [int|α]).

Our type language enables parametric polymorphism through the use of type schemes. A type scheme
is defined as ∀α.τ , where τ is a predicate type and α is a type variable. In logic programming, there
have been several authors that have dealt with polymorphism with type schemes or in a similar way
[24, 2, 12, 31, 9, 10, 30, 8]. Type schemes have type variables as generic place-holders for ground
types. Parametric polymorphism comes form the fact these type variables (the type parameters) can be
instantiated with any type. In the rest of the paper, for the sake of readability, we will not write the
universal quantifiers on type schemes and we will assume that all free type variables on predicate types
are universally quantified.
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3.1 Semantic Typing

Here we need to define what is meant by a value v semantically having a type τ . We begin with a formal
definition of a semantics for types. The notation we will use for a type constant is κ and for a base type
is bs. A simple type is ground if it contains no type variables and it is complex if it starts with a type
function symbol f .

We assume that each base type bs is associated with a basic domain. Therefore, not only there are
exactly as many base types as there are basic domains, meaning that there is a finite number of base
types, but we also know the association between them. Let ∼ denote the association between types and
domains. If a base type bs is associated with a basic domain Bi, we will denote this by bs ∼ Bi. The
association between base types and basic domains is considered to be predefined.

We will write f ix(F) meaning the least fixed point of function F , defined as f ix(F) =
⋃

n Fn( /0),
where F i is the i-fold composition of F with itself. Note that f ix(F) is well-defined, because the set
of sets of values ordered by set inclusion is a complete partial order (CPO), and then, by Kleene fixed-
point theorem, every function on this set has a least fixed point, which is the supremum of the ascending
Kleene chain of the function.

The relation ∼ can now be extended to relate types with domains in the following way:

• bs∼ D is predefined.

• τ1 + τ2 ∼ D1∪D2 ⇐⇒ τ1 ∼ D1∧ τ2 ∼ D2.

• τ1×·· ·× τn ∼ D1×·· ·×Dn ⇐⇒ τ1 ∼ D1∧·· ·∧ τn ∼ Dn.

• α ∼ D, for any basic or tree domain D.

• µα.τ ∼ D ⇐⇒ F(x) = T[[τ[x/α]]]I ∧D = f ix(F).

• τ1×·· ·× τn→ τn+1 ∼ D1×·· ·×Dn→ Dn+1 ⇐⇒ ∀1≤ i≤ n+1. τi ∼ Di

Note that the ∼ relation associates base types with basic domains and it is then lifted from this
association of base types with basic domains. Thus, there is no way a type may be related by ∼ to the
domain W, containing the value wrong.

Given the formerly described relation∼, the semantics for types is given by the following rules. T[[ ]]
defines the semantics of types of terms, with the exception of bool, which is the type of the output of a
predicate semantics. P[[ ]] defines the semantics of types of predicates.

T[[κ]]I = {κ}
T[[α]]I = {v | v ∈ D∧α ∼ D}
T[[bs]]I = {v | v ∈ Bi∧bs∼ Bi}
T[[bool]]I = {true, f alse}
T[[ f (τ1, . . . ,τn)]]I = { f (v1, . . . ,vn) | v1 ∈ T[[τ1]]I ∧ . . .∧ vn ∈ T[[τn]]I}
T[[τ1 + . . .+ τn]]I = T[[τ1]]I ∪ . . .∪T[[τn]]I .
T[[τ1×·· ·× τn]]I = {(v1, . . . ,vn) | v1 ∈ T[[τ1]]I ∧ . . .∧ vn ∈ T[[τn]]I}.
T[[µα.τ]]I = {v | v ∈ D∧µα.τ ∼ D}
P[[τ1×·· ·× τn→ bool]]I =

{p | ∀(t1, . . . , tn).[[(t1, . . . , tn)]]I,σ ∈ T [[τ1× . . .× τn]]I =⇒ [[p]]I,A([[t1]]I,σ , . . . , [[tn]]I,σ ) ∈ T[[bool]]I}
P[[∀α.τ]]I =

⋂
τ ′ .P[[τ[τ ′/α]]I , where τ ′ is any ground simple type.

Example 4: Let us represent the type list of integers as µα.([ ]+ [int | α]). Its semantics is calculated in
the following way:
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T[[µα.([ ]+ [int | α])]]I = {v | v ∈ D∧µα.([ ]+ [int | α])∼ D}

Let F(X) = T[[[ ]+ [int | X ])]]I = {[ ]}∪{[n | v] | n ∈ D1∧ v ∈ X}, where int ∼ D1.

F( /0) = {[ ]}∪{[n | v] | n ∈ D1∧ v ∈ /0} = {[ ]}.
F2( /0) = F(F( /0)) = F({[ ]}) = {[ ]}∪{[n] | n ∈ D1}
F3( /0) = F({[ ]}∪{[n] | n ∈ D1}) = {[ ]}∪{[n] | n ∈ D1}∪{[n1,n2] | n1 ∈ D1∧n2 ∈ D1}
...
Now, note that D = f ix(F), where f ix(F) =

⋃
n Fn( /0).

Therefore, D = F( /0)∪F2( /0)∪F3( /0)∪ . . . = {[ ]}∪{[n] | n∈D1}∪{[n1,n2] | n1 ∈D1∧n2 ∈D1}∪ . . .,
where D1 ∼ int, which is the set of all finite lists of integers.

Example 5: Now consider the predicate type for a predicate defining polymorphic lists: ∀β .
[
µα.([ ]+

[β | α])→ bool
]
. The semantics of this type is the set of predicates which define lists of elements of

type τ , for every ground instance τ of β . Therefore its semantics contains all predicates whose semantic
functions have polymorphic lists as the argument.

We shall now define what is meant by a value v semantically having a type τ . Note that values may
have many types, or have no type at all. For example, the value wrong has no type.

Using T we can define, for each state σ , a relation between the value associated with a variable in σ

and a type τ , by:

Definition 2: Let X be a variable and τ a type:
X :I,σ τ ⇐⇒ [[X ]]I,σ ∈ T[[τ]]I

An assumption is a type declaration for a variable, written X : τ , where X is a variable and τ a type.
Variable X is called the subject of the assumption. We define a context Γ as a set of assumptions with
distinct variables as subjects (alternatively contexts can be defined as functions from variables to types).
We can extend the above relation to contexts.

Definition 3: Given a context Γ, [[Γ]]I,σ ⇐⇒ ∀(X : τ) ∈ Γ. X :I,σ τ

Definition 4: The sum of contexts, written Γ1⊕Γ2, is defined by:

(Γ1⊕Γ2)(X) =


Γ1(X), X does not occur as subject in Γ2

Γ2(X), X does not occur as subject in Γ1

Γ1(X)+Γ2(X), otherwise.

Finally we give a semantic meaning to assertions of the form Γ |=P,I M : τ stating that if the assump-
tions in Γ hold then M yields a value of type τ .

Definition 5(Semantic Typing): Let P be a program, i.e. a set of clauses, I an interpretation, and M
either a term, a goal or a clause.
Γ |=P,I M : τ ⇐⇒ ∃[Γ1, . . . ,Γn].∀σ̄ = [σ1, . . . ,σn].

[
[[Γ1]]I,[σ1]

∧ . . .∧ [[Γn]]I,[σn]
=⇒ [[M]]I,σ̄ ∈ T[[τ]]I

]
,

where Γ1⊕·· ·⊕Γn = Γ and n = or degree(M). If n = 1, then the only sum possible is Γ itself.
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Example 6: Let p be a predicate with the following predicate definition:

p(X) :- X = 1 ; X = a.

Let interpretation I be such that I(1) = 1 and I(a) = a and B1 and B2 be two semantic domains such
that 1 ∈ B1 and a ∈ B2. Let I(p) = fp, such that fp :: B1 ∪B2→ Bool. Lets assume we have Γ = {X :
int + atom}, Γ1 = {X : int} and Γ2 = {X : atom}, where int ∼ B1 and atom ∼ B2. We will show that
Γ |=P,I (p(X) :−X = 1;X = a.) : bool. This corresponds to showing that

∃[Γ1,Γ2].∀[σ1,σ2].
[
[[Γ1]]I,[σ1]

∧ [[Γ2]]I,[σ2]
=⇒ [[p(X) :−X = 1;X = a.]]I,σ̄ ∈ T[[bool]]I

]
Suppose Γ1 = {X : int} and Γ2 = {X : atom}, then Γ1⊕Γ2 = Γ. If σ1(X) ∈ B1 and σ2(X) ∈ B2, the left
hand side of the implication is true. The right hand side is also true, since applying fp to any of the σi(X)
does not return wrong and neither does any of the unifications on the bodies of the clause. Therefore
the semantic value of the clause is not wrong. If one of the σi(X) does not yield a value in the previous
domains, the right hand side of the implication is false, since one of the unifications yields wrong. But
the left hand side is also false, since [[X ]]I,σ1

/∈ T[[int]]I and [[X ]]I,σ2
/∈ T[[atom]]I , thus the initial statement

is still true.

4 Type System

In this section we define a type system which, statically, relates logic programs with types. The type
system defines a relation Γ `P p : τ , where Γ is a context as defined in the previous section, p is a term, a
goal, or a clause, and τ is a type. This relation should be read as expression p has type τ given the context
Γ, in program P. We will write Γ∪{X : τ} to represent the context that contains all assumptions in Γ and
the additional assumption X : τ (note that because each variable is unique as a subject of an assumption
in a context, in Γ∪{X : τ}, Γ does not contain assumptions with X as subject). We will write a sequence
of variables X1, . . . ,Xn as X̄ , and a sequence of types as τ̄ . We assume that clauses are normalized and,
therefore, every call to a predicate in the body of a clause contains only variables.

The type system also uses a function type which gives the type of constants and function symbols.
We assume that type is defined for all constants and function symbols that occur in P and types given
by type never include bool and always have the right arity, i.e. for a function symbol of arity n it will
be of the form τ1×·· ·× τn→ τ ′. If n = 0, it is just τ . This function corresponds to a type declaration.
For instance, the list type list(α) = [ ]+ [α | list(α)] is denoted by µβ .[ ]+ [α | β ] in the type system.
This is defined in the type system by a function type that assigns the type µβ .[ ]+ [α | β ] to the empty
type [ ] and the type α× (µβ .[ ]+ [α | β ])→ (µβ .[ ]+ [α | β ]) to the type constructor symbol [ | ]. Note
that these declarations for function symbols and constants may be used, however, they are optional and,
moreover, there are no type declarations for predicates.

We first define the following subtyping relation, which will be used in the type system.

Definition 6(Subtyping): Let φ be a substitution of types for type variables. Let≤ denote the subtyping
relation defined as follows:

• τ ≤ τ (Reflexivity)

• τ ≤ τ ′ if ∃φ .φ(τ ′) = τ (Instance)

• if τ ≤ τ ′, then τ ≤ τ ′+ τ ′′ (Right Union)

• if τ ≤ τ ′, then τ ≤ τ ′′+ τ ′ (Left Union)
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• if τ ′ ≤ τ , then τ → bool ≤ τ ′ → bool (Contravariance)

Lemma 1(Soundness of the subtyping relation): Given a predicate p and a type τ , if p ∈ P[[τ]]I , then
∀τ ′.τ ≤ τ ′ =⇒ p ∈ P[[τ ′]]I .

VAR Γ∪{X : τ} `P X : τ

CST Γ `P c : τ, where type(c) = τ

CPL Γ `P t1 : τ1 . . . Γ `P tn : τn
Γ `P f (t1, . . . , tn) : τ

, where type( f ) = τ1× . . .× τn→ τ

UNF Γ `P t1 : τ Γ `P t2 : τ

Γ `P t1 = t2 : bool

CLL Γ∪{Y1 : τ1′, . . . ,Yn : τn′} `P (p(Y1, . . . ,Yn) :−sg.) : bool ∀i.τi ≤ τi′
Γ∪{X1 : τ1, . . . ,Xn : τn} `P p(X1, . . . ,Xn) : bool

CON Γ `P g1 : bool Γ `P gn : bool
Γ `P g1, . . . ,gn : bool

CLS(a) Γ∪{X̄ : τ̄1} `P b1 : bool . . . Γ∪{X̄ : τ̄m} `P bm : bool
Γ∪{X̄ : τ̄1 + · · ·+ τ̄m} `P (p(X̄) :−b1; . . . ;bm.) : bool

RCLS(b)
Γ∪{X̄ : τ̄i} `P bi : bool . . . Γ∪{X̄ : τ̄ j,Ȳj1 : τ̄ j, . . . ,Ȳjk j : τ̄ j} `P bm+ j : bool

Γ∪{X̄ : τ̄i + τ̄ j} `P (p(X̄) :−b1; . . . ;bm;
bm+1, p(Ȳ11), . . . , p(Ȳ1k1);

...
bm+n, p(Ȳn1), . . . , p(Ȳnkn).) : bool

(a) This rule is for non-recursive predicates only. The sum on the consequence of the rule is argument-wise (b) This rule is for recursive
predicates. Note that all variables in recursive calls in a certain sequence of goals have the same type as the variables in the head in that
sequence of goals. Also i = 1, . . . ,m and j = 1, . . . ,n

Figure 1: Type System

Then we present a type system (see Figure 1) defining the typing relation, which relates terms, calls
and predicate definitions with types. If there is a context Γ and a type τ such that Γ `P p : τ we say that
p is statically well-typed. This type system can be easily implemented to type check programs, but not
to infer types. Nevertheless, we want to keep open the possibility of defining a type inference algorithm.
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Definition 7(Monomorphism Restriction): Let p be a recursive predicate of arity n, typed with type τ

using an context Γ. For all 1 ≤ i ≤ n, the types of the variables in the i-th argument of p in the head of
the clause defining it, and in all of its recursive calls are the same in Γ.

It is well-known that type inference in the presence of polymorphic recursion is not decidable
[12, 15], thus we do not allow polymorphic recursion in the system. This is achieved by the previ-
ous restriction on recursive predicates. We choose to define this restriction locally in each predicate
definition for the sake of simplicity of presentation. The alternative would be to define a new syntax for
logic programming to group together mutually recursive predicates as a single syntactic entity (in func-
tional programming this would correspond to nested letrec expressions). The monomorphism restriction
(Definition 7) holds in our type system by rule RCLS for typing recursive predicates. In this rule we use
the same type for the variables in the head of the clause in its recursive calls in the body.

Let us briefly describe the other type rules. Rule Var types a variable with the type is has in the
context.

Rule CST and CPL types constants and complex terms using the type function either directly in the
case of constants, or checking the types for the arguments in the case of a complex term, which have to
be the same ones as the input of type( f ), for a complex term f (t1, . . . , tn).

Rule UNF types an equality as bool if the types for both sides of the equality are the same. Rule
CLL types predicate calls: for a call to a predicate p to be well typed, the type for each variable in the
call needs to be a subtype of the type of the variables in the definition of p in program P.

Rule CON just check that every goal is bool. Rule CLS types non-recursive clauses: if we type each
body of a clause using types τ̄ for variables X̄ , then we can type the entire clause with the sum of all those
types argument-wise. Note that, from rules CLS and RCLS, the type of a clause is bool. However, the
interesting type information is the type for a predicate, determined by the types of its arguments which,
in the end of the type derivation, are in context Γ.

Example 7: Suppose that the programmer wants to use a list data structure. Then it can declare it in the
program as such:

:−type list(α) = [ ]+ [α | list(α)].

This declaration is translated to the following in the type system: µβ .([ ]+ [α | β ]). Then, every con-
stant and constructor that are members of the list of possible cases for the type and are assigned their
corresponding types. The function type in the type system will be:

type([ ]) = µβ .([ ]+ [α | β ]),
type([ | ]) = α×µβ .([ ]+ [α | β ])→ µ(β .[ ]+ [α | β ]).

With this type function, we can produce a derivation that assigns the type list(α)× list(α)× list(α)→
bool to the predicate append defined as usual.
In this case, the call append([ ],1,1) would be ill-typed.

Note that with another function type, originated from another declaration from the programmer, the
same call could be well-typed. One example would be the following declaration:

:−type dummy(α) = 1+[ ]+ [α | dummy(α)].
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Example 8: Here we give a simple example of a type derivation. Let p be a predicate defined by p(X) :-
X = 1; X = a.. Let type be such that type(1) = int and type(a) = atom. By two applications of rule UNF
followed by an application of rule CLS we have:

{X : int} `P X : int {X : int} `P 1 : int
{X : int} `P X = 1 : bool

{X : atom} `P X : atom {X : atom} `P a : atom
{X : atom} `P X = a : bool

{X : int} `P X = 1 : bool {X : atom} `P X = a : bool
{X : int +atom} `P p(X) :−X = 1;X = a. : bool

From the type of X in the final context, the type of p is int +atom→ bool.

We will also give an example for a predicate with a type declaration.

Lemma 2(Interpretation Existence): Given a function type, there is always an interpretation I, such
that for any constant or function symbol, here denoted by symbol t, and any state σ , [[t]]I,σ ∈T[[type(t)]]I .

Finally, our main result shows that the type system is semantically sound, meaning that if a program
has a type in our type system, then the program and its type are related by the semantic typing relation
defined in Definition 5.

Theorem 1(Semantic Soundness): Let P be a program, then Γ `P M : τ =⇒ ∃I.(Γ |=P,I M : τ)

Note that the value wrong has no type, thus, as a corollary of the soundness theorem, we have that if
a predicate is statically well-typed, then there is an interpretation I, for which the predicate semantics is
not wrong.

5 Conclusion

Here we present a new semantics for logic programming which captures the notion of type error with
another value in the logic itself. For a restricted language we have shown that this semantics can be
used to prove that a type system for logic programming is correct based on a notion that connects the
semantics of programs and the semantics of types.

The next step, left for future work, will be the definition of a type inference algorithm, sound with
respect to the type system presented in this paper, that automatically infers types for programs and may
use type declaration in the form of data structures, although that is optional.
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APPENDIX

Lemma 1(Soundness of the subtyping relation): Given a predicate p and a type τ , if p ∈ P[[τ]]I , then
∀τ ′.τ ≤ τ ′ =⇒ p ∈ P[[τ ′]]I .

Proof. The proof follows directly from the definition of the ≤ relation and the definition of P[[ ]].

Lemma 2(Interpretation Existence): Given a function type, there is always an interpretation I, such
that for any constant or function symbol, here denoted by symbol t, and any state σ , [[t]]I,σ ∈T[[type(t)]]I .

Proof. The proof follows from the definition of function T[[ ]], noting that, as there is an infinite number
of possible interpretation functions I, it is always possible to choose an appropriate interpretation.

Theorem 1(Semantic Soundness): Let P be a program, then Γ `P M : τ =⇒ ∃I.(Γ |=P,I M : τ)

Proof of Theorem 1 (Semantic Soundness): The proof of this theorem follows by structural induction on
M.

Base cases:

• VAR: We know that X : τ ∈ Γ and we want to prove that there is an interpretation I such that
Γ |=P,I X : τ , which corresponds to proving ∃I.∀σ .

[
[[Γ]]I,σ =⇒ [[X ]]I,σ ∈T[[τ]]I

]
. For any I, suppose

for some σ , [[Γ]]I,σ is false, then the implication is true and we get the result we wanted. Suppose
for some other σ , [[Γ]]I,σ is true. Then it follows by Definition 3 that the right side of the implication
is true, which means the whole implication is also true.

• CST: We want to prove that ∃I.Γ |=P c : τ , which corresponds to proving ∃I.∀σ .
[
[[Γ]]I,σ =⇒

[[c]]I,σ ∈ T[[τ]]I
]
. From lemma 2, there is always an interpretation I such that the right side of the

implication is true. Therefore on that interpretation I, the implication is true for any σ .

Inductive Step:

• CPL: We want to prove that ∃I.(Γ |=P,I f (t1, . . . , tn) : τ), which corresponds to proving the follow-

ing: ∃I.∀σ .
[
[[Γ]]I,σ =⇒ [[ f (t1, . . . , tn)]]I,σ ∈ T[[τ]]I

]
. By the induction hypothesis, we know that

∃Ii.Γ |=P,Ii ti : τi,∀1 ≤ i ≤ n. Let I be an interpretation such that [[ti]]Ii,σ
= [[ti]]I,σ . For that I, for

any state σ , if domain(I( f )) τ1×·· ·× τn→ τ then the implication is true. If domain(I( f )) is not
associated with the correct type, then we can always create an interpretation I′ that is the same as
I for all constants, function symbols and predicate symbols, but differ on f , such that the relation
domain(I( f )) τ1×·· ·× τn→ τ holds. For all states σ ′ that make the left side of the implication
false the implication is trivially true. Therefore, for that I or I′, for any σ , [[ f (t1, . . . , tn)]]I,σ ∈T[[τ]]I .
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• UNF: We want to prove ∃I.Γ |=P,I t1 = t2 : bool, which corresponds to proving ∃I.∀σ .
[
[[Γ]]I,σ =⇒

[[t1 = t2]]I,σ ∈T[[bool]]I
]
. By the induction hypothesis, we know that ∃I1.Γ |=P,I1 t1 : τ and ∃I2.Γ |=P,I2

t2 : τ . Let I be an interpretation constructed from I1 and I2 in such a way that, for any σ ,
[[t1]]I1,σ

= [[t1]]I,σ and [[t1]]I2,σ
= [[t1]]I,σ . In this I, we know that [[t1]]I,σ and [[t2]]I,σ belong to the

same semantic domain since there is only one domain associated with τ , which means the seman-
tics of t1 = t2 is never wrong, i.e. is in T[[bool]]I . Therefore, for any σ , Γ |=P,I t1 = t2 : bool.

• CLL: We want to prove ∃I.Γ∪{X1 : τ1, . . . ,Xn : τn} |=P,I p(X1, . . . ,Xn) : bool, which corresponds

to proving ∃I.∀σ .
[
[[Γ]]I,σ =⇒ [[p(X1, . . . ,Xn)]]I,σ ∈ T[[bool]]I

]
. By the induction hypothesis, we

know that ∃I.Γ∪ {Y1 : τ1′, . . . ,Yn : τn′} |=P p(Y1, . . . ,Yn) : −body. : bool, which means [[p]]I,σ ∈
P[[τ1′ × . . .× τn′ → bool]]I . Because ∀i = 1, . . . ,n. τi ≤ τ ′i, then, by definition 6, we have that
τ1′ × · · · × τn′ → Bool ≤ τ1 × ·· · × τn → Bool. Thus, from lemma 1, it follows that [[p]]I,σ ∈
[[τ1× . . .× τn→ bool]]I . Therefore, for I, for any σ , Γ |=P,I p(X1, . . . ,Xn) : bool.

• CON: We want to prove ∃I.Γ |=P,I g1, . . . ,gn : bool, which corresponds to proving ∃I.∀σ .[
[[Γ]]I,σ =⇒ [[g1, . . . ,gn]]I,σ ∈ T[[bool]]I

]
. By the induction hypothesis, for 1 ≤ i ≤ n, ∃Ii.Γ |=P,Ii

gi : bool. Let I be an interpretation such that [[ci]]Ii,σ
= [[ci]]I,σ for all i and any σ . With this

interpretation, ∀σ .
[
[[Γ]]I,σ =⇒ [[g1, . . . ,gn]]I,σ ∈ T[[bool]]I

]
.

• CLS: We want to prove ∃I.Γ |=P,I p(X1, . . . ,Xn) :−b1; . . . ;bm. : bool, meaning ∃I.∃[Γ1, . . . ,Γm].

∀σ̄ = [σ1, . . . ,σm].
[
[[Γ1]]I,σ1

∧ . . .∧ [[Γm]]I,σm
=⇒ [[p(X1, . . . ,Xn) :−b1; . . . ;bm.]]I,σ̄ ∈T[[bool]]I

]
. By

the induction hypothesis, we know that ∃Ii.Γi |=P,Ii bi : bool, for 1 ≤ i ≤ m, where Γi is the same
for all variables except X̄ . The fact that Γ1⊕ ·· · ⊕Γm = Γ comes from the contexts being the
same for all variables except X̄ and from Γ having the assumptions X̄ : τ̄1 + . . .+ τ̄m. We know
that each bi is modelled by Ii for all σ , then let I′ be an interpretation such that for all σ and all
i, [[bi]]Ii,σ

= [[bi]]I′,σ . If I′ is such that I′(p) = f :: D1× . . .×Dn→ D and τ1,i + . . .+ τm,i ∼ Di, for
1 ≤ i ≤ n, then let I = I′, else we can create I by changing only the semantic function of p in I′,
for an f that is as described above. Then we have that Γ |=P,I p(X1, . . . ,Xn) :−b1, . . . ,bm. : bool.

• RCLS: We want to prove ∃I.Γ |=P,I p(X1, . . . ,Xn) :−b1, . . . ,bm. : bool, meaning ∃I.∃[Γ1, . . .Γk].

∀σ̄ = [σ1, . . . ,σk].
[
[[(p(X̄) :−b1; . . . ;bm;bm+1, p(Ȳ11), . . . , p(Ȳ1k1); . . . ;bm+n, p(Ȳn1), . . . ,

p(Ȳnkn).]]I,σ̄ ∈ T[[bool]]I
]
. By the induction hypothesis, we know that for 1≤ i≤m+n, ∃Ii.Γi |=P,Ii

bi : bool, where Γi is of the form that occurs in the rule. We also know that Γ1⊕·· ·⊕Γm+n = Γ,
since the contexts are the same for all variables except X̄ and the Ȳj and we can add the assumptions
for the Ȳj whenever they do not exist already in a context with no change in the implication since
those variables only occur in one sequence of goals in the body of the clause. For X̄ , we know that
Γ(X̄) = Γ1(X̄)+ . . .+Γm+n(X̄), so we prove the previous ⊕ statement. Let I′ be an interpretation
such that [[bi]]Ii,σ

= [[bi]]I′,σ for all i = 1, . . . ,m+n. If I′ is such that I′(p) = f :: D1× . . .×Dn→D
and τ1,i + . . .+ τm,i ∼ Di, for 1 ≤ i ≤ n, then let I = I′, else we can create I by changing only
the semantic function of p in I′, for an f that is as described above. Then we get that for I,
Γ |=P,I p(X1, . . . ,Xn) :−b1, . . . ,bm. : bool.
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