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This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled) place/transition
Petri nets and the synthesis of labelled transition systemsinto Petri nets. It is implemented as a
collection of independent, dedicated algorithms which have been designed to operate modularly,
portably, extensibly, and efficiently.
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1 Motivation

Labelled transition systems are frequently employed in order to display the state space of a given Petri net
and to analyse its behavioural properties. Conversely, by region theory [1], a Petri net may be synthesis-
able from a given labelled transition system. Such a net is then correct “by design”. However, a transition
system may be extremely (even infinitely) large, causing synthesis algorithms to be prohibitively time-
consuming. Moreover, synthesis suffers from nondeterminism, since for a given transition system, many
different Petri net implementations may exist.

In such a context, it is interesting to discover relationships between special, albeit useful, classes of tran-
sition systems and classes of Petri nets (e.g., persistent ones [15]), so that faster and more deterministic
analysis and synthesis methods can be devised. For the working mathematician, this tends to involve
the error-prone examination of graphs which may be large andintricate. Tools such assynet [9] and
petrify [12] are helpful, but there is also a need for multifunctional tools with the following properties:

• Versatility. The user should be able to create, modify, and manage hundreds or thousands of
medium-sized graphs (both Petri nets and transition systems) which might only slightly be at
variance with each other. E.g., insynet, the only way of inserting comments on data objects is
by choosing meaningful file names. For large collections of objects, a more flexible commenting
function becomes mandatory. No restrictions should be imported from intended applications. E.g.,
petrify excludes non-safe Petri nets as output because they are of nointerest in a hardware
context.

• Transparency. The tool’s internal machinations should be detectable, if necessary by examining
the source code. E.g., it is not known whethersynet always constructs a safe Petri net if there
exists one.

∗The authors are supported by the German Research Foundation(DFG) project ARS (Algorithms for Reengineering and
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• Extensibility. It should be possible to program and add modules fast, in case the need arises for
any particular new problems. In particular, modules shouldhave properly defined, readable, and
descriptive input/output interfaces.

• Bare-bonedness. The tool should operate on place/transition nets with arbitrary arc weights and
side-conditions, and on arbitrary labelled transition systems, as well as on many interesting sub-
(rather than super-) classes. Emphasis should be on algorithmic optimisation, rather than on textual
expressiveness. Communication between users, as well as between tools, should be achieved via
human-readable text files.

• Efficiency and modularity. Analysis of medium-sized objects (say, graphs with a few hundred
nodes) should be fast, even if the theoretical complexity isPSPACE-hardness or worse. In the event
of bottlenecks, the tool should be sufficiently modular so that the culprit(s) can be isolated quickly.
Memory should be organised in such a way that average-sized objects can be handled and overflow
does not occur, or can at least be localised cleanly.

• Portability and availability. It should be possible to switch quickly between different platforms.
No frequent recompiling should occur, and any dependencieson residual installations should be
minimised. The tool should be freely downloadable and usable as a single executable file on many
different platforms. No registration or other “paperwork”(such as sending mails or waiting for
release links), and few system-dependent installations, should be necessary in order to use it.

Since a tool of this kind was found to be lacking, a students’ project was initiated at the University of
Oldenburg in 2012. The toolbox that resulted from it by March2013 has been calledAPT for Analysis
of Petri nets andTransition systemsand is available at [8]. Since then,APT has been optimised and
extended by the second author (and other persons). The present paper contains a brief summary of the
use and structure ofAPT in sections 2 and 3, respectively. Some recent developmentswill be described
in section 4. Formal definitions can be found in section A. Many of them conform with [6, 7] where a
more detailed exposition of some of the theory can be found.

2 Introduction to the use ofAPT, and some examples

APT is implemented in Java 7 and is released under theGPLv2 license. As one of the goals was portability,
it consists of a single file calledapt.jarwhich can be run by any Java 7 runtime environment. Currently
there is no graphical user interface, but instead a console-based one. This decision was made to be able
to focus on the implementation of algorithms. Listing 1 shows howAPT can be downloaded withgit
and built withant. As an alternative to usingant, the fileapt.jar can simply be copied from another
machine. Presently, no pre-compiled versions are available for download. Listing 1 also illustrates the
use ofAPT’s help function.

Figure 1 shows a labelled transition system,lts, and three Petri nets,N1–N3, serving as running examples.
All three Petri nets are solutions oflts, that is, their reachability graphs are isomorphic tolts. Listing 2
representsN1 in APT’s file format. The file starts with a name and a description of the net.N1 has five
places namedp0 to p4, and four transitions,a to d. The flows of the net are specified in multiset notation.
For example, transitiona takes a token from placep0 and puts it onp4. Weights can be specified either by
mentioning a place multiple times, e.g.{p,p}, or by explicitly specifying a weight, as in2*p. The initial
marking of the net is represented in a similar format. Comments can be enclosed within/*..*/ or begin
with // and extend to the end of the line.APT’s transition-centred way of specifying place/transitionnets
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$ g i t c l one h t t p : / / g i t h u b . com /CvO−t h e o r y / a p t . g i t
$ cd a p t
$ a n t j a r
$ j a v a − j a r a p t . j a r he lp bounded
Usage : a p t bounded<pn> [<k>]

pn The P e t r i n e t t h a t s hou ld be examined
k I f g iven , k−boundedness i s checked

Check i f a P e t r i n e t i s bounded or k−bounded .

Listing 1: Downloading and buildingAPT. Some output is omitted for reasons of brevity.
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Figure 1: A persistent, reversiblelts having the strong small cycle property with Parikh vector 1.
Three Petri netsN1,N2,N3 solving it are also shown. Thelts has no marked graph solution.

allows multiset arc weights and markings to be represented readably. For switching quickly between
APT andsynet formats,APT contains two translation modulessynet2apt andapt2synet. Third-party
formats for Petri nets, such as theLoLA [16] andPNML (cf. http://www.pnml.org/) formats, are also
supported.

TheAPT toolbox provides a large number ofmodules. If the program is started without any arguments,
a full list of available modules is printed. A special modulecalled help (already illustrated in list-
ing 1 for the modulebounded) can be used for obtaining information about a module. It canbe seen
that thebounded module requires a Petri net as input and optionally accepts avaluek to check fork-
boundedness. In listing 3 both features are exemplified. Theresults show thatN1 (of figure 1) is bounded,

.name ” f i l e name : n e t . a p t ; f i l e c o n t e n t : a p e r s i s t e n t and r e v e r s ib l e n e t ”
. d e s c r i p t i o n ”A P e t r i n e t N 1 hav ing t h e s ma l l c y c l e p r o p e r t y ”
. t y p e LPN /* stands for Labelled Petri Net */

. p l a c e s
p0 p1 p2 p3 p4 /* five places */

. t r a n s i t i o n s
a b c d /* four transitions */

. f l o w s
a : { p0 } −> { p4 }

b : { p4 , p1 } −> { p3 }

c : { p4 , p3 } −> { p0 , p1 , p2 }

d : { 1 ∗ p2 } −> { 1 ∗ p4 } // 1 * is actually redundant

. i n i t i a l m a r k i n g { p0 , 1 ∗ p1 , p4 } // same here

Listing 2: Filenet.apt containingN1, as depicted in figure 1, inAPT text file format.

http://www.pnml.org/
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$ . / a p t . sh bounded n e t . a p t
bounded : Yes
$ . / a p t . sh bounded n e t . a p t 1
bounded : No
w i t n e s s p l a c e : p4
w i t n e s s f i r i n g s e q u e n c e : [ a ]

Listing 3: Illustration of how to use thebounded module.
On Unix-like platforms, the shell scriptapt.sh serves as a shorthand for startingAPT.

.name ” ” /* file name: lts.apt (this comment was added manually) */

. t y p e LTS /* stands for Labelled Transition System (this comment was added manually ) */

. s t a t e s
s0 [ i n i t i a l ] /* [ [p0:1] [p1:1] [p2:0] [p3:0] [p4:1] ] */

s1 /* [ [p0:0] [p1:1] [p2:0] [p3:0] [p4:2] ] */

s2 /* [ [p0:1] [p1:0] [p2:0] [p3:1] [p4:0] ] */

s3 /* [ [p0:0] [p1:0] [p2:0] [p3:1] [p4:1] ] */

s4 /* [ [p0:1] [p1:1] [p2:1] [p3:0] [p4:0] ] */

s5 /* [ [p0:0] [p1:1] [p2:1] [p3:0] [p4:1] ] */

s6 /* [ [p0:0] [p1:0] [p2:1] [p3:1] [p4:0] ] */

. l a b e l s
a b c d
. a r c s
s0 a s1 s0 b s2 s1 b s3 s2 a s3 s3 c s4
s4 a s5 s4 d s0 s5 b s6 s5 d s1 s6 d s3

Listing 4: Reachability graph ofN1, generated with./apt.sh coverab net.apt lts.apt and
slightly edited, in order to minimise the number of lines. Itis isomorphic tolts shown in figure 1.

but not 1-bounded. For 1-boundedness,APT provides a witness for the negative result, stating that after
firing transitiona, placep4 will have more than one token on it.

The coverability graph module ofAPT can be used to generate a coverability graph [7] of a Petri
net. For a bounded net, this will be the reachability graph (cf. section A). Listing 4 shows the reachabil-
ity graph calculated byAPT for our running example via./apt.sh coverability graph net.apt.
Module names can be shortened, as long as the resulting prefixis unique. So we can also usecoverab
to call the coverability module. The initial state is alwayscalleds0. The correspondence between states
and markings is given as a comment. Thedraw module can be used to translate the calculated graph
into the DOT format used by theGraphViz tool (cf. http://www.graphviz.org/) which can then
visualize the graph.

Note that, inlts, each small cycle contains every transition exactly once. Such a property can be examined
with APT. The modulecompute pvs can be used to compute the Parikh vectors of all small cycles of an
lts, and the modulecycles same pv checks whether all small cycles have the same Parikh vector.

3 Overview ofAPT

Four stages can be distinguished in the development ofAPT: an implementation of the necessary data
structures, various analysis modules, and Petri net creator modules, described in this section, as well as,
more recently, an implementation of Petri net synthesis, described in section 4 below.

http://www.graphviz.org/
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Data structures ofAPT. At the heart of theAPT toolbox sits a module system that ensures a high level of
extensibility and modularity. Every module consist of an input specification, an output specification, and
an algorithm. After a module has been registered with the module system, it is automatically available
to be used from the command line. It is possible to create new modules by using theModule interface.
The methods of this interface are responsible for the definition of the algorithm and the specification
of parameters and return values, including their names, descriptions and types. This also includes a
free text description that can include, for example, formaldefinitions and usage samples. Algorithms
are implemented by therun method. Within this method, an algorithm can access the parameters that
were entered by the user on the command-line. These parameters are automatically transformed into
Java objects with the expected types according to the input specifications. The transformations from the
textual representation to Java objects andvice versahappens automatically, and thus, a module can focus
on working with the actual objects such as Petri nets or labelled transition systems, without needing to
worry about user input / output.

For the underlying data structures implementing the objects LPN and LTS, no existing library was used,
but instead, inspiration was drawn from the Petri Net API (http://service-technology.org/pnapi/)
to design robust and versatile data structures. The main idea is the central management of data. The
PetriNet class, respectively theTransitionSystem class, is used as a factory to create or delete
nodes, arcs, etc. Every modification of the graph has to be done from the graph class itself, or is for-
warded to it. For data storage, a compromise between memory and running time has been made. For
example, the pre- and postsets of all nodes are stored by means of Java’sSoftReferences. Hence, as
long as enough memory is available, the pre- and postsets of all nodes are saved to gain a fast access
to the sets. Otherwise the garbage collector of Java’s Virtual Machine is allowed to delete as many pre-
and postsets as necessary to achieve free memory. In this case the pre- and postsets are re-calculated and
re-saved, once they are needed.

Some stand-alone analysis modules.In each case, a (negative) answer is accompanied by (counter-)
examples as appropriate. The list can be extended as the needarises.

For a given finite lts (with initial states0),

• Check determinism, total reachability, persistence, reversibility, and the small cycle property;

• Compute weakly / strongly connected components and Parikh vectors of small cycles;

• Check (distributed) Petri net generability by two externalprograms,synet [9] andpetrify [12].

For a given Petri net (with initial markingM0),

• Check the existence of isolated elements, plainness, pureness, the existence of non-plain side
conditions, weak / strong connectedness, coveredness by S-invariants / T-invariants, the marked
graph / T-net / ON / CF / other structural properties, the BCF /BiCF properties, (k-) boundedness,
(weak) liveness, persistence, reversibility, the small cycle properties as with lts, and weak / strong
separability;

• Compute all connected components, the backward, forward, and incidence matrices, all side con-
ditions, all (minimal, semipositive) S- and T-invariants,all minimal siphons / traps, the greatest
common divisor of the initial marking, andif boundedthen reachability graphelsecoverability
graphfi .1

1 Several of the other tasks require boundedness as a precondition, so that the boundedness check is often used as a first
step.

http://service-technology.org/pnapi/
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For a given labelled Petri net with initial markingM0 and labellingh: T → Σ,

• Check whether a given wordw∈ Σ∗ is in the language of the net, check language equivalence, and
check isomorphism and bisimulation of reachability graphs.

The tasks described in this list are obviously of very diverse degrees of complexity. One amongst them
(Given a Petri net, is it separable?) has an unknown decidability status. Therefore, a restrictive algorithm
was implemented in this module, allowing bounds to be specified for the lengths of firing sequences.

Generator modules inAPT. These modules are useful, e.g., for benchmarking purposes (cf. section 4.2).

• Generate regular sample nets, for instance:n-bit marked graph nets, for some specification or
range ofn; n-philosopher nets [13]; all marked graphs with a limited number of places, transitions,
and tokens.

Counterexample finding modules.These modules (understandably) suffer from runtime problems.

• For a net, check whether the preconditions of the conjecturementioned at the end of section A are
satisfied, and then check isomorphism against all marked graphs of a limited size. Do the same for
a small number of randomly selected marked graphs of bigger sizes.

• Try to find intelligent extensions of an lts, such that the preconditions of the same conjecture
remain satisfied. Find minimal extensions of an lts that satisfy all required properties.

4 Petri net synthesis withAPT

The goal of net synthesis is to find an injectively labelled Petri net whose reachability graph is isomorphic
to a given lts.APT’s synthesize module (a recent addition toAPT by the second author) accepts up
to three parameters. The second parameter is the transitionsystem from which a Petri net should be
synthesised and the third parameter can optionally specifywhere the calculated Petri net could be saved.
The first parameter is a comma-separated list of properties that the produced Petri net should satisfy.
Supported properties are, at present:none, which can be used if just a generic P/T net without special
properties is needed;pure to synthesise a net without side-conditions;plain if a net without weights
is required;output-nonbranching when a place may not have more than one transition in its post-
set;t-net when each place may also not have more than one transition in its pre-set;conflict-free
when each place is either output-nonbranching or its post-set is a subset of its pre-set;k-bounded if
every place must never contain more thank tokens in any reachable marking;safe if the net should be
1-bounded;language if only a Petri net with the same prefix language is searched for; andverbose to
print additional information about the calculated solution. These definitions conform to those of section
A and [5, 7]. Additionally, a distributed Petri net can be requested (see below).

As an example, consider the reachability graphlts shown in figure 1. Let us start by just requesting any
Petri net solution. This is done by running./apt.sh synth none lts.apt. One possible solution is
shown asN3 in the same figure. This net is similar toN1 in the sense that both of them have reachability
graphlts, but some structural differences can be observed. Synthesis is implemented by an algorithm
[1] involving the solution of several systems of linear inequalities. These solutions give rise to a large
(possibly redundant) set of regions. From these regions,APT selects a non-redundant but still sufficiently



Eike Best & Uli Schlachter 59

$ . / a p t . sh s y n t h e s i z e s a fe , ve rbos e l t s . a p t
s u c c e s s : No
s o l v e d E v e n t S t a t e S e p a r a t i o n P r o b l e m s :
Region { i n i t =1 , 0 : a : 0 , 0 : b : 0 , 1 : c : 0 , 0 : d : 1} :

s e p a r a t e s even t c a t s t a t e s [ s4 , s5 , s6 ]
Region { i n i t =0 , 0 : a : 0 , 0 : b : 1 , 1 : c : 0 , 0 : d : 0} :

s e p a r a t e s even t c a t s t a t e s [ s0 , s1 , s4 , s5 ]
[ . . . ]
f a i l e d S t a t e S e p a r a t i o n P r o b l e m s : [ ]
f a i l e d E v e n t S t a t e S e p a r a t i o n P r o b l e m s :{b =[ s4 ]}

Listing 5: Failure when trying to synthesise a safe Petri netfrom lts (s4 refers to a node in figure 1)

[ . . . ] . l a b e l s
a [ l o c a t i o n =”A” ] b [ l o c a t i o n =”B” ] c [ l o c a t i o n =”A” ] d [ l o c a t i o n =”A” ]

[ . . . ]

Listing 6: Adding locations to the reachability graph from listing 4. Only the changes are shown.

large subset, so that the corresponding Petri net also solves lts, provided the latter is solvable at all.
Depending on the way these inequality systems are solved, different non-redundant sets of regions may
be produced. In some releases,APT used (and incorporated)ojAlgo (cf. http://ojalgo.org/). Later,
SMTInterpol [11] was used.N3 is created viaojAlgo; in other releases, a different solution oflts can
and will be obtained. The implementation is exact in the sense that if any solution exists, one will be
found. No further guarantees about the synthesised Petri net can be made.

As mentioned above,APT supports the synthesis of Petri nets with special properties. For example,
suppose that we wish a synthesised net to be plain and pure. Then we can run./apt.sh synth

plain,pure lts.apt. In this case,APT modifies the set of inequalities handed to a solver; the solver
returns a different solution; andAPT’s selection process constructs a set of non-redundant regions corre-
sponding to the netN1 shown in figure 1. The same net is calculated when2-bounded or justplain or
pure is specified, although none of this can be guaranteed by the implementation.

If we try to synthesise a safe Petri net fromlts, we get a failure. The corresponding arguments toAPT and
its output are shown in listing 5. This is also an example for theverbose option. Each calculated region
of the lts corresponds to a place in the Petri net that is beingsynthesised. For example, the first region in
the above output is{ init=1, 0:a:0, 0:b:0, 1:c:0, 0:d:1 }. This corresponds to a place with
initial marking one and from which transitionc consumes a token whiled produces a token each time
it fires. Also, this place disables the transitionc in statess4, s5 ands6, as indicated in the output shown
in listing 5. Five such regions are found, but synthesising still fails, because no region can be calculated
which disables eventb in states4 (cf. figure 1). In the jargon, “b cannot be separated safely ats4”.2

Thesynthesize module also supports the specification of locations for transitions. If two transitions
have different locations, they must have disjoint pre-sets[4]. In both Petri nets which were synthesised
so far, transitionsb andc always had a common place in their pre-sets. Next, we will look for a Petri net

2Note thatAPT’s output is nevertheless correct. Every Petri net solutionmust have some placep which preventsb in the
marking that corresponds tos4. Since the sequencedb is fireable ins4, transitiond must produce enough tokens onp to enable
b. Also ab is fireable, so transitiona produces tokens onp as well. Finally, the firing sequencead is also enabled ins4. By the
above reasoning, botha andd produce at least one token onp, so afterad that place must be marked with at least two token.
Thus, no safe Petri net solution exists.

http://ojalgo.org/
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$ . / a p t . sh w o r ds y n t h e s i z e none a , b , b , a , a , c
s u c c e s s : No
s e p a r a t i o n F a i l u r e P o i n t s : a , b , [ a ] b , a , a , c

Listing 7: Example ofword synthesize in order to synthesisew= abbaac.

whereb’s preset is disjoint from the presets of all other transitions. Listing 6 shows how to specify this
in theAPT file format. If an lts contains locations, thesynthesize module will always honour them. No
special command line option to enable this is required. Whensynthesising a Petri net from the modified
input file, the netN2 shown in figure 1 is generated. It can be seen that the pre-setsof all transitions
are disjoint in that net, even though the input file only required that transitionb has no common place
in its pre-set with the other transitions. In general, specifying different locations for all transitions is
tantamount to requiring an ON output net.

APT also provides word synthesis. For a given wordw, a Petri net with injective labelling is produced such
thatw and its prefixes are the only enabled firing sequences. Given aword w= a1a2 . . .an, this module
internally creates an lts(S,→,T,s0) with n+1 statesS= {s0,s1, . . .sn}, transitionsT = {a1,a2, . . .an},
and transition relation→= {(si−1,ai ,si) | i ∈ {1,2, . . . ,n}}. Listing 7 shows an application. In the first
line, APT is asked to synthesise the wordabbaac(specified as a comma-separated list). The set of
transitions is implicitly assumed to beT = {a,b,c}. No requirements are specified for the synthesised
Petri net, and still, a failure occurs. The output shows thatafter the subwordab, the transitiona is
enabled, even though the input requires the transitionb to be the only enabled transition.3

4.1 Some algorithmic background

By courtesy of the authors of [1], the authors were fortunateto be able to use an advance draft of [1]
when implementing thesynthesize module. Nevertheless, for the purpose of creating solutions with
special properties, it was necessary to extend the theory somewhat. Some of these amendments are
described (very briefly) in the following.APT contains a generic implementation that can handle all of
the supported properties, and for some special cases,APT contains faster algorithms.

Formally, a region of an lts(S,→,T,s0) is a triple(R,B,F) ∈ (S→ N,T → N,T → N) such that for all
s[t〉s′ with s∈ [s0〉, R(s) ≥ B(t) andR(s′) = R(s)−B(t)+F(t). Essentially,B andF assignbackward
and forward weightsto transitionst of an lts, so that these weights can serve as connecting arc weights
betweent and a place of a Petri net, andR assigns a token count in each marking to that place. The
derived functionE : T → Z defined byE(t) = F(t)−B(t) is called theeffectof a transitiont. Because
the effect is zero around cycles of the lts, the functionsB andF necessarily satisfy∑t∈T Ψ(t) ·B(t) =
∑t∈T Ψ(t) ·F(t) for every cyclic Parikh vectorΨ in the lts. A region is calledpure if it satisfies∀t ∈
T : B(t) = 0∨F(t) = 0.

For synthesising a Petri net from an lts, regions solvingseparation problemshave to be found. There are
two kinds of such problems. For each states in which transitiont is not enabled, there is anevent/state
separation problemR(s) < B(t) that corresponds to a place preventing the transitiont. For each pair
of states{s,s′} with s 6= s′ there is astate separation problemR(s) 6= R(s′) so that these states are
represented by different markings. The task at hand is to find, for any given separation problem, a region

3This result is correct sincea cannot be separated at states2. That is, any injectively labelled Petri net in which the word
abbaacand all of its prefixes are fireable, must also have a firing sequenceaba.
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that solves it. A setR of regions is feasible for synthesising a Petri net if each separation problem is
solved by at least one of its regions. In this case the Petri net described byR solves the lts. However,
since special properties might be requested from the calculated Petri net, only regions which do not
contradict these properties should be used. Some algorithms optimise the search for feasible regions but
do not allow special properties to be guaranteed. Others areless efficient in general but more flexible in
terms of the result.APT chooses an appropriate algorithm, which may depend on the result specification,
as follows.

Petri net synthesis with additional properties. APT comes with a general algorithm supporting all
properties. For this, first a region basis is calculated fromthe cycles of the transition system. This basis
has the property that all pure regions are a linear combination of its elements. An inequality system is
used for finding such a combination. For solving a specific separation problem, the initial markingR(s0)
and the backward and forward weightsB(t) andF(t) for every transitiont are variables. With these, we
explicitly require for any states′ ∈ Sand enabled transitiont ∈ T that the region does not blockt. This
can be expressed vias′[t〉 =⇒ R(s′) =R(s0)+E(Ψs′)≥ B(t), whereΨs′ is the Parikh vector of the path
from s0 to s′ in some fixed spanning tree. Then, any solution of the system describes a valid region of the
lts under consideration. For separating statess ands′, an additional inequalityR(s) 6= R(s′) is required.
Since for each place of a bounded Petri net, a complementary place can be added so that the token sum of
the two places stays constant, this inequality can be softened toR(s)<R(s′). For separating transitiont
from states, eitherR(s)−B(t)< 0 orR(s)+E(t)< 0 is used, depending on whether the resulting Petri
net should be impure or pure.

Additional inequalities are added to guarantee the requested properties. When locations are specified,
only transitions on the same location ast may haveB(t)> 0, i.e., may consume token from this place in
the final Petri net. For all other transitionst ′ the equationB(t ′) = 0 makes sure that no conflict between
locations occurs. Calculating output-nonbranching solutions makes use of this by internally assigning
a unique location to each transition. If the user asks for a plain solution, the algorithm addsB(t) ≤ 1
andF(t) ≤ 1 for every transitiont ∈ T to the inequality system. T-nets are found by requiring a plain
solution where additionally the sum of all forward weights is at most one, 1≥ ∑t∈T F(t), and the same
for backward weights. If a conflict-free net should be synthesised, plainness is additionally required
and the implementation first searches an output-nonbranching region and, if this fails, the corresponding
inequalities are replaced withE(t) ≥ 0 for all transitionst. This ensures that the preset contains the
postset of the place that corresponds to the calculated region. Finally, calculating ak-bounded Petri net
requires adding an inequalityk ≥ R(s) for each states. Because this is, so far, the only property that
requires adding an inequality for each state, it is the most expensive one.

Speeding up general Petri net synthesis.If the synthesize module is invoked just with result spec-
ification none, and no locations are specified, synthesis can be made more efficient. The approach for
event/state separation is to calculate a region whereR(s) is smaller thanR(s′) for any states′ in which
transition t is enabled. Then bothB(t) andF(t) can be increased by the same amount (possibly in-
troducing side conditions) so that the transition becomes separated. To find such a region, the system
∀s′ ∈ S: s′[t〉 =⇒ E(Ψs−Ψs′) < 0 has to be solved, where the weights of the region basis are the un-
knowns (that is, a much smaller system has to be solved). For state separation, the regions from the
region basis can be tested and used. This is because if the regions from the basis do not separatesands′,
then no linear combination of the basis elements will either.4

Pure and pure&plain Petri net synthesis. Suppose that the result request ispure, or pure,plain

4Note: This algorithm and the previous one (without additional properties beside pure) are described in detail in [1].



62 Analysis of Petri Nets and Transition Systems

(read conjunctively), and that again, no locations are supported. For solving state separation, if only a
pure solution is requested, the previous approach can be used, because all elements of the region basis
calculated there are pure regions. For separating transition t from states, by definition, a region satisfying
R(s) < B(t) is needed. SinceR can be calculated based on the valueR(s0) for the initial state and the
Parikh vectorΨs, this is equivalent toR(s0)+E(Ψs)−B(t)< 0. After more simplifications, we see that
we have to solve∀s′ ∈ S: E(Ψs−Ψs′ + 1t) < 0 where1t is thet-unit vector. As before, the resulting
region has to be a linear combination of the region basis. If aplain Petri net should be calculated,
additional constraints are added that ensure that−1≤ E(t) ≤ 1 for all transitionst i.e., that the forward
and backward weights are either one or zero.

Synthesising marked graph Petri nets.The reachability graphs of marked graphs are characterisedand
a special synthesis algorithm is presented in [5]. This algorithm calculates a Petri net solution directly,
based on structural properties of the lts, and is implemented in APT. The details will not be repeated in
the current paper. Suffice it to say thatAPT’s synthesize module automatically checks the required
structural preconditions on the lts and uses the improved algorithm if it is applicable. This algorithm
supports any combination of the propertiespure, plain, andt-net, and any location specification.

Synthesis up to language equivalence.If a Petri net with the same prefix language as the input lts is
needed, a so-called limited unfolding of the lts [1] is calculated. This unfolding is synthesised as usual,
but without enforcing state separation.

Heuristically minimizing the number of places. A feasible set of regions could stay feasible if some
regions are removed from it. This can occur because regions calculated for a specific separation problem
could additionally solve other separation problems. Thus,it makes sense to remove unnecessary regions
from the set of calculated regions. For this, all event/state separation and state separation problems are
evaluated again in the regions found. If such a problem is solved by just a single region, that region cannot
be removed from the feasible set of regions. This region is called a required region. Any separation
problem which is solved by a required regions can be discarded. For the remaining problems which are
solved by multiple non-required regions, any of these regions could be picked arbitrarily. In practice this
heuristic produces Petri nets with an acceptably low numberof places.5

4.2 Benchmarks

The performance ofAPT6 for Petri net synthesis was compared withsynet 2.0b [9],petrify 4.2 [12]
andGENET [10] on a system running Fedora 21 with an IntelR© CoreTM i7-4790 CPU clocked at 3.6
GHz and with 32 GiB of memory. Thesynet tool can synthesise distributable bounded Petri nets.
For petrify, the user can choose between some properties, for example pure, free choice and unique
choice. However,petrify only creates safe Petri nets and employs transition splitting to ensure that a
solution exists. This means that the resolution Petri nets might not be injectively labelled. WithGENET,
the result will only be bisimilar to the input. Also, this tool requiresa priori knowledge about the
maximum number of token on any place, and it resorts to transition splitting to produce solutions. Given
these differences, it can be expected thatpetrify andGENET perform better on safe nets and worse on
transition systems which have no safe solution.

Three ofAPT’s Petri nets generators were used. Thebitnet generator module creates a net wheren

5This heuristic introduces nondeterminism. Alternatively, some total ordering could be imposed on regions to break ties.
6The latest development version was used. It can be identifiedby git commit id14651f7280db255d1539 in [8].
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bit net synthesis philosophers’ net synthesis
n APT APTp synet petrify GENET APT APTp synet petrify GENET
8 0.60 0.86 138.49 0.13 0.05 0.55 0.49 0.06 0.01 0.01

10 1.56 2.32 — 1.25 0.31 0.50 0.60 10.08 0.05 0.03
12 5.71 6.31 — 17.73 2.28 0.79 1.05 — 0.25 0.09
14 24.69 30.48 — 403.67 16.10 1.72 2.42 — 0.91 0.33
16 183.76 212.23 crash — 132.13 4.49 5.21 — 4.11 1.31
18 — — crash OOM — 9.17 13.13 — 21.84 4.83
20 26.76 41.96 — 171.10 19.88
22 98.57 146.42 crash — 123.05

Table 1: Time in seconds for synthesising a Petri net. APTp meansAPT with the pure parameter.
Dashes indicate that the 10 minutes time limit was exceeded.For large inputs,synet crashed with a
stack overflow andpetrify exited with a memory allocation error.

bits can be flipped between two states, creating 2n states in total. Thebistate philnet generator

model Dijkstra’s philosophers problem [13] forn philosophers such that each philosopher grabs both
forks in a single step and puts them back simultaneously as well. Thecycle generator creates a cycle
consisting ofn transitions andn places wherek tokens are moved from one place to the next in a cyclic
way. All these generators produce plain and pure nets. The first two generators and cycles withk = 1
are additionally safe. In this case, all contesting tools can correctly synthesise nets from the reachability
graph of the generated nets, althoughGENETmight produce a net which only exhibits bisimilar behaviour.
For k> 1, transition splitting will be done bypetrify andGENET.

petrify was used with argument-dead, so that it does not complain about deadlocks.APT was mea-
sured for general synthesis and for pure synthesis. In contrast topetrify, which produced similar run
times in these two cases, this makes a difference forAPT. synet was only benchmarked with parameter
-r, since it performed consistently worse without this argument. GENETwas used without any arguments.
Measurements were made by generating the reachability graph of the net that the Petri net generator pro-
duced, converting the net into the input format of each tool with APT and then measuring the wall clock
time needed by each tool to synthesise a Petri net from this graph. The time for synthesis was limited to
10 minutes via theulimit -t unix command. For each input, three measurements were taken, out of
which the minimal values are depicted in Tables 1 to 3.

The result for the class of bit nets are shown in the left part of table 1. It can be seen that with 18 bits,
none of the tools managed to find a solution within the 10 minutes time limit. This table also shows that
APT has a relatively high start-up cost, causing it to require more time for small inputs. Also,APT only
slows down moderately if a pure solution is requested. Surprisingly, synet crashes with a stack overflow
error if the input becomes too large andpetrify runs out of memory for the reachability graph of a 17
bit (not shown) or 18 bit net. Its peak memory usage is about 1 GiB, so the system’s physical memory is
not exhausted. In this benchmark,GENET is a bit faster thanAPT.

Table 1 also contains the results for the philosophers’ netsin its right part. HereAPT outperformsGENET,
but only for the largest inputs. Up ton= 20,GENET is consistently faster. When requesting a pure solu-
tion, APT becomes slower thanGENET searching for any solution at all. When compared to topetrify,
similar behaviour can be seen, although here the crossing point is atn= 17. In this experimentAPT is
still faster thanGENET if a pure solution is requested.
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n APT APTp synet petrify GENET
100 0.44 0.45 1.12 0.02 0.28
180 1.58 1.58 8.83 0.05 1.81
260 5.44 5.45 35.99 0.10 6.34
340 16.45 16.05 102.52 0.15 17.45
420 40.55 40.90 234.59 0.23 32.99
500 83.15 83.53 475.50 0.32 62.39

Table 2: Cycle synthesis run times with cycles of sizen andk= 1 token.

The times for the cycle nets with a single token are shown in table 2. Compared to the other examples,
these nets show no concurrent behaviour and are about as large as their reachability graphs. In this
benchmark,APT uses its implementation of the marked graph synthesis from [5]. Still, petrify, for
reasons not known to the authors, almost needs no time at all.

sizen varying,k= 5 tokens fixed sizen= 5 fixes,k tokens varying
n APT APTp synet petrify GENET k APT APTp synet petrify GENET
5 0.19 0.19 0.00 10.08 136.52 5 0.19 0.19 0.00 10.08 136.52

10 0.49 0.51 — — 468.38 10 0.37 0.30 0.16 — 292.74
15 1.35 1.39 — — — 15 0.61 0.72 3.19 — —
20 4.83 4.58 — — — 20 2.00 1.14 16.47 — —

25 2.42 2.09 93.22 — —
30 4.16 3.81 190.81 — —

Table 3: Cycle synthesis run times with cycles of sizen andk tokens. Left part varies size of cycle, right
part varies number of token.

When synthesising cycles withk = 5 tokens, the cycles have to be a lot smaller. The corresponding
result are shown in the left part of table 3, and it can be seen that the tools that use transition splitting
need much longer. The debug output suggests that the splitting leads to an exponential increase in the
state space. Also,synet only manages to synthesise the smallest cycle size within the time limit. In
contrast to this,APT produces results quickly, because in this case, the marked graph synthesis algorithm
performs optimally. The results for cycles of sizen= 5 with increasing numbers of tokens are similar
and can be found in the right part of the same table. The main difference is thatsynet performs a lot
better when the number of tokens is increased instead of enlarging the size of the cycle.

An experiment was done by hand for cycles of sizen= 3 with k= 100 tokens. In this setup,APT needed
0.65 seconds to find a solution,synet finished in 0.98 seconds andAPT with parameterpure in 1.03
seconds.GENET ran out of memory after allocating 4 GiB in 422 seconds. After40 minutes without
any result,petrify was aborted. In this special case,GENET was also measured with parameter-k

100, telling it to look for 100-bounded solutions, and found onein 7.67 seconds. When the search with
bounds 1 to 99 was skipped via parameters-k 100 -min 100, GENET needed only 2.20 seconds. This
confirms previous intuitions that transition splitting maylead to bad run times (and, of course, to non-
injectively labelled nets), but it also shows thatGENET is sped up ifa priori knowledge is available. Still,
even for the safe case,APT has comparable results and has been generalised (likesynet) to unsafe nets.



Eike Best & Uli Schlachter 65

5 Concluding remarks

APT’s algorithms are packaged in a single, portable archive called apt.jar. The idea is that a user can
copy this file and run it smoothly, using his or her favourite text editors, in a local Java 7 environment, or
alternatively, grab the entireapt directory from the repository at [8] and build a local copy ofapt.jar

usingANT. APT’s performance in its other modules (for example,coverability) was tested against
other tools (for example,LoLA 2.0 [16]) and seems to perform worse, but not hopelessly so.7 In general,
the authors hope that all ofAPT’s modules can be used sensibly in a classroom environment, say for a
course on place/transition Petri nets and finite transitionsystems. They also believe thatAPT’s more
sophisticated algorithms can, in addition, be helpful to researchers in the corresponding areas.

In future, we wish to explore whether code written, say, inC++ could be incorporated intoAPT more
tightly than just by means of exchanging text files for nets and transition systems. Also, graphical exten-
sions will be explored cautiously (cf. [14]). However, before imposing a more powerful user interface
ontoAPT, we would like to explore intelligent – possibly interactive – extensions. For instance, consider
the algorithm testing the strong small cycle property. If noprior assumptions hold, it is nontrivial and, in
general, rather time-consuming. However, suppose that thepreconditions of the result mentioned at the
end of section A have already been tested and are known to holdfor the given lts. Then we know that the
weak small cycle property also holds, and testing the strongone is much easier. (The same principle –
using theory to algorithmic advantage – is behindAPT’s fast marked graph synthesis.) It is also planned
to extend word synthesis to the prefix languages of regular languages. This is pretty straightforward,
since it is well-known how to construct an lts from a regular expression. Other extensions could consist
of parallelising some of the algorithms. Dennis Borde, one of the APT students, already succeeded in
parallelising part of the coverability graph generation algorithm by exploiting the power of a graphics
card processor running concurrently with the main processor.

Acknowledgements:The authors would like to thank the reviewers for helpful comments.
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A Labelled transition systems and Petri nets

An lts (labelled transition system with initial state) is a tuple(S,→,T,s0), whereS is a set ofstates; T is
a set oflabelswith S∩T = /0; →⊆ (S×T ×S) is thetransition relation; ands0 ∈ S is aninitial state. A
labelt is enabledin a states, denoted bys[t〉, if there is some states′ such that(s, t,s′) ∈→. s[t〉s′ (s[τ〉s′)
means thats′ is reachablefrom s through the execution oft (resp., ofτ ∈ T∗). By [s〉, we denote the set
of states reachable froms. Forσ ∈ T∗, theParikh vectorΨ(σ) is aT-vector whereΨ(σ)(t) denotes the
number of occurrences oft in σ . s[σ〉s′ is called acycleif s= s′, andΨ(σ) is calledcyclic in this case.
A nontrivial cycles[σ〉s around a reachable states∈ [s0〉 is calledsmall if there is no nontrivial cycle
s′[σ ′〉s′ with s′ ∈ [s0〉 andΨ(σ ′)� Ψ(σ).

Two lts (S1,→1,T,s01) and (S2,→2,T,s02) over the same set of labelsT are language-equivalentif
their initially enabled sequences coincide, i.e., if∀σ ∈ T∗ : s01[σ〉 ⇐⇒ s02[σ〉, isomorphicif there is a
bijectionζ : S1 → S2 with ζ (s01) = s02 and(s, t,s′) ∈→1 ⇐⇒ (ζ (s), t,ζ (s′)) ∈→2, for all s,s′ ∈ S1; and
bisimilar if there is a relationβ ⊆S1×S2 with (s01,s02)∈ β and whenever(r1, r2)∈ β and(r1, t,s1)∈→1,
then∃s2 ∈ S2 : (r2, t,s2) ∈→2 (andvice versa).

A labelled transition system(S,→,T,s0) is calledfinite if S andT (hence also→) are finite sets;de-
terministic if for any reachable states and labela, s[a〉s′ ands[a〉s′′ imply s′ = s′′; totally reachableif
S= [s0〉 and∀t ∈ T∃s∈ [s0〉 : s[t〉; reversibleif ∀s∈ [s0〉 : s0 ∈ [s〉; persistentif for all reachable statess
and labelst,u, if s[t〉 ands[u〉 with t 6= u, then there is some stater ∈ Ssuch that boths[tu〉r ands[ut〉r.
It has theweak small cycle propertyif there is a finite set of mutually transition-disjoint Parikh vectors
such that every small cycle has a Parikh vector in this set, and the(strong) small cycle propertyif every
small cycle has the same Parikh vector.

A (finite, initially marked, place-transition, arc-weighted) Petri net is a tuple(P,T,F,M0) such thatP
is a finite set ofplaces, T is a finite set oftransitions, with P∩T = /0, F is a flow function F : ((P×
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T)∪ (T ×P))→ N, M0 is theinitial marking, where amarking is a mappingM : P→ N, indicating the
number oftokensin each place. A transitiont ∈ T is enabled bya markingM, denoted byM[t〉, if for all
placesp∈ P, M(p)≥ F(p, t). If t is enabled atM, thent canoccur(or fire) in M, leading to the marking
M′ defined byM′(p) = M(p)−F(p, t)+F(t, p) (notation:M[t〉M′). Thereachability graph of N, with
initial marking M0, is the labelled transition system with the set of vertices[M0〉 (i.e., the states which
are reachable fromM0) and set of edges{(M, t,M′) | M,M′ ∈ [M0〉∧M[t〉M′}. If an ltsTSis isomorphic
to the reachability graph of a Petri netN, then we will also say thatN solves TS. If k is a natural number
andM a marking, thenk·M denotes the marking with(k·M)(p) = k·M(p) for every placep.

For a placep of a Petri netN = (P,T,F,M0), let •p = {t ∈ T | F(t, p) > 0} its pre-places, andp• =
{t ∈ T | F(p, t) > 0} its post-places.N is called(strongly/weakly) connectedif it is strongly/weakly
connected as a graph;plain if cod(F) ⊆ {0,1}; pureor side-condition freeif p• ∩ •p= /0 for all places
p∈P; ON (place-output-nonbranching) if |p•| ≤ 1 for all placesp∈P; CF (conflict-free) if it is plain and
∀p∈ P: |p•| > 1⇒ p• ⊆ •p; BCF (behaviourally conflict-free) if it is plain and for any two transitions
t, t ′ ∈ T with t 6= t ′ and for everyM ∈ [M0〉, if M[t〉 andM[t ′〉 then•t∩ •t ′ = /0; BiCF (binary-conflict-free)
if it is plain and for any two transitionst, t ′ ∈ T with t 6= t ′ and for everyM ∈ [M0〉, if M[t〉 andM[t ′〉
then∀p∈ P: M(p) ≥ F(p, t)+F(p, t ′); a marked graph(T-net) if it is plain and |p•| = 1 and|•p| = 1
(resp.,|p•| ≤ 1 and|•p| ≤ 1) for all placesp∈P; weakly liveif ∀t ∈ T∃M ∈ [M0〉 : M[t〉 (i.e., there are no
unfireable transitions);k-boundedfor some fixedk∈N, if ∀M ∈ [M0〉∀p∈P: M(p)≤ k (i.e., the number
of tokens on any place never exceedsk); boundedif ∃k∈N : N is k-bounded;persistent(reversible) if so
is its reachability graph. For a numberk∈ N, a net with markingk·M is calledstrongly separable from
k·M if every firing sequence starting atk·M belongs to the shuffle product ofk firing sequences starting
at M, andweakly separable from k·M if the Parikh vector of every firing sequence starting atk·M is the
sum of the Parikh vectors ofk firing sequences starting atM.

A labelled Petri nethas, in addition, a labelling functionh: T → Σ whereΣ is some set of transition
labels. This induces a double labelling of the arcs of corresponding reachability graph: first, with transi-
tions ofT, and then, with labels fromΣ. In case a net is labelled, the definitions of language-equivalence,
isomorphism and bisimulation are the same as previously, except that they are taken with respect toΣ. If
a net is unlabelled,Σ = T is assumed implicitly (and explicitly inAPT).

The interest of the small cycle property arises from the following result [2]: The reachability graph
of a bounded, weakly live, reversible, persistent Petri netN is finite and satisfies the weak small cycle
property. If one requires connectedness and replaces “persistent” by“ON”, then the strong small cycle
property can be deduced. This suggests a close relationshipbetween persistent lts having the small
cycle property and ON Petri nets, motivating a question which was raised in [4]:If an lts is Petri net
solvable, reversible, persistent, and has the small cycle property, does there always exist an ON Petri
net generating it?The answer is negative, even if the critical Parikh vector is1 and further conditions
are imposed [5]. The search for a counterexample turned out to be tedious, and was, in fact, one of
the reasons for initiatingAPT. Another reason was the desire for tool support in examiningfurther open
questions, such as the following one from [3]:Is the reachability graph of a plain, pure, bounded,
reversible, persistent net with an initial marking K·M with K ≥ 2 always isomorphic to the reachability
graph of some marked graph?
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