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We initiate the development of a model-driven testing framework for message-passing systems. The
notion of test for communicating systems cannot simply be borrowed from existing proposals. There-
fore, we formalize a notion of suitable distributed tests for a given choreography and devise an al-
gorithm that generates tests as projections of global views. Our algorithm abstracts away from the
actual projection operation, for which we only set basic requirements. The algorithm can be in-
stantiated by reusing existing projection operations (designed to generate local implementations of
global models) as they satisfy our requirements. Finally, we show the correctness of the approach
and validate our methodology via an illustrative example.

1 Introduction

We propose model-driven testing to complement the correctness-by-construction principle of choreo-
graphies. We introduce a testing approach based on choreographies which we deem suited to develop
model-driven testing that may help to tame the problems of correctness of distributed applications.

Context In the quest for correct-by-construction solutions, formal choreographic models have proven
themselves to be valuable approaches. These models are gaining momentum, for instance, in the context
of business processes and message-passing applications. The fundamental idea of choreographic mod-
els (originally proposed by WS-CDL [18]) is that specifications of systems consist of global and local
views. The global view describes the behaviour of a system in terms of the interactions among (the role)
of components. The diagram below is an example of a global view of a protocol; we will use this as a
running example throughout the paper.

This protocol is a simplified view of the main interactions that a client C willing
to withdraw some cash has to perform, together with an ATM A, and a bank
B. The protocol starts with the interaction C

withdraw−−−−−→A with which participant
C instructs the ATM A about the intention to withdraw some cash. In the next
interaction A

authW−−−→B, A asks the bank B to authorise the withdrawal. Observe
that payloads are abstracted away; for instance, the message withdraw is inten-
ded to be a data type carrying e.g., the amount of requested cash. A distributed
choice starts at the branching point + , where the bank B decides whether to
deny or grant the withdrawal. Note that the choice is non-deterministic since,
besides from data, this model abstracts away from local computations. De-
pending on the local decision of B, the next interaction is either B

deny−−−→A or
B

allow−−−→A. In each case the client is notified of the decision with interactions
A

bye−−→C (in the first case) or A
money−−−→C if the operation is granted by the bank.
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A main source of problems in distributed protocols is reaching consensus among participants in distrib-
uted choices. Indeed, participants have partial knowledge about the global state of the protocol. And,
for the protocol to run “smoothly”, the partial knowledge of each participant should be consistent with
respect to the global state of the protocol. For distributed choices this boils down to require awareness
of each participant about the branch to follow. For instance, in the example above, the bank is aware of
the choice since it decides what to do next and the other participants become aware of the choice from
the messages they exchange.

The correctness-by-construction principle of choreographic models is usually realised through the
identification of well-formedness conditions on global views. These are sufficient conditions guarantee-
ing that the protocol can be executed distributively, without breaking the consistency between the global
state and the local knowledge of participants. In particular, formal choreographic approaches (such
as [17, 10, 14, 15, 11, 7] to mention a few) study notions of well-formedness to guarantee the safety
of communications (usually, deadlock-freedom, no message losses, etc.). The local view of a protocol
indeed provides a specular specification of the behaviour of (the role of) each component “in isolation”.
In this way, the local view yields a set of computational units enacting the communications specified in
the global view. For instance, the local view of the bank B above consists of an artefact waiting for a
message authW from A to which it replies by sending either of the messages deny or allow. Note that
the client and the bank are “oblivious” of each other, in the sense that they interact only with the ATM.

The typical scheme to realise the correctness-by-construction principle consists of the steps below:

1. provide an artefact defining the global view of the system;

2. revise the global view until well-formedness is achieved;

3. project global views into local views;

4. verify that code implementing the local view of a component complies with its projection.

(It is also possible to avoid step (4) and project global views directly on code.) Steps (1) and (2) are
mainly human activities, although some algorithmic support1 is offered by the verification of well-
formedness conditions. The remaining steps can instead be supported by algorithms. In fact, (an approx-
imation of) compliance is usually decidable and projections can often be straightforwardly computed by
“splitting” interactions into complementary send and receive actions.

Problem Although paramount for the development of message-passing applications, the correctness-
by-construction principle advocated by formal choreographies is not enough. At first sight this utter-
ance may look controversial. In fact, we do not contend that correctness-by-construction is not worth
pursuing (or not achievable: many models including those mentioned above do realise the correctness-
by-construction principle). But, even in a correctly implemented choreographic solution problems may
arise. We list three major causes of possible disruption.

Local computation As said, formal choreographies focus on the interactions among components while
abstracting away from local computations. Therefore, errors may still be introduced when de-
veloping code; for instance, a component expected to receive an integer and return a string, after
inputting the integer may diverge on a local computation before delivering the expected string and
cause a malfunction in the communication protocol.

1Some authors have considered the problem of supporting designers in the identification of problems in non well-formed
choreographies [3, 4, 19].



A. Coto, R. Guanciale, E. Tuosto 45

Evolution Software is often subject to continuous changes for instance to increase efficiency or to ac-
commodate evolving requirements. For example, to reduce the communication overhead, a com-
ponent may be modified so that two outputs are merged into one so to spare an interaction. Be-
sides introducing bugs in the new code for local computations, these changes may alter the original
design breaking the compliance required in step (4) of the scheme above.

Openness Increasingly, applications are built by composing computational elements developed inde-
pendently and available off-the-shelf, over which the developer might have no control. This is for
instance the main approach to develop service-oriented architectures. New releases or modifica-
tions of third-party components (libraries, run-time support, etc.) may introduce malfunctions in
applications using it. For example, a new release of a service invoked by an application may enrich
the spectrum of possible messages delivered to some components not designed to handle such new
messages.

Contribution We take a first step to equip known choreography-based approaches with testing. More
precisely, we start addressing step (3) above. Our main technical contribution is an algorithm to auto-
matically derive (abstract) test cases out of a well-formed choreography (cf. Section 3.2). We develop
our results in the setting of global choreographies [14, 26] and communicating finite state machines [6].
The former is the model we adopt to represent global views and the latter is a well-known model for
specifying communication protocols that will serve to represent local views.

Our key contributions are:

• An abstract framework of well-formedness that captures the essential elements of formal cho-
reographic models. This abstract framework makes our algorithm parametric with respect to the
notion of well-formedness.

• We lay down the definitions that transfer various notions of (standard) software testing to com-
munication protocols. Formally this is done by adapting a few concepts from traditional software
testing such as the notions of test (Definition 4), oracle (Definition 7), and test compliance (Defin-
ition 5). Again, the abstract framework paves the way for several alternative developments. We
decided to explore one of them first; we discuss alternatives in Section 5.

• As we will see, not all test cases are “meaningful”, therefore we identify when tests are suitable
for a choreography (Definition 6).

• We apply our framework to a non-trivial example (cf. Section 4).

2 Background

We survey the main definitions and constructs needed in the rest of the paper. We focus on global cho-
reographies (g-choreographies for short) for the global view [15], and borrow from [6] communicating
finite-state machines (CFSMs) for the local views. G-choreographies were chosen because they offer an
intuitive visual description together with a precise semantics [26, 16]. We adopt CFSMs because they
have many similarities with programming languages based on message-passing, such as Erlang.

2.1 Global Choreographies

The global view of a choreography can be suitably specified as a global choreography [26, 14, 13]. This
model is appealing as it has a syntactic and diagrammatic presentation, and has been given a formal
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semantics in terms of pomsets, which enable for automatic processing.
Fix a set P of participants and a set M of message (types) such that P ∩M = /0; let A,B, . . . range

over P and m,n, . . . range over M . A global choreography (or g-choreography) is a term derivable from
the following grammar:

G ::= (o) empty∣∣ A
m−→B interaction∣∣ G | G fork∣∣ G + G choice∣∣ G;G sequential∣∣ repeat G iteration

The empty choreography (o) yields no interactions; trailing occurrences of (o) may be omitted.
An interaction A

m−→B represents the exchange of a message of type m between A and B, provided that
A 6= B. We remark that data are abstracted away: in A

m−→B, the message m is not a value and should
rather be thought of as (the name of) a data type2. G-choreographies can be composed sequentially or
in parallel (G;G′ and G | G′). A (non-deterministic) choice G1 + G2 specifies the possibility to continue
according to either G1 or G2. The body G in an iteration repeat G is repeated until a participant in G
(non-deterministically) chooses to exit the loop. Although for simplicity we do not consider iterative
g-choreographies in our examples, the techniques we introduce further on can work on arbitrary finite
unfoldings of the loops, as is commonplace in software testing or in verification techniques such as
bounded model-checking.

Example 1. The g-choreography for the example introduced in Section 1 is

GATM = C
withdraw−−−−−→A;A authW−−−→B;{B deny−−−→A;A

bye−−→C + B
allow−−−→A;A

money−−−→C}

where we assume that sequential composition takes precedence over choice.

The semantics of a g-choreography as defined in [14, 26] is a family of pomsets (partially ordered
multisets); each pomset in the family is the partial order of events occurring on a particular “branch”
of the g-choreography. Events are therefore labelled by (communication) actions l occurring in the g-
choreography. The output of a message m ∈M from participant A ∈P to participant B ∈P is denoted
by AB!m, while the corresponding input is denoted by AB?m. More formally,

Lact = {AB!m,AB?m | A,B ∈P and m ∈M }

is the set of (communication) actions and l ranges over Lact. The subject of an action is defined as
sbj(AB!m) = A and sbj(AB?m) = B.

It is not necessary to restate here the whole constructions for the semantics which is given by induc-
tion on the structure of the g-choreography; we simply give an informal account. The semantics [[(o)]] is
the set {ε} containing the empty pomset ε , while for interactions we have

[[A
m−→B]] =

[
AB!m AB?m

]
namely, the semantics of an interaction is a pomset where the output event precedes the input event.
The semantics of the other operations is basically obtained by composing the semantics of sub g-
choreographies. More precisely,

2We leave implicit the grammar of data types; in the examples we will assume that m ranges over basic types such as int,
bool, string, etc.
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• for a choice we essentially have [[G + G′]] = [[G]]∪ [[G′]];
• the semantics of the parallel composition G | G′ is essentially built by taking the disjoint union of

each pomset in [[G]] with each one in [[G′]];

• the semantics of the sequential composition [[G;G′]] is the disjoint union of each pomset in [[G]]
with each one in [[G′]] and, for every participant A, making every output of A in [[G]] precede all
events of A in [[G′]].

Example 2. Consider GATM of Example 1. We have

[[GATM]] =


[

CA!withdraw CA?withdraw AB!authW AB?authW BA!deny BA?deny AC!bye AC?bye

]
,[

CA!withdraw CA?withdraw AB!authW AB?authW BA!allow BA?allow AC!money AC?money

] 
For the sake of illustration, the singleton

 CA!withdraw CA?withdraw AB!authW AB?authW

BA!deny BA?deny AC!bye AC?bye

BA!allow BA?allow AC!money AC?money




is the semantics of the g-choreography obtained by replacing choice with parallel composition in GATM.

The language of a g-choreography G, written L [G], is the closure under prefix of the set of all
linearizations of [[G]] where a linearisation of a pomset is a permutation of its events that preserves the
order of the pomset.

Example 3. The language of the last pomset in Example 2 is the set of prefixes of words obtained by
concatenating CA!withdraw CA?withdraw AB!authW AB?authW with both BA!deny BA?deny
AC!bye AC?bye and BA!allow BA?allow AC!money AC?money.

2.2 Communicating Systems

As in [20, 13], we adopt communicating finite state machines (CFSMs) as local artefacts. We borrow
the definition of CFSMs in [6] adapting it to our context. A CFSM M = (Q,q0,−→) is a finite transition
system where

• Q is a finite set of states with initial state q0 ∈ Q, and

• −→ ⊆ Q×Lact×Q; we write q l−→ q′ for (q, l,q′) ∈−→.

Machine M is local to a participant A ∈P (or A-local) if sbj(l) = A for each transition q l−→ q′ of M.
A (communicating) system is a map S = (MA)A∈P where MA = (QA,q0A,−→A) is a A-local CFSM for
each A ∈P . The set of channels (fixed for all communicating systems) is C = {AB

∣∣ A 6= B ∈P};
for all AB ∈ C , it is assumed that there is an unbound finite multiset bAB = {| m1, . . . ,mn |} containing the
messages that MA sends to MB and from which MB consumes the messages sent by MA. We use d for
multiset union and − for multiset difference.

The semantics of communicating systems is defined in terms of transition systems, which keep track
of the state of each machine and the content of each buffer. Let S = (MA)A∈P be a communicating
system. A configuration of S is a pair s = 〈~q ; ~b〉 where~q = (qA)A∈P with qA ∈QA and~b = (bAB)AB∈C
mapping each channel to a multiset of messages; qA keeps track of the local state of machine MA in s and
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Figure 1: CFSMs for the protocol in Section 1

buffer bAB keeps track of the messages sent from A to B. The initial configuration s0 is the one where,
for all A ∈P , qA is the initial state of the corresponding CFSM and all buffers are empty.

A configuration s′ = 〈~q′ ; ~b′〉 is reachable from another configuration s = 〈~q ; ~b〉 by firing an l-
transition, written s l=⇒s′, if there is a message m ∈M such that either (1) or (2) below holds:

1. l = AB!m ,~q(A) l−→A
~q′(A), and

a. ~q′ =~q[A 7→ ~q′(A)] and

b. ~b′ =~b[AB 7→~b(AB)d{| m |}]

2. l = AB?m,~q(B) l−→B
~q′(B),~b(AB)(m)> 0, and

a. ~q′ =~q[A 7→ ~q′(A)] and

b. ~b′ =~b[AB 7→~b(AB)−{| m |}]

(where f [x 7→ y] is the usual update operation that redefines function f on an element x of its domain with
y). Condition (1) puts m on channel AB, while (2) gets m from channel AB. In both cases, any machine
or buffer not involved in the transition is left unchanged in the new configuration s′.

Note that this construction differs from the original definition in [6], (where unbounded FIFO queues
were used) in order to make the communication model similar to the one of Erlang.

Example 4. A local view of the protocol in Section 1 is given by the CFSMs in Fig. 1. Notice how the
events reflected in the global view have been split into their send and receive counterparts.

The starting state of each CFSM is the leftmost one. The CFSM of the client initiates the protocol
by sending a withdraw message to the ATM, which reacts by sending a message to the bank to check
whether the client can actually perform this withdrawal. CFSMs A and B will gradually proceed as they
take messages out from the queues existing between all pairs of participants.

State B2 of B is the internal choice state that corresponds to the branching point of the g-choreography.
Namely, in B2, the bank locally chooses how to proceed. As soon as B sends either an allow or a deny

message, the ATM either delivers the money or finishes the conversation with a bye message.

A configuration s = 〈~q ; ~b〉 is stable if all buffers are empty (note that stability does not impose any
requirement on a machine’s enabled transitions): s is stable for C ′ ⊆ C if all buffers in C ′ are empty
in s, and it is a deadlock if s 6 =⇒ and either there is a participant A ∈P such that ~q(A) AB?m−−−→A or s
is not stable. This definition is adapted from [9] and is meant to capture communication misbehaviour.
Observe that, according to this definition, a configuration s where all machines are in a state with no
outgoing transitions and all buffers are empty is not a deadlock configuration even though s 6=⇒.
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Let Π(S,s) be the set of runs of a communicating system S starting from a configuration s of S, that

is the set of sequences π = {(ŝi, li, ŝi+1)}0≤i≤n with n ∈ N∪{∞} such that ŝ0 = s, and ŝi
li=⇒ŝi+1 for every

0 ≤ i ≤ n; we say that run π is maximal if n = ∞ or ŝn 6 =⇒ and denote with Π(S) the runs of S starting
from its initial state. The language of a communicating system S is the set

L [S] =
⋃

π∈Π(S)

{trace of π}

where the trace of a run {(ŝi, li, ŝi+1)}0≤i≤n ∈Π(S) is the sequence l0 . . . ln−1. Notice that L [S]⊆L ω
act∪

L ?
act (where L ω

act is the set of infinite words over Lact) and it is prefix-closed.

3 Generating Tests

The goal of model-driven testing is to find mismatches between a specification and an implementation.
We focus on component-testing, which in our setting corresponds to test a single participant of a g-
choreography. We dub component under test (CUT) an implementation which should be tested.

3.1 Baseline concepts

Top-down approaches of choreographies define projection functions that generate local models from
global models. In order to parameterise our framework with respect to these notions, we introduce
abstract projections on g-choreographies.

Definition 1 (Abstract projection). A map � is an abstract projection if it takes a g-choreography G and
a participant A ∈P and returns an A-local CFSM. Given a g-choreography G, the system induced by
� is defined as G�= (G�A)A∈P .

There are several ways to define projection operations that are instances of Definition 1. For example,
in [14, 26] a g-choreography is projected on a participant A in two steps, which we briefly summarise
since we will illustrate our framework by adopting this operation in our examples. By induction on the
structure of the g-choreography, the first step transforms each interaction in the transition of an automaton
according to the role of A in that interaction. More precisely, the interaction becomes an output or an
input transition depending on whether A is the sender or the receiver; otherwise the iteration corresponds
to a silent transition. In the second step, the CFSM obtained as above is determinised.

Example 5. The CFSMs shown in Fig. 1 are obtained by means of the projection operation in [14, 26]
applied to the g-choreography GATM in Example 1 where some equivalent states (e.g., A5 and A7) are
replicated for readability.

Not every g-choreography can be faithfully projected. In fact, the asynchronous semantics of com-
municating systems may introduce behaviour that does not correspond to the intended behaviour of the
g-choreography. In concrete instances, sufficient conditions on g-choreographies are given so that the
semantics of projected communicating systems reflect the semantics of the g-choreography. These con-
ditions are abstractly captured in the next definition.

Definition 2 (Abstract well-formedness). A predicate on g-choreographies is an abstract well-formedness
condition if WF(G) implies that there is a communicating system S with initial configuration s0 such that

• L [S]⊆L [G] and

• no run in Π(s0) contains a deadlock configuration;
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in this case we say that S realises G.

Note that Definition 2 admits trivial instances such as the predicate which does not hold on any
g-choreography. The choreography in Section 1 is considered well-formed in the majority of existing
work. In this example there is only one participant that makes a choice (i.e., the bank) and the rest of the
participants are informed of which decision was taken. Intuitively, this avoids coordination problems and
therefore the choreography can be correctly realized by CFSMs, such as the ones in Fig. 1. In this case,
the language of the choreography is the same as the language of the projected communicating system,
which is deadlock-free.

Hereafter, we assume projections that respect abstract well-formedness.

Definition 3 (Compatible projections). An abstract projection � is compatible with WF when, for all
g-choreographies G, if WF(G) then the system induced by � realises G.

An abstract projection mapping all participants to a machine without any transitions is trivially com-
patible with any abstract well-formedness condition. Of course, we are interested in abstract projections
for which L [G�] = /0 only if G= (o).

We can now formalise the main notions of our choreographic testing framework. A test case for
a CUT A is a set of CFSMs with a distinguished set of success states; the outcome of a test case is
determined by its interaction with A.

Definition 4 (Test case). A test case for a CUT A ∈P is a set T = {〈M1,Q1〉, . . . ,〈Mn,Qn〉} such that
for every 1≤ i, j ≤ n, Mi = (Qi,q0i,−→i) is a CFSM with Qi ⊆ Qi and

• if q l−→i q′ then sbj(l) 6= A (1)

• if q BC!m−−−→i q′ and q l−→i q′′ then l = BC!m (2)

• if q l−→i q′ and q l−→i q′′ then q′ = q′′ (3)

• if q1
l−→i q2 and q′1

l′−→ j q′2 and sbj(l) = sbj(l′) then i = j (4)

We dub Qi the success states of Mi.

We briefly justify the conditions in Definition 4. Condition (1) forces the CUT not to be the subject of
any transition, since tests cannot force it directly to take specific actions. Conditions (2) and (3) together
enforce that there is always a single possible output for the system to proceed, that the machines are
deterministic and, in particular, that they cannot have internal choice or mixed3 states. The rationale
behing conditions (2) and (3) is to “confine” non-determinism in the CUT and its concurrent execution
with the test so that it is easier to analyse the outcome of tests. The last condition enforces transitions
across machines to have different subjects: if this was not the case, generating code for each participant
could be significantly more complex. Note that this does not force the CFSMs in a test case to be
necessarily local; in fact, Definition 4 admits different subjects in the labels of different transitions.

The following example shows the requirements of Definition 4 and a violation of those requirements.

Example 6. Consider MA, MB and MC in Fig. 1 that respectively are the CFSMs of the ATM, the bank,
and the client. Then T1 = {〈MA,{A5,A7}〉,〈MC,{C3,C4}〉} is a test case for B (i.e., bank). In fact, MA

and MC are deterministic, internal choice-free and do not include any transitions where the subject is B.
Instead, T2 = {〈MB,{B3,B4}〉,〈MC,{C3,C4}〉} is not a test case for A (i.e., the ATM) because MB has
an internal choice in state B2.

3A mixed choice state is one with both input and output outgoing transitions.
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Definition 5 (Test compliance). Let C ′ ⊆ C be a set of channels, M̂ a CFSM, and T a test case. Denote
with M̂⊗ T the communicating system consisting of M̂ and the CFSMs in T . We say that M̂ is T -
compliant w.r.t C ′ (M̂ .C ′ T ) if every finite maximal run of M̂⊗T contains a stable configuration s for
C ′ such that for every 〈M,Q〉 ∈ T the local state of M in s is in Q.

In the following, we dub the configuration s in Definition 5 a successful configuration for T and we
use M̂ .T for M̂ .C T . Notice that the parametrization on C ′ allows a CFSM to be considered compliant
even if some runs leave channels in C \C ′ not empty. The next series of examples illustrate the notion
of test compliance with four tests for CUTs in Fig. 1.

Example 7. Let B be the CUT and T1 be the test case in Example 6. Then MB is T1-compliant. In fact,
the system consisting of MB and (the CFSMs in) T1 is exactly the system implementing the choreography
of the running example. However, MB is not compliant with the test case {〈MA,{A3}〉,〈MC,{C3,C4}〉}.
In fact, C can reach C3 or C4 only after that A has left state A3. Similarly, MB is not compliant with the
test case {〈MA,{A7}〉,〈MC,{C3}〉}, since the success states of A and C represent conflicting branches.

Example 8. Suppose that the CUT is the CFSM M′B obtained by removing the transition BA!allow
from MB. Then M′B . T1 however, M′B is not compliant with {〈MA,{A7}〉,〈MC,{C4}〉}. This is due
to the fact that the test and the CUT select different branches. Similarly, M′B is not compliant with
{〈M′A,{A7}〉,〈MC,{C3,C4}〉}, where M′A is obtained by removing the transition BA?deny from MA.

Example 9. Finally, let A be the CUT and M′B be the CFSM obtained by removing the transition
BA!allow from MB. Then MA is compliant with {〈M′B,{B3}〉,〈MC,{C3,C4}〉}.

We finally define when a test case is meaningful for a choreography, by requiring that the correct
implementation (i.e., the projection) of the choreography is compliant with the test.

Definition 6 (Test suitability). Test T is (G,A)− suitable if G�A .T .

3.2 Test generation algorithm

To generate tests we follow a straightforward strategy: we start from the projections of the participants
that are not the CUT and we remove their internal choices. The intuition is that for well formed g-
choreographies, the projections are “compatible” with any implementation that restricts internal choices
with respect to the projection of the CUT. We use the following auxiliary function to identify non-
deterministic states. These are the states that the algorithm uses to split the transitions to obtain determ-
inistic tests. Given a CFSM M = (Q,q0,−→), let

nds(M) =
{

q
∣∣ ∃q l1−→ q1 6= q l2−→ q2 : l1 = l2∨{l1, l2}∩ ∈L !

act 6= /0)
}

be the set of non-deterministic states of M, that is the states with at least two different transitions that
either have the same label or one of which is an output transition. For convenience, we let M(q) denote
the set of outgoing transitions of q in M and M− t (resp. M + t) be the operation that removes from
(resp. adds to) M transition t (these operations extend element-wise to sets of transitions). The following
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function produces sets of machines that are internal choice free:

split(M) =

{
{M} if nds(M) = /0⋃

q∈nds(M) split(M,q) otherwise

split(M,q) =



⋃
q

AB!m−−−→q′

split(M−M(q)+q AB!m−−−→ q′) if M(q) has output transitions

⋃
q

AB?m−−−→q′
6=

q
AB?m−−−→q′′

split(M−q AB?m−−−→ q′) otherwise

Once these simpler CFSMs are obtained, success states have to be set for each of them. This is
analogous to problem commonly known in software testing as the oracle problem: deciding when a
test is successful. This decision is application-dependent and its solutions usually requires human in-
tervention [2]. In our setting, this corresponds to single out configurations of communicating systems
according to a sub-tree of a choreography as defined below. Intuitively, we would like success states
from the CFSMs to correspond to the execution of specific syntactic subtrees of the choreography.

We now introduce an additional definition that helps us determine the success states for our tests.
In the following, given a g-choreography G, let T(G) be the set of sub-trees of the abstract syntax tree
producing G once we fix a suitable precedence among the operators. Our algorithm relies on abstract
syntax trees of g-choreographies, but it does not depend on the precedence relation chosen.

Definition 7 (Oracle scheme). Let G be a g-choreography, � an abstract projection compatible with a
given well-formedness condition WF. An oracle scheme of G for � is a function ΩG,� mapping a pair
(A,τ) ∈P×T(G) on a set of states of the CFSM G�A such that if WF(G) and S is the communicating
system induced by � , then for every τ ∈ T(G) and maximal run π ∈Π(S) there exists a stable configur-
ation s in π such that, for each A ∈P , for the local state qA of A in s we have that qA ∈ΩG,�(A,τ).

The main purpose of the oracle scheme ΩG is to map a participant and a subtree (A,τ) ∈P×T(G)
to a set of states of G�A that correspond to the states the system can be in after the execution of the
sub-tree τ of G.

Example 10. Below is a fragment of a possible oracle scheme for the g-choreography from Example 1
and the CFSMs shown in Fig. 1.

ΩG,�(A,G) = {A5,A7} and ΩG,�(B,G) = {B3,B4} and ΩG,�(C,G) = {C3,C4}

ΩG,�(A,B
allow−−−→A) = {A6,A4} and ΩG,�(B,B

allow−−−→A) = {B3,B4} and ΩG,�(C,B
allow−−−→A) = {C3,C4}

Notice that for the whole g-choreography G, the oracle scheme ΩG,� yields the last states of the CFSMs,

and for the sub-tree B
allow−−−→A it returns the first state that allows the participant to acknowledge either

the execution of the interaction or the selection of an alternative branch.

Test cases are then built by combining machines obtained by the split function and by identifying the
success states via the oracle function, i.e. states that correspond to the execution of the interactions of
the subtrees of the g-choreography:

tests(G,A) =
{
(〈MB,ΩG,�(B,τ)〉)B6=A∈P

∣∣ ∀B 6= A ∈P : MB ∈ split(G�B)∧ τ ∈ T(G)
}

(1)
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More intuitively, for every participant we select a single machine from the ones generated by split
and combine them (exhaustively) into test cases. Each test case corresponds to a unique path of execution
(i.e. selection of internal choices) of the original g-choreography.
Theorem 1. If WF(G) then every test case in tests(G,A) is (G,A)− suitable.

4 Choregraphy-based Testing

We now delve into a larger example in order to demonstrate the test generation procedure in a more
complex scenario. Fig. 2 shows a choreography involving the participants A B, and C, i.e., respectively
the ATM, the bank, and a client as in the running example used so far. Observe that the running example

Figure 2: The complete choreography for the ATM scenario

is a sub-choreography of the g-choreography in Fig. 2. The bigger scenario can be straightforwardly
represented as a g-choreography as done in Example 1 for the choreography in Section 1.
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Client MachineClient MachineClient MachineClient MachineClient Machine

Bank MachineBank MachineBank MachineBank MachineBank Machine

ATM MachineATM MachineATM MachineATM Machine

CA!auth
AC?authFail

AC?granted
CA!withdraw

CA!quit

CA!checkBalance

AC?bye

AC?money

AC?balance

AB?authReq
BA!denied

BA!granted
AB?authWithdraw

AB?getBalance

AB?quit

BA!deny

BA!allow

BA!balance

CA?auth AB!authReq BA?denied

BA?granted

AC!authFail

AC!granted
CA?withdraw

CA?quit
CA?checkBalance

AB!authWithdraw

AB!quit

AB!getBalance

BA?deny

BA?allow

AC!bye

AC!money
BA?balance

AC!balance

Figure 3: Projections of the choreography of Fig. 2

The client starts a session of the protocol by authenticating with the ATM machine (auth). The ATM
then delegates the authentication to the bank, which can either reject or accept the request by replying
with either a denied or a granted message. In both cases the ATM forwards the authentication result to
the client. The choreography terminates if the authentication fails. If authentication is successful then the
ATM offers three options to the client: (M) withdraw money (money), (Q) terminate the session (quit),
or (B) check the account balance checkBalance.

In case (B), the ATM requests to the bank the balance and forwards the result to the client via a
balance message. In case (Q), the ATM simply notifies the bank of the termination of the session. Case
(M) is the choreography of Section 1 whereby the withdrawal request is forwarded to the bank which
decides if to allow or deny the request.

We demonstrate the test case generation for the ATM (i.e., participant A in Fig. 2 is our CUT). We
first project the g-choreography corresponding to the choreography in Fig. 2, using again the projection
operation in [26]. We obtain the three CFSMs of Fig. 3. The oracle scheme is visually represented by
decorating states only for two sub-trees of the choreography. More precisely:

• double-circles denote the states marked by the oracle scheme for the whole choreography, and

• gray-circles correspond to the states marked by the oracle scheme for the interaction B
allow−−−→A.

It is straightforward to check that the system consisting of these three CFSMs effectively generates the
same language as the one generated by the g-choreography.

The two machines for B and C of Fig. 3 cannot be directly used as a test for A since they have states
with internal choices. These states, obtained by applying nds to the CFSMs of B and C, are the sets
of red states shown in the figure. At this point the algorithm applies split(B) to compute a set of four
machines, say MB. This is done by selecting in all possible ways one of the output transitions from states
of B (according to the second clause in the definition of split). Likewise for C, the algorithm produces a
set of three machines, say MC. The resulting sets of CFSMs are shown in Figs. 4 and 5 where, for the
sake of conciseness, we remove unreachable states, also omitting isomorphic CFSMs. For a sub-tree of
the choreography, we obtain a test case by combining a machine from MB and one from MC and defining
their success states using the oracle scheme. Function tests(G,A) generates all the test cases by freely
choosing the machines as above and exhaustively iterating over the sub-trees of the choreography.
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M-Bank 3M-Bank 3M-Bank 3M-Bank 3

M-Bank 2M-Bank 2M-Bank 2

M-Bank 1M-Bank 1M-Bank 1

AB?authReq BA!denied

AB?authReq BA!granted
AB?authWithdraw

AB?getBalance

BA!deny

BA!balance

AB?authReq BA!granted
AB?authWithdraw

AB?getBalance

BA!allow

BA!balance

Figure 4: CFSMs resulting from splitting the projected CFSMs for the bank

M-Client 3M-Client 3M-Client 3

M-Client 2M-Client 2M-Client 2M-Client 2

M-Client 1

CA!auth
AC?authFail

AC?granted CA!withdraw
AC?bye

AC?money

CA!auth
AC?authFail

AC?granted CA!quit

CA!auth
AC?authFail

AC?granted CA!checkBalance AC?balance

Figure 5: CFSMs resulting from splitting the projected CFSMs for the client

This process results in nine tests for each sub-tree of the g-choreography. For the tree corresponding
to the whole g-choreography, the success states are those depicted as double-circles. For the tree cor-
responding to the interaction B

allow−−−→A, the success states are those in gray. Notice that some states are
success states for both trees. Moreover, all the resulting tests satisfy the requirements of Definition 4.

5 Discussion & Open Problems

We started the exploration of mechanisms to support model-driven testing of message-passing systems
based on choreographies. To this purpose, we decided to rely on the so called top-down approach featured
by an existing choreographic model. The choreographic model adopted here is rather abstract, but it is
close to real programming paradigms such as those of Erlang.

We exploited the notion of projection of global views of choreographies in order to devise an auto-
matic test generation mechanism. The design of our algorithm required us to fix the basic notion of test,
test feasibility, and test success within the framework of g-choreographies and communicating systems.
Although we tried to give a general framework that abstracts away from actual projection operations, we
took some design decisions for the identification of our framework.

The notion of test case considered here (Definition 4) requires tests not to contain mixed-choice
states (that is, states with both output and input outgoing transitions). In fact, without assumptions on
the projection operation mixed-choice states cannot be split easily as they are. Consider the system
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consisting of following CFSMs:

MA =

q0

q1

A
B

!m

MB =

q0

q1 q2

q3 q4

B
C!n

C
B?n

C
B?n

B
C!n

AB?m

MC =

q0

q1 q2

q3

C
B!n

B
C?n

B
C?n

C
B!n

(2)

where MA is the CUT. The split of the mixed choices of MB and MC is unsafe, because the test including
the dashed transitions has a run to a deadlock configuration despite the fact that MA behaves as expected.
Note that with insights on the actual notion of well-formedness and of the projection operation one
can deal with mixed choices. For instance, the well-formedness condition and the projection operation
in [26] yields mixed choice states only when projecting parallel g-choreographies. Therefore, it is safe
in a mixed-choice state, say q, to select a test starting with one of the output transitions of q and drop all
the others. Note that this yields “simpler” tests, in line with the principles of software testing.

Another limitation of the algorithm is its efficiency. As noted in Section 3, our algorithm is ex-
ponential in the size of the g-choreography. This is due to the fact that the oracle specification used
in the algorithm exhaustively considers all the syntactic sub-trees of the g-choreographies. This could
be unfeasible for large g-choreographies. Note however that the oracle specification is a parameter of
our algorithm and, in practice, one can tune it up in order to consider only “interesting” parts of the
g-choreography to target. Moreover, some optimisations are possible. A first optimisation can be the
reduction of internal choices generated by the parallel composition as those for Gpar above. In fact, those
tests are redundant and one would be enough in the semantics of communicating systems adopted here
(where channels are multisets of messages similar to Erlang’s mailboxes). Note that the tests would not
be redundant in the case of communicating systems interacting through FIFO queues. Another optim-
isation relies on the analysis of the syntactic structure to exclude immaterial sub-trees. For instance, for
the g-choreography G;A m−→B;X n−→Y;G′ it is not necessary to check A

m−→B;X n−→Y;G′ because the sub-tree
X

n−→Y;G′ subsumes the runs that “go through” the former tree. A pre-processing of the oracle specific-
ation may therefore improve efficiency. Note that adopting this approach probably requires a careful
transformation of the oracle specification. This may not be easy to attain. Another optimisation comes
from the study of some notion of “dominance” of tests. The discussion above about mixed-choices is
an example: in a mixed-choice state, the tests with a bias on first-outputs dominate those starting with
inputs. For instance, the test with solid transitions in (2) above dominate the one with dashed transitions.

This leads us to consider some other related open questions. In software testing it is widely accep-
ted that it is unfeasible to perform a high number of tests. Hence, test suites are formed by carefully
selected tests that satisfy some coverage criteria. This yields a number of questions that we did not ad-
dress yet: What is a good notion of coverage for communicating systems? Can choreographic models
help in identifying good coverage measures? What heuristics lead to good coverage? Remarkably, this
problem pairs off with the problem of concretisation in model-driven testing [23]. Given an abstract test
(as the ones we generate), how should it be concretised to test actual implementations? In fact, the ab-
stract notion of coverage only considers distributed choices, but actual implementations may have local
branching computations that should also be covered to some extent. This probably requires our approach
to be combined with existing approaches to testing.

As said, we took some design decisions to devise our framework. Alternative approaches are pos-
sible. Firstly, test generation may be done differently when adopting different types of tests. In fact, a
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natural alternative is to take the projection of one component as the CUT, say M, and consider as test
cases the CFSM obtained by dualising M. Note that this yields a non-local CFSM as a test case; we
preferred to explore first an approach which yields “standard” communicating systems.

Definition 6 formalizes when a test case is meaningful for a choreography. It would be also desirable
to relate traces of machines that are test-compliant with the language of the choreography. Ideally, for
a choreography G an adherent test T should guarantee that for every T -compliant machine M the traces
of runs of M⊗T that end in a successful configuration are in L [G]. This property cannot be guaranteed
by our framework for arbitrary choreographies. Firstly, the CUT may force causal relations. For ex-
ample, consider A x−→B;B

y−→A;A z−→C where A is the CUT. The event BA!y should always precede AC!z.
However, this dependency is enforced by A and cannot be checked by B and C without communication
between them. Secondly, in an asynchronous setting it may be impossible to distinguish some behaviors
of the CUT. For example, in A

x−→B;A
y−→B the event AB!x should always precede AB!y, but this order is

not observable by B in case of asynchronous communication.
In summary, the notion of adherence is not enforceable for all g-choreographies or all possible imple-

mentations of the CUT. This hints to the following open problems: the identification of a proper notion of
adherence in an asynchronous setting, the identification of “interesting” subclasses of g-choreographies
for which the strict notion of adherence is meaningful, and the extension of the testing framework to
enforce such notion, either by adding communications between components or by using non-local ma-
chines.

In this work, we consider component testing. The level of granularity we adopt implies that par-
ticipants are components, and our framework is designed to test a single component at a time. An
intriguing open problem is to apply our framework to support integration testing [24]. In fact, one could
think of defining group projections, namely projection operations that generate communicating systems
representing the composition of several participants. We believe that this approach could pay off when
the group onto which the g-choreography is projected can be partitioned in a set of “shy” participants
that interact only with participants within the group and others that also interact outside the group. The
former set of participants basically corresponds to units that are stable parts of the system that and do not
need to be (re-)tested as long as the components in the other group pass some tests.

Instead of concretising abstract tests, one could extract CFSMs from actual implementations and run
the tests on them. Machines could potentially be extracted directly from source code. If however source
code was not available it could still be possible to test components (e.g., by using some machine learning
algorithm to infer the CFSMs from data such as traces). Note that such technique should be more efficient
than concretisation (because it does not let abstract tests proliferate into many concrete ones). Moreover,
another advantage of this approach could be that it enables us to exploit the bottom-up approach of
choreographies, where global views are synthesised from local ones [20]. The synthesised choreography
can be compared with a reference one to derive tests that are more specific to the implementation at hand.

6 Conclusions & Related Work

In software engineering, testing is considered the tool4 for validating software and assuring its qual-
ity. The Software Engineering Book of Knowledge available from http://www.swebok.org describes
software testing as (bold text is ours):

4 Regrettably, barred for few exceptions, rigorous formal methods that aim to show absence of defects rather than their
presence are less spread in current practices. We cannot embark in a discussion on this state of the matter here.

http://www.swebok.org
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“the dynamic verification of the behaviour of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain, against the expected behavior.”

Our framework reflects the description above for model-driven testing of message-passing systems. Tra-
ditional testing has been classified [25] according to parameters such as the scale of the system under
test, the source from which tests are derived (e.g., requirements, models, or code). There are also clas-
sifications according to the specific characteristics being checked [22]; our work can be assigned to the
category of behavioural testing.

An immediate goal of ours is to experimentally check the suitability of the test cases obtained with
our algorithm. For this, we plan to identify suitable concretisation mechanisms of the abstract tests
generated by our algorithm, and verify Erlang or Golang programs.

Since message-passing systems fall under the class of reactive systems we got inspiration from the
work done on model-driven testing of reactive systems [8]. In particular, we showed that choreographies
can, at least to some extent, be used to automatically generate executable tests and as test case specifica-
tions [23]. Technically, we exploited the so-called projection operation of choreographic models. Here,
we gave an abstract notion of projection. A concrete projection was formalised for the first time in [17]
(for multiparty session types) and for g-choreographies in [14, 15, 26], elaborating on the projection of
global graphs [13]. As discussed in Section 5, in the future we will also explore the use of choreographic
model-driven testing to address other problems related to testing message-passing systems.

An interesting theoretical investigation would be to explore the relation between our approach and
the theory of testing [12]. At a first glance, our approach corresponds to the must-preorder of the testing
theory. In fact, the notion of test compliance (cf. Definition 5) imposes conditions on all the maximal
runs of the CUT in parallel with the test. However, there are two key differences between the theory
of testing and our approach which make a precise analysis non trivial. The first difference is that we
consider asynchronous communications and the second is that our tests are “multiparty”, namely tests are
obtained by composing many CFSMs. It might be that the results in [5], which extend to asynchronous
communications the classical theory of testing, can be combined with the work in [21] to give a suitable
theoretical setting to our framework.

According to [27], the generation of test cases is one of the ways model-based testing can support
software verification. For example, a component-based testing framework to support online testing of
choreographed services is proposed in [1] for BPMN2 models. Among other components, this work
sketches a test generation procedure which is however not supported by a formal semantics as we do
here. Our model explicitly features a mechanism for test generation paired with the notion of an oracle
scheme (cf. Definition 7) as a precise mechanism to identify the expected outcome of test cases. In fact,
unlike in most cases, choreographic models contain enough information about the expected behaviour
of the system under test in order to make accurate predictions. We believe that this is a highlight of our
approach.
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