Typestates to Automata and back: a tool

André Trindade Jodo Mota
NOVA School of Science and Technology NOVA School of Science and Technology
NOVA University Lisbon NOVA University Lisbon
Lisbon, Portugal Lisbon, Portugal
adt.trindade@campus.fct.unl.pt jd.mota@campus.fct.unl.pt

Antonio Ravara

NOVA School of Science and Technology
NOVA University Lisbon
Lisbon, Portugal

aravara@fct.unl.pt

Development of software is an iterative process. Graphical tools to represent the relevant entities
and processes can be helpful. In particular, automata capture well the intended execution flow of
applications, and are thus behind many formal approaches, namely behavioral types.

Typestate-oriented programming allow us to model and validate the intended protocol of applica-
tions, not only providing a top-down approach to the development of software, but also coping well
with compositional development. Moreover, it provides important static guarantees like protocol
fidelity and some forms of progress.

Mungo is a front-end tool for Java that associates a typestate describing the valid orders of
method calls to each class, and statically checks that the code of all classes follows the prescribed
order of method calls.

To assist programming with Mungo, as typestates are textual descriptions that are terms of an
elaborate grammar, we developed a tool that bidirectionally converts typestates into an adequate
form of automata, providing on one direction a visualization of the underlying protocol specified by
the typestate, and on the reverse direction a way to get a syntactically correct typestate from the more
intuitive automata representation.

1 Introduction

Detecting software errors and vulnerabilities is becoming increasingly important in a world where the
demand for code development is soaring, often leading to incomplete specifications. Building tools to
help achieve this goal is crucial as testing and manual revisions have proven to be insufficient to guarantee
software correctness.

Indeed, a carefully designed test suite may detect the presence of many bugs, but it does not guarantee
their absence [6l]. A widespread practice is the use of programming languages with type systems [2].
These ensure that programs do not present errors for executing invalid operations, but the type of detected
errors is quite limited. Day-to-day programmers have to deal with problems that arise from not checking
the correct usage of an object. For example, a type system would prevent one from using an undefined
method, but not from trying to write on a file prior to opening it.

Stateful objects are non-uniform [9], i.e., their methods’ availability depends on their internal state.
Behavioral types [8]] are notions of types for programming languages representing the possible behavior
of an entity, such as an automaton or a state machine. These notions allow us to declare behavioral
specifications capturing the availability of methods. For example, a file should first be opened (once),

J. Lange, A. Mavridou, L. Safina, A. Scalas (Eds.): © A. Trindade, J. Mota & A. Ravara
13th Interaction and Concurrency Experience (ICE 2020). This work is licensed under the
EPTCS 324, 2020, pp. 2542} doi{10.4204/EPTCS.324.4 Creative Commons| Attribution| License.

http://dx.doi.org/10.4204/EPTCS.324.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

26 Typestates to Automata and back

then it could be written (multiple times, as long as there is space), or read (provided it is not empty), and
when its use is finished, it should be closed (once), and cannot be used until opened again.

Textual behavioral specifications, however, can be long and cumbersome. Furthermore, not only
does the existing code not use the concept of behavioral types, but it is also quite difficult to define these
notions for more elaborate programs. To deal with legacy code, automatic inference tools are needed.
Our goal is to enhance the support in the definition of behavioral types in programming languages like
Java. We chose the Mungo tool [4]], which associates behavioral specifications — Mungo protocols or
typestates — to Java classes and verifies if objects are used correctly.

Given how helpful automata are in abstracting system behavior and assisting developers in under-
standing the underlying relation between operations, and how useful Mungo typestates are in specifying
object behavior and making sure Java code respects such specification, we developed a tool that assists
programmers in the (naturally iterative) process of designing an application. The key idea is to support
the conception and visualization of (Mungo) typestates as automata.

Specifically, our main contributions are the following.

1. An automaton model equivalent to Mungo typestates: we defined a specific automaton model
to Mungo protocols; besides allowing a more detailed and accurate graphical representation of the
behavioral specification, it simplifies the conversion between typestate and automaton.

2. A grammar for Mungo typestates: we defined the full Mungo typestates grammar, providing
a formal basis for constructing Mungo protocols. This detailed definition also simplifies the task
of describing terms generated by the grammar as automata, given that formal grammars generally
have a corresponding abstract machine.

3. Bi-directional translation between typestates and automata: we have defined two algorithms
that, respectively, translate Mungo protocols into automata by following the productions of the
Mungo Typestate Grammar, and produce a Mungo protocol (a term of the grammar) by following
all possible execution paths of an automaton.

4. Implementation and web-based tool: lastly, we developed a functional implementation of the al-
gorithms, as well as an interactive web-based tool, which allows developers to obtain an automaton
from their Mungo protocol, and, conversely, obtain a Mungo typestate from an automaton.

2 How to model an entity as a Mungo protocol?

Suppose we want to build a program describing the behavior of a drone that should be able to take off,
move, and land. To describe such system, we have first to understand the ordering between these actions,
as it is obvious that the drone must take off prior to moving somewhere, or that it can only land if it is not
yet on the ground. We can easily represent this behavior through an automaton (Figure [T)), where each
state represents those of the drone, and each transition its operations.

takeOFf(} - move()

land()

Figure 1: Automaton 1

A. Trindade, J. Mota & A. Ravara 27

We now realize the drone should be able to move to a specified destination, but the current specifi-
cation does not allow this behavior. We change the automaton to include a moveTo method instead of
move, where x and y specify the coordinates of the desired destination (Figure[2)). Additionally, we also
add a method hasArrived that allows us to check if the drone has arrived at the specified destination.

True

moveTo(x,y) hasArrived()

False

Figure 2: Automaton 2

Notice that state Decision is different from the other states: transitions from this node depend on
the result of method hasArrived, whereas transitions from other nodes are performed by executing
methods. On that account, we would like to define a new kind of automaton that correctly renders this
idea of states offering method-call transitions, and states or internal-choice states offering result-based
transitions. We call Deterministic Object Automata (DOA) to this new type of automata, which we will
be formalizing in Sec. We tweak the previous automaton in order to make these changes apparent,
resulting in what you see in Figure 3]

True

takeOff{)

moveTo(x,y) hasArrived()

Idle Hovering

land()

False

Figure 3: Automaton 3

However easy and intuitive may the representation of system behavior through state machines be,
when it comes to implementation, we would be interested in having protocols that verify if, indeed, our
code respects the behavioral model we have just designed as an automaton. To do so, one may resort
to Mungo [4]], a tool used for associating automata-like specifications — typestates — with Java classes.
These typestate specifications abstract the available operations on an object, by defining the sequence of
permitted method-calls, which depend on the state of the object [[10} [1]].

Mungo protocols are defined through a grammar generating DOAs, which can then be associated to
a class. It is possible to check if the associated classes are used correctly (according to the typestate),
since Mungo has a typechecker. If the typestate is violated, Mungo reports the errors, otherwise we can
securely compile and run the Java code using the standard Java tools.

In Listing |1} we present a Mungo protocol in an attempt to define our automaton representation as a
typestate that we can use to check if our code respects the intended behavior of the drone.

[T SO I NS I

B LN =

(o) V]

28 Typestates to Automata and back

typestate DroneProtocol {
Idle = { void takeOff(): Hovering 1}
Hovering = { void land(): Idle,
void moveTo (double, double): Flying 1}
Flying = { Boolean hasArrived(): <True: Hovering, False: Flying> }

Listing 1: Mungo typestate specifying the drone’s behavior.

Similarly to the automaton we have previously defined, since Idle is the first state in our Mungo
typestate, a new drone object starts in this state. From here, the only method available is takeOff.
Calling this method changes the object’s state to Hovering, where we can invoke method land and
go back to state Idle, or invoke method moveTo and change to state Flying. In that state, executing
method hasArrived has two possible outcomes: if the result is True, we change to state Hovering;
otherwise, we stay in the same state. This mimics the idea of internal-choice states we have previously
mentioned. The execution of hasArrived takes us to a state that evaluates the result of this method and
consequently changes states according to that result.

After drafting the typestate and developing the code for the drone (see appendix [A]), we now realize
that this specification is quite restrictive, as it does not allow changing the drone’s destination nor stop its
movement mid-flight. We made the appropriate changes, rewriting the Mungo typestate as in Listing
typestate DroneProtocol {

Idle = { void takeOff(): Hovering }
Hovering = { void land(): Idle,

void moveTo(double, double): Flying }
Flying = { void moveTo(double, double): Flying,

void stop(): Hovering,
Boolean hasArrived(): <True: Hovering, False: Flying> }

Listing 2: Mungo typestate after changes.

To better understand these changes, it would be helpful to visualize the resulting automaton. By
following each step of the Mungo protocol, we are able to draw it (Figure 4). Naturally, it could also
be obtained from the previous automaton by adding the corresponding transitions. The code with these
modifications can be seen in appendix

True

moveTo(x,y)

hasArrived()

False

Figure 4: Automaton 4

The process of describing an automaton model as a Mungo typestate, and vice versa, can be hard
and error-prone, specially when describing complex systems. In the following sections we present the
work leading to the development of a tool does this transformation automatically and further allows
one to directly change either the automaton or the typestate, and obtain the converse representation, by
formalizing the translation between typestate and automaton.

A. Trindade, J. Mota & A. Ravara 29

3 Bi-directional conversion between Mungo Typestates and Deterministic
Object Automata

One way of looking at the problem of obtaining a Deterministic Object Automaton from a Mungo type-
state (and vice versa) is to understand similarities with typical properties regarding Formal Languages
and Automata, specifically, translating a finite state automaton from a regular expression (and vice versa).
Generally, formal grammars have a corresponding state machine, for example, we can abstract regular
grammars as finite automata or unrestricted grammars as Turing machines [3,[7]. Therefore, formalizing
a grammar for Mungo typestates naturally simplifies the task of describing these typestates as abstract
machines, helping us better understand the possible behavior of an object.

Having this in mind, the first steps towards defining a conversion algorithm are the formalization
of DOA, the automaton model to be equivalent to Mungo typestates, which we have highlighted in
the previous section, and the formalization of a grammar for Mungo typestates. Finally, we take these
two elements and, by studying their structure, define two algorithms that allow for the bi-directional
translation of between both grammar and automata.

Since the end goal was to develop a tool that automates the process of translation between typestate
and DOA, one of our concerns while designing such algorithms was to test that they produce the intended
results ﬂ For this reason, their definition was accompanied by the implementation of equivalent OCaml
code a natural choice given how simple it is to represent mathematical definitions of recursive functions
as functional code.

3.1 Deterministic Object Automata

Communicating automata have been used in the past to model binary session types [5,[11]]. However, the
model does not fit Mungo usages perfectly, namely it does not distinguish external from internal-choice
states, as clearly as DOA do. To have an automata model adequate to Mungo typestates, namely leading
to an equivalence result, we defined the novel approach introduced in Sec. 2] The definition of a new
model allows us to have a finer control over its righteous representation of a Mungo typestate, which in
the end is far easier than adapting existing models.

Definition 3.1 (Deterministic Object Automata). A DOA is an octuple (S,7,M,L,s,F,D,E) where:

e S is a set of (external choice) states;

T is a set of (internal choice) states (disjoint from S);

M is a set of method identifiers;

L is a set of label identifiers;

s € S is the initial state;
e F C § are the final states;
e DC SXMx (SUT) contains the method-call transitions (external);

e £ C T x L xS contains all the result transitions (internal).

!(Mechanized) Formal proofs are work in progress.
Zhttps://github.com/draexlar/compile_doa

https://github.com/draexlar/compile_doa

30 Typestates to Automata and back

Definition 3.2 (Transition function). Let A= D UFE be the set of transitions, with D ranged over by 0
and E ranged over by 7. Consider x,y € (SUT),a € (MUL)andw € (MUL)*.

The function A* C (SUT) x (MUL)* x (SUT) is inductively defined by the rules:

o A'(x,€)=x;

o A"(x,aw) = A*(8(x,a),w), ifa € M,

o A"(x,aw) = A*(t(x,a),w), ifa € L.

3.2 Mungo Typestate Grammar

Definition 3.3 (Mungo Typestate Grammar). A Mungo Typestate Grammar, Gy,ng0, 15 a quadruple
(V,X,P,T), where:

e V is a finite set of non-terminal symbols;

e Y is a finite set of terminal symbols (alphabet), disjoint from V;

e P is a finite set of production rules;

e T €V is the start symbol.

Let N be a set of strings one can use to name a Mungo protocol, K be a set of all possible state names,
R be a set of all possible data types, Y be a set of all possible method names, and Z be a set of all possible
label names. Moreover, let name € N be the name of a typestate, state € K be any valid Java identifier,
type € R be any Java identifier that points to a Java data type, method € Y be any valid Java identifier for
a method name, and label € Z be any valid Java identifier.

V ={T,TB SDN, SD, S, SN, M, A, AN, W,O,ON, L, LT }

Y ={ typestate,end,<,>, (,), :,{, },,,=}U{name} UKURUY UZ
P={ T — typestate name {TB}; SN —¢&|,MSN; O —LON;
TB — ¢ | SDN TB ; M — type method (A) : W ; ON—¢€|,0;
SDN — state = SD ; A — €| type AN ; L — label: LT ;
SD — {S}; AN — g |, type AN ; LT — end | state | SD }
S—€e|MSN; W — end | SD | < O > | state ;

Properties Notice that the grammar’s production rules are neither left-regular nor right-regular, since
their right-hand side accepts an arbitrary sequence of terminal and non-terminal symbols — P CV x (VU
¥)* —as seen in the first rule of our grammar. Therefore, this is a context-free grammar.

One of our concerns while defining the grammar we present, was to ensure it to be LL(1) determinis-
tic. This means, it is not ambiguous (produces one leftmost derivation), scans the input from left to right,
and is not left-recursive. Furthermore, at each step of a derivation, there is only one applicable rule. It is
simple to verify the result was achieved.

3.3 Translating Mungo Typestates into Deterministic Object Automata

Now that we have formalized a grammar for Mungo protocols, we can move on to the task of defining
an algorithm for translating Mungo Typestates into Deterministic Object Automata. To this purpose, we
have defined a recursive function, Compile, which, given a typestate specification, infers the automaton’s
states and transitions by following the production rules of the Mungo Typestate Grammar, returning a
DOA (as defined in Sec. [3.1).

W N =

A. Trindade, J. Mota & A. Ravara 31

Compile Function. Please recall the sets defined in Sect. K, the set of all possible state names; R,
the set of all possible data types; Y, the set of all possible method names; and Z, the set of all possible
label names. Let start,next € K, type € R, m € Y, label € Z, and let G be the set of available states
defined in the typestateﬂ

As previously noted, the Compile function parses a given typestate by following the production
rules of the defined Mungo Typestate Grammar. To avoid ambiguity, in cases where there is a recursive
production rule, we use an apostrophe () to distinguish symbols. For example, we denote TB — SDN TB
as TB =SDN TB'.

We begin with the start symbol in our grammar, T, which represents a typestate. When parsing the
typestate, some symbols may be ignored since they are not relevant for constructing a DOA. For exam-
ple, even though T contains more information than TB (T — typestate name {TB}), we can ignore
the symbols typestate, name, {, and }, because we are only interested in states and their respective
transitions to build an automaton.

Compileg(T) = Compilec(TB)

({end}, {},{},{},end,{end}, {},{}) if TB=¢

Compileg(TB) =
Union(Compileg(SDN), Compileg(TB’)) if TB = SDN TB’

If the typestate’s body is empty — no states are defined — the object is idle, and therefore the resulting
automaton is characterized by having just one initial and final state: end, which is defined by default
in any Mungo protocol. Otherwise, there is at least one defined state, thus the resulting DOA is the
union (which we will define later in this section) of the automaton generated by the state SDN and the
remainder of the typestate (TB’).

As an example, consider Listing [3]where we define a Mungo typestate with just two states, one initial
and the final state end, and with only one method-call transition.
typestate basic {

begin = { void terminate(): end 1}

}
Listing 3: Example typestate.

According to the algorithm, since the typestate’s body is not empty, we would now have to compute
Union(Compileg(begin={void terminate():end}), Compile;(0)), with G = {begin}. Since the
typestate’s body only has one state definition, the remainder of the typestate is empty. For this reason,
we already know that the final union will be with an automaton with just one initial and final state, end:
({end},{},{},{} end, {end},{},{}), resulting from the computation of Compileg(0).

Moving on with the definition of Compile, when translating a state, if the state’s body is empty
(S = €) — no transitions to other states are defined — the resulting DOA only has one state, which is both
initial and final. Otherwise, it is necessary to translate the state’s transitions, as defined below.

Compileg(SDN) = Compileg(start,SD) = Compileg(start,S)

({start}, {3, () {}start, {start}, {}.{}) ifS—¢

Compileg(start,S) =
Compileg(start,M, SN) if S=M SN

3For the example given in Sect. G ={Idle, Hovering, Flying}.

32 Typestates to Automata and back

Notice the use of start instead of the name state used in the grammar definition. Further on this
document, we will see why this change is helpful but, since start € K, it plays the same role in this
instance, being start the name of the current state.

Since the state definition from our example is not empty, the next step in the computation of our
example would be to compute the result of Compileg(begin={void terminate() :end}), thus, ac-
cording to the new step of the algorithm, we now have

Union(Compileg(begin, void terminate(), end), ({end},{},{},{} end,{end},{},{})).

Continuing where we left off, in the instance of a non-empty state definition, we consider the event
of only one transition being allowed — only one method is defined in the current state (SN = €) — and the
event of multiple transitions being allowed (SN =, M’ SN”). In the latter, the resulting DOA is the union
of the automaton generated by the first method transition (M) of the current state, and the one generated
by the remainder method transitions (M’ SN”).

Compileg(start,M) ifSN=¢

Compileg(start,M, SN) = < Union (CompileD(start,M),
Compilec(start, M’, SN’)) if SN=, M’ SN’

To compile a method transition, we need only focus on the current state, the method allowing the
transition, and the resulting state, ignoring all other symbols:

Compileg(start, M) = Compilec(start,type m(A), W)

Compileg(start,type m(A),W) =
(({start,end}, {},{type m(A)},{},start, {end},{8(start, type m(A)) = end},{})
ifW=-endorW={}
({start,next}, {},{type m(A)},{},start,{},{8(start, type m(A)) = next},{})
if W = next

Union(Compileginnery (start, type m(A), inner),Compileg {inner) (inner, SD))
if W =SD, inner ¢ G, inner € K

| Compileg(start, type m(A), O) fW=<0>

Once again, notice how we use start instead of state, but also m instead of method and next instead
of state which, respectively, stand for the current state, the method allowing the transition, and the
resulting state. The use of stzate would force us to work with stare = {type method(A) : state}, which is
ambiguous, hence, the use of start and next, both elements of K. Bear in mind that we are not concerned
with which or how many arguments a method accepts, and thus we assume A is well defined.

When the resulting state is the end state — which can be denoted by end or {} in Mungo protocols
— the resulting automaton has: two external-choice states, start and end; one method, m; an initial state,
start; a final state, end; and a (method-call) transition from start to end, through m. As you can see, we
follow the same reasoning when the resulting state is next.

Mungo protocols also allow states to be defined inside other states, similar to an inlining. These
“inner” states do not have names, so we need to assign them one. The assigned name must be unique,
and thus, before assigning it, one must first check if the name is already in use, by checking if it is in Gﬂ

4Recall that G is the set of defined states in the typestate.

A. Trindade, J. Mota & A. Ravara 33

We will be referring to the assigned name as inner and we may see it as an element of K. Now, we need
to update G to include the newly defined inner state, so that, in the future, it will not be possible to create
a state with that same name. Consequently, the generated automaton of a transition to an inner state (W
= SD), is the union of “compiling” the current state with a resulting state inner, along with the resulting
automaton of compiling the inner state.

Lastly, Mungo protocols allow a state to transition to an internal-choice state with a set of options
(W =< 0O >), through a method m.

According to the last few steps, we can understand that, from where we left off our example, since
our state has only one defined transition, and this transition leads to state end, our computation results in
solving:

Union(({pegin,end},{},{void terminate()},{}, begin,{end},

{6(begin, void terminate())=end},{}), ({end},{},{}.{} end, {end},{},{}))

Continuing with the definition of Compile, we have still to define the translation of transitions to
internal-choice states.

Compileg(start, type m(A), O) =
Union<<{start}, {choice},{type m(A)},{},start,{}, {S(start, type m(A)) = choice}, {}>,

Compilegchoicey (choice, O)), where choice ¢ G, choice € K

To translate a transition to an internal-choice state, we must first assign a name to that state, which
we will be referring to as choice, and we may see it as an element of K. Although S (the set of external-
choice states) and 7T (the set of internal-choice states) are disjoint, choice should be unique to avoid
ambiguity. So, similarly to what was done for the inner states, we check if choice is in G, and then
update this set. The resulting DOA is the union of an automaton with: one external-choice state, start;
one internal-choice state, choice; a method, m; an initial state; and an (method-call) transition from start
to choice; along with the resulting automaton of translating the set of options (O) offered by choice.

Compileg(choice, O) = Compilec(choice,L, ON)

Compileg(choice, L) ifON=¢

Compileg(choice,L, ON) =
Union(Compilec(choice, L), Compileg(choice, O)) if ON=, 0O

Notice that, our grammar does not accept an internal-choice state — a decision state — without options.
Hence, we consider the instances of only one option being defined in the current decision state (ON = €),
and the instance of having multiple options (ON =, O). We then “compile” the decision state with its
first option (or only option). By performing its union with the automaton generated by the the remainder
options in choice, we satisfy the latter instance.

To compile an option, we focus on the current internal-choice state, choice, the option’s label identi-

34 Typestates to Automata and back

fier, label, and the option’s resulting (external-choice) state for the label in consideration, LT:

Compileg(choice, L) = Compilec(choice, label, LT)

Compileg(choice, label, LT) =
({end},{choice},{},{label},e,{end},{},{t(choice,label) = end}) ifLT =end or LT ={}
({next},{choice},{},{label},&,{},{},{t(choice,label) = next}) if LT = next

Union(CompileGU{,-nne,}(choice, label, inner), Compileg {inpery (inner, SD))
if LT = SD, inner ¢ G, inner € K

Similarly to what was done for translating method-call transitions, when our resulting state is the end
state, the resulting automaton has: one external-choice state, end; one internal-choice state, choice; one
label; a final state; and a (result-based) transition from choice to end, through label. Otherwise, when the
resulting state is next, the resulting automaton has: one external-choice state, next; one internal-choice
state, choice; one label; and a (result-based) transition from choice to next, through label.

Mungo typestates also allow states to be defined inside internal-choice states (LT = SD). Therefore,
the resulting automaton is the union of translating the current internal-choice state with a resulting state
inner (inner € K and inner ¢ G) through label, along with the resulting automaton of compiling the inner
state. Recall that we then need to update G to include the new state inner, so that, in the future, no other
state can have the same name.

Union of Deterministic Object Automata. At many steps in our Compile function we made use of a
Union function. This is because simply performing the union (U) of two Deterministic Object Automata
is not right. Although it would be valid for almost every set in our octuple, notice that, in the definition of
DOA, there is only one initial state, which is assumed to be the first state defined in a Mungo typestate.
Addressing this issue, a function Union(a,b) is defined.

Definition 3.4 (Union Function). Let a and b be two DOA, where a is the automaton with the initial
state considered to be the start:

Union(a,b) = { SqUSp, T,UTy, MqUM,,, LyULy, 54,F;UF,, DyUDy, E;UE},)

Now that the Union function is defined, we can now complete the last computation from our example,
which we recall bellow.

Union(({pegin,end},{},{void terminate()},{},begin,{end},

{0(begin, void terminate())= end},{}>7 <{end},{},{},{},end,{end},{},{}>)

Notice that, in this particular case, the first automaton already has a transition to end, therefore the
resulting sets will be equal to those of this DOA. Furthermore, by definition, the initial state of the first
automaton is the initial state of the resulting automaton, thus we obtain the DOA: ({begin,end},{},
{void terminate()},{},begin,{end},{8(begin, void terminate())=end},{}).

A. Trindade, J. Mota & A. Ravara 35

3.4 Translating Deterministic Object Automata into Mungo Typestates

We now define the converse translation. By describing the behavior of an entity as a state machine, one
should be able to infer its corresponding Mungo protocol. This would be helpful since describing an
automaton can be easier and more intuitive than writing a typestate specification.

In this section, we propose a method for translating Deterministic Object Automata into Mungo
typestates by defining a function, Decompile, that, given a DOA, infers a corresponding Mungo typestate
by following the automaton’s transitions.

Decompile function. Let name be the name one wants to give the resulting Mungo typestate, and
doa = (S,T,M,L,s,F,D,E) be a Deterministic Object Automaton. And let G be the set of already
defined states in the typestate. Initially, G = {end} given that the end state is predefined for every Mungo
typestate. The Decompile function returns a string corresponding to the Mungo protocol described by
doa.

We start by giving the typestate’s name and the automaton doa representing the typestate as argu-
ments of our Decompile function, in order to obtain the protocol’s header, followed by the definition of
its body.

Decompile(name,doa) = typestate name { Decompileg(doa) }

€ ifS=0orS={end}
s = { Decompileg) (s,doa,A) }
DecompileGU{S} (<S\ {S},T,M,L,H,F,D\A,E>),
withA ={8(x,y) =z€ D |x=s}andn e S\ {s,end} otherwise

Decompileg(doa) =

Looking at the Mungo Typestate Grammar definition, we see that the typestate’s body can be empty
(TB — € | SDN TB). Therefore, if the set of external-choice states, S, of the given DOA is empty or
its only element is end, there are no (more) states to be defined in the typestate, and this instance of
Decompile returns the empty string. Otherwise, we define state s in the typestate.

Recall that the first state defined in a Mungo protocol is the initial state of the typestate and, naturally,
the initial state of the doa, s. For this instance, we also need to define the remaining states of the given
automaton. Thus, we make the recursive call of Decompile with a DOA where: the set of external-choice
states, S, no longer includes s; its initial state can be any state in S\ {s,end}; and the set of method-call
transitions, D, does not include any transition where the initial state is s. Lastly, it is important that we
update the set of defined states in the protocol, G, to include the newly defined state s.

As an example, consider a DOA with just two states, one initial and one final with only one method-
call transition:

d = ({begin}, 0, {void terminate()}, 0, begin, {end}, {(begin, void terminate(), end)}, 0).

According to the first steps of Decompile, if we called Decompile(basic,d), we would have s =
begin, A = {(begin, void terminate(), end)}, and G = {end, begin}, given that begin is the initial
state and the only transition beginning in begin is that of calling method terminate.

Continuing with the formalization of Decompile, the body of an external-choice state is the state’s
method-call transitions. For this reason, besides the current state, ¢, and doa, we also receive the set of
all the current state’s method-call transitions, A, as follows.

36 Typestates to Automata and back

Decompileg(c,doa,A) =
e ifA=0
m: Decompileg(n,doa) ifA={0(c,m)=n}, meM

m : Decompileg(n,doa),
Decompileg(c,doa,A\{8(c,m) =n}) if#A#1, {8(c,m)=n} CA,meM

If the set of method-call transitions from ¢ is empty, there are no (more) transitions to be defined for
the current state. If the set of method-call transitions from c only has one element, then we need to define
the transition relative to that element. Taking a look at our grammar definition, we define a transition by
writing the method allowing it, followed by colon (:) and the resulting (external-choice) state or a series
of choices (internal-choice state).

Otherwise, the set of method-call transitions has multiple elements. We start by choosing one of its
elements and defining it, similarly to what was explained in the prior instance, followed by a comma (,)
and the definition of the remaining transitions allowed in the current state, c. This is done by recursively
calling Decompile with a set of method-call transitions excluding the one we have just defined.

To finish defining a transition, we need to decide whether the state we are transitioning to, n, is
external or internal.

n ifneSUG
Decompileg(n,doa) =
< Decompileg(n,doa,{t(x,y) =z€E|x=n}) > ifneT

To do so, we need only check if n is in S, the set of external-choice states, or in G, the set of already
defined states; or otherwise check if n is in T, the set of internal-choice states. In which case, we start
by writing <, which identifies the choice; call Decompile with the state we are transitioning to, n, the
automaton doa, and the set of all result transitions starting in n, which we will be calling B; followed by
closing the choice with >.

Decompileg(c,doa,B) =
I:n ifB={t(c,l)=n},l €L, neSUG
[:n, Decompilec;(c,doa,B\{‘L'(c,l) = n}) if#B> 1, {t(c,l)=n} CB,l €L, n€ SUG

In the Mungo Typestate Grammar definition, you can see there must be at least one choice in an
internal-choice state (O — L. ON). Therefore, we consider the instance of B (the set of result transitions
starting in c) having only one element, and the instance of B having multiple elements.

Taking a look at the grammar definition, in a Mungo typestate, we define a result transition by writing
a label, /, followed by colon (:), and the resulting external-choice state, n. Since n is an external-choice
state, it must be an element of S or an element of G. When having multiple result transitions for c, we
start by choosing one of its elements and defining it, as explained above, followed by a comma (,), and
the definition of the remaining result transitions allowed in the current state. This is done by recursively
calling Decompile with a set of result transitions excluding the one we have just defined.

From these lasts few steps of Decompile we can see that, given that set A is the singleton A =
{(begin, void terminate(), end)} and that, indeed, end € SUG, the resulting typestate from our
previous example is the following.

W N =

A. Trindade, J. Mota & A. Ravara 37

typestate basic {
begin = { void terminate(): end 1}

}
Listing 4: Typestate obtained from d.

4 The Web Tool

The work presented in the previous section gave us the formal basis to what we sought out to do from
the beginning: build a toolﬂthat helps developers describe behavioral specifications by automating the
process of converting Mungo typestates into automata and vice versa. This tool allows any user to write
a Mungo protocol and preview a visual representation of the corresponding automaton.

The implementation was done using TypeScript El, a static type checker for JavaScript. Although
we tried to stick to the functional approach, discussed in the previous section, as to follow the Compile
and Decompile function definitions, some parts of the implementation are imperative in nature, since
they work with mutable structures for performance sake. Lastly, to help us with handling the data and
the graphical representation of typestates as automata, we used the vis. js Ellibrary.

Figure 5| presents the tool’s interface when converting a Mungo protocol into an Deterministic Object
Automata. On the left, one can type the typestate specification and click the “Do” button to produce a
corresponding visual representation — a DOA — which can be observed on the right. Each element of the
image has a meaning: the gray arrow points to the initial state; blue arrows represent transitions; external-
choice states are represented as circles; and internal-choice states are represented as diamonds. Finally,
one can also download the automaton as a PNG file or copy the automaton in JSON to the clipboard.

= Typestate Editor exampLes ()
Preview DO DOWNLOAD COPY AUTOMATON IN JSON
1 typestate DroneProtocol {
2
3 Idle = {
4 void takeOff(): Hovering,
5 void shutDown(): end
6 }
8 Hovering = { y
9 void land(): Idle, 00“““\-\""" :@
1@ veid moveTo(double, double): Flying E\w\%‘. -~ s
11 } | 8
12 M 4 \ \&
13 Flying = { % i
14 veid moveTo(double, double): Flying, ?;, ‘,
15 void stop(): Hovering, “a D
16 Boolean hasArrived(): <True: Hovering, False: Flying %ovsng__%"z@}
17 3 /L D%,
10 P NIRA
19} / N, N,
/ L\,
20 | o« \ &
af N
3 thouillo(dsuble, double)
= |
g -~

Figure 5: Web tool interface: Mungo typestate to DOA.

Shttp://typestate-editor.github.io/
Shttps://www.typescriptlang.org/
"https://visjs.org/

http://typestate-editor.github.io/
https://www.typescriptlang.org/
https://visjs.org/

38 Typestates to Automata and back

Additionally, the user may view the internal representations and intermediate transformations to
understand how the tool works. Namely, the user may transform the typestate into an abstract syntax
tree (and vice versa), and transform an abstract syntax tree into an automaton (and vice versa), both
represented in JSON. Figure |6 shows an example of a transformation from an automaton to the abstract
syntax tree, which can then be used to obtain the corresponding typestate, as illustrated in Figure [7]
Notice how the inverse transformation produced the same typestate initially presented in Figure 5]

= Typestate Editor exavpies ()

Automaton — AST DO COPY JSON
- a EEE
2 “states": [v =
3 “end”, object »- states » 0 » methods » 0 »
4 "Idle”, ¥ object {4}
5 "Hovering",
6 "Flying" type : Typestate
7 1 name : NAME
8 "choices": [
9 "decision:1” v states [3]
18 1, v o {5}
11 "methods”: [type ¢ State
12 {
13 “name”: “"takeOff", name : Idle
14 "arguments”: [], v methods [2]
15 "returnType”: "void"
16 " » 0 {6}
17 { > 1 {8}
18 "name": "shutDown",
name : Idle
19 "arguments": [], -
28 "returnType”: "void™ » loc {2}
21 ¥ » 1 {5}
22 1
23 “name”: “"land”, 2 {5}
24 “arguments”: [], » loc {2}
25 “returnType”: "void" ™
26 b
27 {
28 “name"”: “moveTo",
29 “arguments”: [

= Typestate Editor

Figure 6: Web tool interface: DOA to AST.

AST — Typestate DO COPY TEXT
1 ol typestate DroneProtocol {
2 “type": "Typestate"”, Idle = {
N ::name" ”‘.‘DrunePr-otucol”, void takeOff(): Hovering,
: 51{:“55 L void shutDown(): end
6 "type": "State", }
7 "name": “"Idle", Hovering = {
8 “methods™: [void land(): Idle,
@ { void moveTo(double, double): Flying
18 "type": "Method",)
11 "name”: “takeOff", A = q
12 "arguments”: [],
13 void moveTo(double, double): Flying,
14 void stop(): Hovering,
15 Boolean hasArrived(): <True: Hovering, False: Flying>
16 }
17 }
18
19
2@
21
22
23
24 >
25 "column”™: 8
26 }
27 1
28 b .
20 “"transition”: {

Figure 7: Web tool interface: AST to Mungo typestate.

EXAMPLES

0

A. Trindade, J. Mota & A. Ravara 39

Lastly, we would like to add that the tool also checks for errors. In the written typestates, it detects
syntax errors and errors related to the structure of the typestate, such as: states with the reserved name
end; references to states that are not defined; duplicate states, transitions (for the same state) or labels
(in internal-choice states); and internal-choice states without options. When performing the converse
translation, we look for errors regarding transitions to undefined states, internal-choice states without
result transitions, or even transitions from internal-choice states to internal-choice states.

5 Conclusions and Further work

Nowadays, programming languages rely heavily on type systems to avoid non-trivial errors such as the
execution of operations on invalid states, as trying to access a non-existent position of an array or trying
to read from a file that is not yet opened. Behavioral types are useful methods to prevent errors resulting
from applying operations in wrong order.

In this paper we focus on how tools such as Mungo allow us to describe the behavior of entities
through its typestates. By presenting a formal grammar description of Mungo protocols, we define a norm
for building Mungo typestates, and by designing a new automata model that can soundly portray a Mungo
typestate, we give a concrete way of visualizing the described object’s behavior. The formalization of
a function for translating Mungo typestates into Deterministic Object Automata, as well as a function
that computes the reverse translation, grants mathematical grounds for developing tools to represent
and manipulate behavioral descriptions of computational entities. Such is the web-based tool we have
developed, which, through an easy to use graphical interface, allows any developer to obtain a Mungo
typestate from an automaton, or even get a better sense of how their Mungo typestate is structured, by
displaying an equivalent automaton graph. Allied with the Mungo tool, one can associate the protocols
designed or obtained through our tool with corresponding Java class implementations, and Mungo’s
typechecker will verify if the code follows the revised protocols.

Nonetheless, as many have said, a work of art is never finished, and so is true for the work herein
presented. A common theme throughout this paper, and the motivation driving the use of behavioral types
is, in its core, the same as for using other formal methods: the necessity of systems that ensure correct
behavior. Therefore, the next step in our work is to ensure the correct specification of our algorithms,
by using deductive program verification to prove that the behavior and properties we expect from them
are correct. Concretely, the formal proof is based on the typical properties regarding Formal Languages
and Automata: the conversion between grammar and automaton preserve the language. This is, to prove
the correction of the algorithm that converts Mungo typestates into DOA is to prove that the language
of the (resulting) DOA is the same as the language of the Mungo typestate. Similarly, to prove the
correction of the translation from DOA to Mungo typestate is to prove that the language of the (resulting)
Mungo typestate is the same as the language of the DOA. The result of this work will contribute to the
development of a mechanically verified version of the tool that developers can use with the assurance
of correct results. Following this step, we intend on improving the usability of the tool, by allowing the
users to construct and manipulate the graphical representation of the automaton, rather than having to
work with the formal, more complex, textual representation.

References

[1] Jonathan Aldrich, Joshua Sunshine, Darpan Saini & Zachary Sparks (2009): Typestate-Oriented Program-
ming. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming

40

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Typestates to Automata and back

Systems Languages and Applications, OOPSLA’09, ACM, p. 1015-1022, doi;10.1145/1639950.1640073.

Luca Cardelli (1996): Type systems. ACM Computing Surveys (CSUR) 28(1), pp. 263-264,
doii10.1145/234313.234418.

Noam Chomsky (1956): Three models for the description of language. IRE Transactions on Information The-
ory 2, pp. 113-124, doi:10.1109/TIT.1956.1056813. Available athttp://www.chomsky.info/articles/
195609-- . pdf|

Ornela Dardha, Simon J. Gay, Dimitrios Kouzapas, Roly Perera, A. Laura Voinea & Florian Weber (2017):
Mungo and StMungo: tools for typechecking protocols in Java. In Simon Gay & Antonio Ravara, editors:
Behavioural Types: from Theory to Tools, River Publishers Series in Automation, Control and Robotics,
River Publishers, pp. 309-328, doi;10.1016/j.scico.2017.10.006.

Pierre-Malo Denielou & Nobuko Yoshida (2013): Multiparty Compatibility in Communicating Automata:
Characterisation and Synthesis of Global Session Types. In: Automata, Languages, and Programming -
40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, 7966,
Springer, p. 174, doij10.1007/978-3-642-39212-2_18. International Colloquium on Automata, Languages,
and Programming (ICALP’13) ; Conference date: 08-07-2013 Through 12-07-2013.

Edsger W Dijkstra (1972): The humble programmer. Communications of the ACM 15(10), pp. 859-866,
doii10.1145/355604.361591.

John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (20006): Introduction to Automata The-
ory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
doi:10.5555/1177300.

Hans Hiittel, Ivan Lanese, Vasco T. Vasconcelos, Luis Caires, Marco Carbone, Pierre-Malo Deniélou, Dim-
itris Mostrous, Luca Padovani, Anténio Ravara, Emilio Tuosto, Hugo Torres Vieira & Gianluigi Zavattaro
(2016): Foundations of Session Types and Behavioural Contracts. ACM Comput. Surv. 49(1), pp. 3:1-3:36,
doii10.1145/2873052.

Oscar Nierstrasz (1993): Regular Types for Active Objects. =~ SIGPLAN Not. 28(10), pp. 1-15,
doi:10.1145/167962.167976.

Robert Strom & Shaula Yemini (1986): Typestate: A programming language concept for enhancing software
reliability. IEEE Trans. Softw. Eng. 12, pp. 157-171, doi:10.1109/TSE.1986.6312929

Jules Villard (2011): Heaps and Hops. These de doctorat, Laboratoire Spécification et Vérification, ENS
Cachan, France. Available at http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/villard-phd.
pdfl

http://dx.doi.org/10.1145/1639950.1640073
http://dx.doi.org/10.1145/234313.234418
http://dx.doi.org/10.1109/TIT.1956.1056813
http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf
http://dx.doi.org/10.1016/j.scico.2017.10.006
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.1145/355604.361591
http://dx.doi.org/10.5555/1177300
http://dx.doi.org/10.1145/2873052
http://dx.doi.org/10.1145/167962.167976
http://dx.doi.org/10.1109/TSE.1986.6312929
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/villard-phd.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/villard-phd.pdf

A. Trindade, J. Mota & A. Ravara 41

A Drone with ability to check its arrival

typestate DroneProtocol {

1

2 Idle = {

3 void takeOff (): Hovering,

4 void shutDown(): end

5 }

6 Hovering = {

7 void land(): Idle,

8 void moveTo (double, double): Flying
9 }

10 Flying = {

11 Boolean hasArrived(): <True: Hovering, False: Flying>
12 }

13 }

| import mungo.lib.Typestate;

2 @Typestate ("DroneProtocol")

3 public class Drome {

4 public Dromne() {}

5 void takeOff () {}

6 void land () {}

7 void moveTo (double x, double y) {}
8 void shutDown () {}

9 Boolean hasArrived () {
10 return Boolean.False;
11 }

12}

We noticed that the previous typestate was too restricted so, we extended it so that we can check
if the drone has arrived to its destination. In the following example, after telling the drone to move,
we wait in a loop until the drone arrives. We use a do-while loop, break/continue statements and a
switch statement so that Mungo understands the flow of execution. To simplify the code, we introduced
a shutDown method so that we reach the end state, making Mungo accept our code — without the need
to create another loop around it, similar to the first example.

public class Main {

1

2 public static void main(Stringl[] args) {

3 Drone drone = new Drone();

4 drone . takeOff () ;

5 drone .moveTo (20.0, 10.0);

6 loop: do {
switch(drone.hasArrived ()) {

8 case True:

9 break loop;

10 case False:
11 continue loop;

12 b

13 } while(true);

14 drone.land () ;

15 drone.shutDown () ;
16 T

17 ¥

42 Typestates to Automata and back

B Drone with ability to change course while flying

typestate DroneProtocol {

1

2 Idle = {

3 void takeOff (): Hovering,

4 void shutDown(): end

5 }

6 Hovering = {

7 void land(): Idle,

8 void moveTo (double, double): Flying
9 }

10 Flying = {

11 void moveTo (double, double): Flying,
12 void stop(): Hovering,

13 Boolean hasArrived(): <True: Hovering, False: Flying>
14 }

15 ¥

This final example is very similar to the previous one. We just introduced the possibility of changing
the drone’s course by allowing the method moveTo to be called in the Flying state. This code is also
accepted by Mungo.

| public class Main {
2 public static void main(Stringl[] args) {
3

: Drone drone = new Drone();
4 drone.takeOff () ;

5 drone .moveTo (20.0, 10.0);
6 drone.moveTo (10.0, 20.0);
7 loop: do {

8 switch(drone.hasArrived ()) {
9 case True:

10 break loop;

11 case False:

12 continue loop;

13 }

14 } while(true);

15 drone.land () ;

16 drone.shutDown () ;

17 }

18

	1 Introduction
	2 How to model an entity as a Mungo protocol?
	3 Bi-directional conversion between Mungo Typestates and Deterministic Object Automata
	3.1 Deterministic Object Automata
	3.2 Mungo Typestate Grammar
	3.3 Translating Mungo Typestates into Deterministic Object Automata
	3.4 Translating Deterministic Object Automata into Mungo Typestates

	4 The Web Tool
	5 Conclusions and Further work
	A Drone with ability to check its arrival
	B Drone with ability to change course while flying

