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Psi-calculi are a parametric framework for nominal calculi, where standard calculi are found as in-
stances, like the pi-calculus, or the cryptographic spi-calculus and applied-pi. Psi-calculi have an in-
terleaving operational semantics, with a strong foundation on the theory of nominal sets and process
algebras. Much of the expressive power of psi-calculi comesfrom their logical part, i.e., assertions,
conditions, and entailment, which are left quite open thus accommodating a wide range of logics. We
are interested in how this expressiveness can deal with event-based models of concurrency. We thus
take the popular prime event structures model and give an encoding into an instance of psi-calculi.
We also take the recent and expressive model of Dynamic Condition Response Graphs (in which
event structures are strictly included) and give an encoding into another corresponding instance of
psi-calculi. The encodings that we achieve look rather natural and intuitive. Additional results about
these encodings give us more confidence in their correctness.

1 Introduction

Psi-calculi [3] are a recent framework where various existing calculi can be found as instances. In
particular, the spi- and applied-pi calculi [2, 1] are two instances of interest for security. Psi-calculi can
also accommodate probabilistic models, by going through CC-pi [4, 6] which has already been treated as
a corresponding psi-calculus instance. The theory of psi-calculi is based on nominal data structures [19].
Typed psi-calculus exists [13] as well as related instantiations as distributed pi-calculus [14]. Psi-calculi
can be seen as a generalization of pi-calculus with two main features:(i) nominal data structures (i.e.,
general, possibly open, terms) in place of communication channels and also in place of the communicated
data; and(ii) a rather open logic for capturing dependencies (i.e., through conditions and entailment) on
the environment (i.e., assertions) of the processes.

The semantics of psi-calculi is given through structural operational rules and adopts an interleaving
approach to concurrency, in the usual style of process algebras. On the other hand, event-based models of
concurrency take a non-interleaving view. These usually form domains and are used to give denotational
semantics, as e.g., done by Winskel in [24, 26]. Many times non-interleaving models of concurrency
can actually distinguish between interleaving and, so called, “true” concurrency, as is the case with
higher dimensional automata [20, 22, 7], configuration structures [9], or Chu spaces [10, 21]. The recent
Dynamic Condition Response graphs (abbreviated DCR-graphs or DCRs) [11] is a model of concurrency
with high expressive power which strictly extends event structures by refining the notions of dependent
and conflicting events, and including the notion of response. Due to their graphical nature, DCRs have
been successfully used in industry to model business processes [23].
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In this paper we are interested in how psi-calculi could accommodate the event structures model of
concurrency [17, 25], with a final goal of capturing the DCRs model [11]. Event names in event-based
models of concurrency are unique, and can thus be thought of nominals, whereas the execution of an
event can be seen as a communication or action of some sort. The dependencies between events that an
event structure defines can be captured with rather simple assertions on nominal data structures, whereas
the notion of computation is captured through reduction steps between psi-processes. To be confident
on the encodings, we like to see a correlation between the notions of concurrency from the two encoded
models and the interleaving diamonds from the psi-calculusbehaviour.

These are the basic ideas we follow in this work to give encodings of event structures and DCRs into
corresponding instances of psi-calculus. After a couple ofresults meant to explain better the correlation
between the encoding and the event structure model, we give aresult that shows that the concurrency
embodied by the event structure is captured in the encoding psi-process through the standard interleaving
diamond. For the event structures encoding we also give a result that identifies the syntactic shape of
those psi-processes which correspond exactly to event structures. Another feature of true concurrency
models is that they are well behaved wrt. action refinement [8]. For this we give a result showing that
action refinement is preserved by our translation; under a properly defined refining operation on psi-
processes, which we define similarly to the refinement operation on the event structures.

2 Background

2.1 On psi-calculi

Psi-calculus[3] has been developed as a framework for defining nominal process calculi, like the many
variants of the pi-calculus [16]. The psi-calculi framework is based on nominal datatypes, [3, Sec.2.1]
giving an introduction to nominal sets used in psi-calculi.We will not explain much the nominal
datatypes in this paper, but refer the reader to the book [19]which contains a thorough treatment of
both the theory behind nominal sets as well as various applications (e.g., see [19, Ch.8] for nominal
algebraic datatypes). We expect, though, some familiaritywith notions of algebraic datatypes and term
algebras.

The psi-calculi framework is parametric; instantiating the parameters accordingly, one obtains an
instance of psi-calculi, like the pi-calculus, or the cryptographic spi-calculus.These parameters are:

T terms (data/channels)
C conditions
A assertions

which are nominal datatypes not necessarily disjoint; together with the following operators:
.
↔ : T ×T → C channel equality
⊗ : A ×A → A composition of assertions
1 ∈ A minimal assertion
⊢ ⊆ A ×C entailment relation

Intuitively, terms can be seen as generated from a signature, as in term algebras; the conditions and
assertions can be like in first-order logic; the minimal assertion being top/true, entailment the one from
first-order logic, and composition taken as conjunction. Itis helpful to think of assertions and conditions
as logical formulas, and the entailment relation as an entailment in logic; but allow the intuition to think
of logics abstractly, not just FOL, so that assertions and conditions are used to express any logical state-
ments, where the entailment defines when assertions entail conditions (do not restrict to only thinking of
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truth tables; e.g., in our encodings we will use an extended logic for sets, with membership, pairs, etc.).
We will shortly exemplify how pi-calculus is instantiated in this framework. The operators are usually
written infix, i.e.:M

.
↔ N, Ψ⊗Ψ′, Ψ ⊢ ϕ .

The above operators need to obey some natural requirements,when instantiated. Channel equality
must be symmetric and transitive. The composition of assertions must be associative, commutative, and
have1 as unit; moreover, composition must preserve equality of assertions, where two assertions are
considered equal iff they entail the same conditions (i.e.,for Ψ,Ψ′ ∈ A we define the equalityΨ ≃ Ψ′ iff
∀ϕ ∈ C : Ψ ⊢ ϕ ⇔ Ψ′ ⊢ ϕ).

The intuition is that assertions will be used to assert aboutthe environment of the processes. Con-
ditions will be used as guards for guarded (non-deterministic) choices, and are to be tested against the
assertion of the environment for entailment. Terms are usedto represent complex data communicated
through channels, but will also be used to define the channelsthemselves, which can thus be more than
just mere names, as in pi-calculus. The composition of assertions should capture the notion of combining
assumptions from several components of the environment.

The syntax for building psi-process is the following (psi-processes are denoted by theP,Q, . . . ; terms
from T by M,N, . . . ):

0 Empty/trivial process
M〈N〉.P Output
M〈(λ x̃)N〉.P Input
caseϕ1 : P1, . . . ,ϕn : Pn Conditional (non-deterministic) choice
(νa)P Restriction of namea inside processesP
P|Q Parallel composition
!P Replication
(|Ψ|) Assertions

The input and output processes are as in pi-calculus only that the channel objectsM can be arbitrary
terms. In the input process the object(λ x̃)N is a pattern with the variables ˜x bound inN as well as
in the continuation processP. Intuitively, any term message received onM must match the patternN
for some substitution of the variables ˜x. The same substitution is used to substitute these variables in
P after a successful match. The traditional pi-calculus input a(x).P would be modelled in psi-calculi as
a〈(λx)x〉.P, where the simple namesa are the only terms allowed. Restriction, parallel, and replication
are the standard constructs of pi-calculus.

The case process behaves like one of thePi for which the conditionϕi is entailed by the current
environment assumption, as defined by the notion offramewhich we present later. This notion of frame
is familiar from the applied pi-calculus, where it was introduced with the purpose of capturing static
information about the environment (or seen in reverse, the frame is the static information that the current
process exposes to the environment). A particular use of case is ascaseϕ : P which can be read as
if ϕ then P. Another special usage of case is ascase⊤ : P1,⊤ : P2 , whereΨ ⊢ ⊤ is a special condition
that is entailed by any assertion, likea

.
↔ a; this use is mimicking the pi-calculus non-deterministic

choiceP1+P2. Infinite summation is sometimes found in process algebras,e.g., in Milner’s SCCS [15].
In the case of psi-calculi an infinite case construct can be used ascaseϕ̃i : P̃i where we use infinite
lists to represent the respective condition/process pairs. There is no change to the semantics. The same
semantics works for infinite parallel processes as well; though the replication is the preferred way to
obtain infinite parallel components.

Assertions(|Ψ|) can float freely in a process (i.e., be put in parallel) describing assumptions about
the environment. Otherwise, assertions can appear at the end of a sequence of input/output actions,
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i.e., these are the guarantees that a process provides afterit makes an action (on the same lines as in
assume/guarantee reasoning about programs). Assertion processes are somehow similar to the active
substitutions of the applied pi-calculus, only that assertions do not have computational behaviour, but
only restrict the behaviour of the other constructs by providing their assumptions about the environment.

Example 2.1 (pi-calculus as an instance)To obtain pi-calculus [16] as an instance of psi-calculus use
the following, built over a single set of namesN :

T △
= N

C △
= {a= b | a,b∈ T}

A △
= {1}

.
↔

△
= =

⊢
△
= {(1,a= a) | a∈ T}

with the trivial definition for the composition operation. The only terms are the channel names a∈ N ,
and there is no other assertion than the unit. The conditionsare equality tests for channel names, where
the only successful tests are those where the names are equal. Hence, channel comparison is defined as
just name equality.

Psi-calculus is given an operational semantics in [3] usinglabelled transition systems, where the
nodes are the process terms and the transitions represent one reduction step, labelled with the action that
the process executes. The actions, generally denoted byα ,β , represent respectively the input and output
constructions, as well asτ the internal synchronization/communication action:

M〈(ν ã)N〉 | M〈N〉 | τ
Transitions are done in a context, which is represented as anassertionΨ, capturing assumptions

about the environment:
Ψ ⊲ P

α
−→ P′

Intuitively, the above transition could be read as: The processP can perform an actionα in an environ-
ment respecting the assumptions inΨ, after which it would behave like the processP′.

The context assertion is obtained using the notion offrame which essentially collects (using the
composition operation) the outer-most assertions of a process. The frameF (P) is defined inductively
on the structure of the process as:

F ((|Ψ|)) = Ψ
F (P|Q) = F (P)⊗F (Q)
F ((νa)P) = (νa)F (P)
F (!P) = F (caseϕ̃ : P̃) = F (M〈N〉.P) = F (M〈(λ x̃)N〉.P) = 1

Any assertion that occurs under an action prefix or a condition is not visible in the frame.
We give only an exemplification of the transition rules for psi-calculus, and refer to [3, Table 1] for the

full definition. The (CASE) rule shows how the conditions are tested against the context assertions. The
communication rule (COM) shows how the environment processes executing in parallelcontribute their
top-most assertions to make the new context assertion for the input-output action of the other parallel
processes. In the (COM) rule the assertionsΨP and ΨQ come from the frames ofF (P) = (ν b̃P)ΨP

respectivelyF (Q) = (ν b̃Q)ΨQ. In (PAR) bn(α)#Q says that the bound names ofα are fresh inQ.

Ψ ⊢ M
.
↔ K (INN)

Ψ ⊲ M〈(λ ỹ)N〉.P
KN[ỹ:=L̃]
−−−−−→ P[ỹ := L̃]

Ψ ⊢ M
.
↔ K (OUT)

Ψ ⊲ M〈N〉.P
KN
−−→ P
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Ψ ⊲ Pi
α
−→ P′ Ψ ⊢ ϕi (CASE)

Ψ ⊲ caseϕ̃ : P̃
α
−→ P′

Ψ⊗ΨQ ⊲ P
α
−→ P′ bn(α)#Q

(PAR)
Ψ ⊲ P|Q

α
−→ P′ |Q

Ψ ⊲ P|!P
α
−→ P′

(REP)
Ψ ⊲!P

α
−→ P′

ΨQ⊗Ψ ⊲ P
M(ν ã)N
−−−−→ P′ ΨP⊗Ψ ⊲ Q

KN
−−→ Q′ ΨQ⊗ΨP⊗Ψ ⊢ M

.
↔ K

(COM)
Ψ ⊲ P|Q

τ
−→ (ν ã)(P′ |Q′)

There is no transition rule for the assertion process; this is only used in constructing frames. Once
an assertion process is reached, the computation stops, andthis assertion remains floating among the
other parallel processes and will be composed part of the frames, when necessary, like in the case of the
communication rule. The empty process has the same behaviour as, and thus can be modelled by, the
trivial assertion(|1|).

2.2 On event structures

For event structures we try to follow the standard notation and terminology from [26, sec.8].

Definition 2.2 (prime event structures) A labelled prime event structureover alphabet Act is a tuple
E = (E,≤, ♯, l) where E is a possibly infinite set of events,≤ ⊆ E×E is a partial order (thecausality
relation) satisfying

1. the principle of finite causes, i.e.: ∀e∈ E : {d ∈ E | d ≤ e} is finite,

and♯⊆ E×E is an irreflexive, symmetric binary relation (theconflict relation) satisfying

2. the principle of conflict heredity, i.e.,∀d,e, f ∈ E : d ≤ e∧d♯ f ⇒ e♯ f .

and l : E → Act is the labelling function. Denote byE the set of all prime event structures.

Intuitively, a prime event structure models a concurrent system by takingd ≤ e to mean that eventd
is a prerequisite of evente, i.e., eventecannot happen before eventd has been done. A conflictd♯esays
that eventsd andecannot both happen in the same run.

Definition 2.3 (concurrency) Casual independence (concurrency)between events is defined in terms of
the above two relations as

d||e
△
= ¬(d ≤ e∨e≤ d∨d♯e)

capturing the intuition that two events are concurrent whenthere is no causal dependence between the
two and they are not in conflict.

The behaviour of an event structure is described by subsets of events that happened in some (partial)
run. This is called aconfigurationof the event structure, andstepscan be defined between configurations.

Definition 2.4 (configurations) Define aconfigurationof an event structureE = (E,≤, ♯) to be a finite
subset of events C⊆ E that respects:

1. conflict-freeness: ∀e,e′ ∈C : ¬(e♯e′) and,

2. downwards-closure: ∀e,e′ ∈ E : e′ ≤ e∧e∈C⇒ e′ ∈C.

We denote the set of all configurations of some event structure byCE .

Note in particular that /0 is a configuration (i.e., the root configuration) and that any set⌈e⌉
△
= {e′ ∈

E | e′ ≤ e} is also a configuration determined by the single evente. Events determine steps between
configurations in the sense thatC

e
−→C′ wheneverC,C′ are configurations,e 6∈C, andC′ =C∪{e}.
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Remark 2.5 It is known (see e.g., [26, Prop.18]) that prime event structures are fully determined by
their sets of configurations, i.e., the relations of causality, conflict, and concurrency can be recovered
only from the set of configurationsCE as follows:

1. e≤ e′ iff ∀C∈ CE : e′ ∈C ⇒ e∈C;

2. e♯e′ iff ∀C∈ CE : ¬(e∈C∧e′ ∈C);

3. e||e′ iff ∃C,C′ ∈ CE : e∈C∧e′ 6∈C∧e′ ∈C′∧e 6∈C′∧C∪C′ ∈ CE .

For some evente we denote by≤e= {e′ ∈ E | e′ ≤ e} the set of all events which are conditions of
e (which is the same as the notation⌈e⌉ from [26], but we prefer to use the above so to be more in sync
with similar notations we use in this paper for similar sets defined for DCRs too), and♯e= {e′ ∈E | e′♯e}
those events in conflict withe.

2.3 On DCR-graphs

Dynamic Condition Response graphs (DCR-graphs) is a recentmodel of concurrency, which generalizes
event structures by taking into account progress in terms ofdemanded responses, while giving a finite
model of possibly infinite behaviour. Using a graphic notation along with the formal, it is already used
in industry for workflow management. We follow the notationsfor DCRs from [11, 12].

Definition 2.6 (DCR Graphs) We define aDynamic Condition Response Graphto be a tuple G=
(E,M,→•, •→,→⋄,→+,→%,L, l) where

1. E is a set of events,

2. M∈ 2E ×2E ×2E is the initial marking,

3. →•, •→,→⋄,→+,→%⊆E×E are respectively called the condition, response, milestone, include,
and exclude relations,

4. l : E → L is a labelling function mapping events to labels from L.

For any relation→∈ {→•, •→,→⋄,→+,→%}, we use the notatione→ for the set{e′ ∈ E | e→ e′}
and→ e for the set{e′ ∈ E | e′ → e} of eventse′ ∈ E which are in the respective relation withe.

A markingM = (Ex,Re, In) represents a state of the DCR. One should understandEx as the set of
executedevents,Rethe set ofresponseevents that must happen sometime in the future, andIn the set of
includedevents, i.e., those thatmayhappen in the next steps. The five relations impose constraints on
the events and dictate the dynamic inclusion and exclusion of events.

For a DCR graph(E,M,→•, •→,→⋄,→+,→%) and a markingM = (Ex,Re, In), we say that anevent
e∈ E is enabled in M, written M ⊢ e, iff e∈ In∧ (In∩ →•e) ⊆ Ex∧ (In∩→⋄e) ⊆ E \Re. Intuitively,
an event can only happen if it is included, all its included preconditions have been executed, and none of
the included events that are milestones for it are scheduledresponses. The behaviour of a DCR is given
through transitions between markings done by executing enabled events. The result of the execution of

the evente in markingM = (Ex,Re, In) is defined as the new markingM′ de f
= (Ex∪{e},(Re\{e})∪e•→,

(In\e→%)∪e→+). We denote a transition asM
e
−→ M′. An event can happen an arbitrary number of

times as long as it is enabled. Events that should happen onlyonce must explicitly be excluded.
An event structure(E,≤, ♯, l) is a special case of a DCR graph(E,M,≤, /0, /0, /0, ♯∪ id) where each

event is excluding itself, i.e., cannot be done multiple times, and the conflict relation is modelled by
mutual exclusion. The response, include, and milestone relations are empty, and initially all events are
included, as the markingM = ( /0, /0,E), i.e., all events can be executed; this comes from [11, Prop.1&3].
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Essentially, the conflict relation excludes all related events; and the causality relation is the condition
relation of the DCR. The rest of the DCR relations are just additions wrt. the event structures model,
therefore should be empty. Moreover, the initial marking has no executed events and no responses, but
all events are initially included. Opposed to the behaviourof event structures, in full DCRs we also
have that the causality between events can change during therun, as events are included or excluded.
Moreover, the conflict in DCRs is not permanent as is the case with event structures or with the various
proposals of cancellation of Pratt. Conflict in DCR can be transient since an event can be included and
excluded during a run. So, already at the conflict and causality relations, the DCRs depart from event
structures in a non-trivial manner.

DCRs have peculiar aspects which offer them good expressivepower that proved useful in various
practical situations, like for business workflows. But we are not concerned with explaining or motivating
these more, as the related literature does a much better job.We are concerned with finding a nice and
intuitive encoding of DCRs in the expressive psi-calculi framework.

3 Encoding event structures in psi-calculi

Due to their popularity, we have chosen to encode, in this section, the version of event structures called
primeas defined in Definition 2.2. These have many nice features like correlations with domains which
makes them a good candidate for being used for denotational semantics of concurrent programs. Never-
theless, we believe that other, more general, versions of event structures, like those from [25] or [9], can
be encoded in psi-calculi following similar ideas as we givehere.

Definition 3.1 (event psi-calculus)We define a psi-calculus instance, calledeventPsi, parametrized by
a nominal set E, to be understood asevents, by providing the following definitions of the key elements of
a psi-calculus instance:

T
de f
= E C

de f
= 2E ×2E A

de f
= 2E .

↔
de f
== ⊗

de f
= ∪ 1

de f
= /0

⊢
de f
= Ψ ⊢ ϕ iff (πL(ϕ)⊆ Ψ)∧ (Ψ∩πR(ϕ) = /0) Ψ ⊢ a

.
↔ b iff a= b

whereT, C, and A are nominal data types built over the nominal set E, andπL,πR are the standard
left/right projection functions for pairs. Denote by en(P)⊆E the event names appearing in a process P.

The conditionsC are pairs of subsets of events, which intuitively will hold the enabling conditions
for an event, i.e., the left set holding those events it depends on and the right set holding those events
it is in conflict with. The assertionsA intuitively can be understood as capturing the set of all executed
events, i.e., a configuration of the event structure. Channel equivalence is equality of event names, as in
standard pi-calculus. Composition of two assertions is theunion of the sets. The entailment⊢ intuitively
captures when events may fire, thus describing when events are enabled by a configuration.

It is easy to see that our definitions respect the restrictions of making a psi-calculus instance. In
particular, channel equivalence is symmetric and transitive since equality is. The⊗ is compositional,
associative and commutative, as∪ is; and moreover /0∪S= S, for any set S, i.e.,1 is the identity.

Definition 3.2 (event structures toeventPsi) We define a functionESPSIwhich given an event struc-
tureE = (E,≤, ♯) and a configuration C ofE , returns aneventPsi-process PE = |e∈EPe with Pe = (|{e}|)
if e∈C, otherwise Pe = caseϕe : e〈e〉.(|{e}|) , whereϕe = (≤e, ♯e).
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A process generated by theESPSI function is built up from smaller “event processes” put in paral-
lel. These come in two forms: those corresponding to the events in the configuration of the translated
event structure (i.e., those that already happened), and processes corresponding to events that have not
happened yet. For the latter we use a conditionϕe that contains the set≤e of eventse is depending on
and the set♯e of eventse is in conflict with. Together these two sets along with the frame of the entire
psi-process, decide, through the entailment, if the event can execute or not. When an event happens we
will have a transition over the channel with the same name as the event. Usually an event structure is
encoded intoeventPsi starting from the empty configuration, i.e., with no behaviour.

The setT may be infinite, hence elements ofA andC may be infinite terms (sets). In the encoding
produced byESPSI, the conditions haveπL(ϕ) finite, because of the principle of finite causes of Defini-
tion 2.2.1 that event structures respect. Still, theπR(ϕ) may be infinite, because there is no restriction on
the conflict relation in event structures, and thus an event can be in conflict with infinitely many events,
thereforeESPSImay create infinite condition terms.

An intuitive example where this would appear is when we modellooping behaviour of a system with
event structures, and we have a looping branch, which would be unfolded into infinitely many sequential
events, and we have a second branch which cancels this looping branch (i.e., as with a choice). The
cancelling of the looping branch would mean cancelling all the infinitely many events that encode this
branch. That is to say, the single event is in conflict with allthe events on the looping branch.

Assertion terms fromA, produced byESPSI, are always finite because they encode, cf. Lemma 3.3,
configurations, which are finite sets. Therefore, it is not problematic to have the infinite part of the
conditions, since the only place where this is used is in deciding the entailment, which would thus
always terminate, hence be decidable for any assertion/configuration used in the encoding.

Besides this, the encodingESPSI builds in parallel infinitely many processes, one for eache∈ E.
For practical reasons infinite terms are not desired. But there are works with infinite terms, like infinite
summation in SCCS, infinite case construct for psi-calculus, or infinite conjunctions in some logics.
Such infinite formulas usually make the presentation more nice. In our case we also wanted to have
the nice presentation, therefore we opted to generate infinite terms. From our terms it is clear to see
the correlation with the event structures. We work the same as in event structures, by tacitly having
infinite events, thus infinite parallel processes. Encodingthe infinite terms with the replication (i.e., one
replication of an infinite case construct) would make the presentation more cluttered, with the details
easily becoming unpleasant.

We could say that prime event structures are “wildly” infinite. If we would otherwise take a kind
of event structures that are regular, i.e., are build from some operations like choice and sequence, and
the infinity comes only from some recursion operation, then we think that this infinity could be encoded
with the finite apparatus of psi-calculi. But it is not clear which event structures are “regular”; and for
our purposes the prime event structures are a good enough concurrency model to look at.

Our intention is to investigate the expressive power of the psi-calculi framework; the power of its
logical part, i.e., the assertions, conditions, and entailment, and the complex nominal data structures that
can be used both for communication and for transmitted data.

Lemma 3.3 (correspondence configuration–frame)For any event structureE and configuration CE ,
the frame of theeventPsi-processESPSI(E ,CE ) corresponds to the configuration CE .

Proof : DenoteESPSI(E ,CE ) = PE as in Definition 3.2. The frame ofPE is the composition with⊗ of
the frames ofPe for e∈ E. As Pe is either(|{e}|) if e∈CE or caseϕ e : e〈e〉.(|{e}|) then the frame ofPe

would be eitherF ((|{e}|)) = {e} or F (caseϕ e : e〈e〉.(|{e}|)) = 1. Thus the frame ofPE is the⊗ of 1’s
and all events inCE , thus having that the frame is the union of all events inCE �
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Lemma 3.4 (transitions preserve configurations)For some event structureE and some configuration

of it CE , any transition from this configuration CE
e
−→C′

E
is matched by a transition/0 ⊲ESPSI(E ,CE )

ee
−→

ESPSI(E ,C′
E
) in the correspondingeventPsi-process. The other way, any transition/0 ⊲ESPSI(E ,CE )

ee
−→

P′ is matched by a step CE
e
−→C′

E
, with P′ = ESPSI(E ,C′

E
).

Proof : Before the evente is executed we have that oureventPsi-processESPSI(E ,CE ) can we written
in the formP= caseϕe : e〈e〉.(|{e}|) |Q. By Lemma 3.3 we know that the frame ofP is the same asCE ,
i.e., we have thatF (P) = 1⊗F (Q) = ΨQ =CE beforee has happened, ande /∈CE .

We can observe the transition betweeneventPsi-processes by the following proof tree, using the
transition rules of psi-calculi.

An eventecan happen if the corresponding condition in thecaseconstruct is entailed by the appropri-
ate assertionΨQ ⊢ ϕe. This forms the right condition of the (CASE) rule, saying that all the preconditions
of e are met, ande is not in conflict with any event that has happened. This condition is met because
CE = ΨQ and the assumption of the lemma, i.e., the existence of the step, which implies thate is enabled
by the configurationCE , meaning exactly what the definition of the entailment relation needs.

After
ee
−→ has happened we haveP′= (|{e}|)|Q andF (P′)=F ((|{e}|))⊗F (Q) = {e}∪ΨQ, meaning

that the frame ofP′ corresponds toC′
E
=CE ∪{e}. From the definition of the translation functionESPSI

it is easy to see thatESPSI(E ,C′
E
) = (|{e}|)|Q.

The second part of the lemma is especially easy after going through the proofs of the next results.�

Theorem 3.5 (preserving concurrency)For an event structureE =(E,≤, ♯)with two concurrent events
e||e′ then in the translationESPSI(E , /0) we find the behaviour forming the interleaving diamond, i.e.,

there exists CE s.t. /0⊲ ESPSI(E ,CE )
e
−→ P1

e′
−→ P2 and /0⊲ ESPSI(E ,CE )

e′
−→ P3

e
−→ P4 with P2 = P4.

Proof : In a prime event structure if two eventse,e′ are concurrent then there exists a configurationC
reachable from the root which contains the conditions of both events, i.e.,≤e⊆ C and≤e′ ⊆ C, and
does not contain any of the two events, i.e.,e,e′ 6∈C (cf. Remark 2.5). Take this configuration as the one
CE sought in the theorem. Therefore we have the following stepsin the event structure:CE

e
−→CE ∪e,

CE

e′
−→CE ∪e′, CE ∪e

e′
−→CE ∪{e,e′}, andCE ∪e′

e
−→CE ∪{e,e′}.

SinceCE is reachable from the root then by Lemma 3.4 all the steps are preserved in the behaviour
of the eventPsi-processESPSI(E , /0), meaning thatESPSI(E ,CE ) is reachable from (i.e., part of the be-
haviour of)ESPSI(E , /0).

Sincee,e′ 6∈CE we have thatESPSI(E ,CE ) is in the formP0 = Pe|Pe′ |Q with Pe andPe′ processes of
kind case. From Lemma 3.3 we know that the frame ofESPSI(E ,CE ) is the assertion corresponding to
CE , which isF (Pe|Pe′ |Q) = { /0}∪{ /0}∪ΨQ = ΨQ.

From Lemma 3.4 we see the transitions between theeventPsi-processes: /0⊲ ESPSI(E ,CE )
e
−→ P1

e′
−→

P2 with P2 = (|e|) |(|e′ |) |Q as well as /0⊲ ESPSI(E ,CE )
e′
−→ P3

e
−→ P4 with P4 = (|e|) |(|e′ |) |Q. We thus have

the expected interleaving diamond.
As a side, remark thatF (P1) = F (P0)⊗ (|e|) andF (P3) = F (P0)⊗ (|e′|) thusF (P1)⊗F (P3) =

F (P0)⊗ (|e|)⊗ (|e′|) = F (P4), which say thate∈ F (P1)∧ e′ /∈ F (P1)∧ e′ ∈ F (P3)∧ e /∈ F (P3)∧
F (P1)⊗F (P3) = F (P4). Using Lemma 3.3 these can be correlated with configurationsand thus we
can see the definition of concurrency from configurations as in Remark 2.5.3. �

The proof of Theorem 3.5 hints at an opposite result, statinga true concurrency rule foreventPsi-
processes. Intuitively the next result says that any two events that in the behaviour of theeventPsi-process
make up the interleaving diamond are concurrent in the corresponding event structure.
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Theorem 3.6 (interleaving diamonds)For any event structureE , in the correspondingeventPsi-pro-

cessESPSI(E , /0), for any interleaving diamond/0⊲ ESPSI(E ,CE )
e
−→ P1

e′
−→ P2 and /0⊲ ESPSI(E ,CE )

e′
−→

P3
e
−→ P4 with P2 = P4, for some configuration CE ∈ CE , we have that the events e||e′ are concurrent inE .

Proof : SinceESPSI(E ,CE ) has two outgoing transitions labelled with the eventse ande′ it means that
ESPSI(E ,CE ) is in the formP0 = Pe|Pe′ |Q with Pe and Pe′ processes of kindcase. From Lemma 3.3
we know that the frame ofESPSI(E ,CE ) is the assertion corresponding toCE , which isF (Pe|Pe′ |Q) =
{ /0}∪{ /0}∪ΨQ = ΨQ.

We thus have thate,e′ /∈ ΨQ andP0
e
−→ P1 andP0

e′
−→ P3. This means that for these two transitions to

be possible it must be that the precondition foreande′ respectably must be met. Sincee,e′ /∈ ΨQ it must
be thate′ /∈ πL(ϕe) ande /∈ πL(ϕe′). SinceπL(ϕe) is the same as the set≤e andπL(ϕ ′

e) the set≤e′ we
have the two parts of the Definition 2.3 that concern≤ for the casual independence (concurrency) of the
eventse,e′, i.e.,¬(e′ ≤ e∨e′ ≤ e). After the two transitions are taken we have thatP1 = (|e|)|Pe′ |Q and

P3 = Pe|(|e′|)|Q. We thus have thate∈ F (P1) ande′ ∈ F (P3). For the transitionP1
e′
−→ P2 to happen we

must have thate /∈ πR(ϕe′) and forP3
e
−→ P4 we must havee′ /∈ πR(ϕe). This is the same ase′ /∈ ♯e and

e /∈ ♯e′ which makes the last part of Definition 2.3 concerning the conflict relation, i.e.,¬(e′♯e). This
completes the proof, showinge||e′. �

We have seen that theeventPsi-processes that we obtain from event structures in Definition 3.2 have
a specific syntactic form. But theeventPsi instance allows any process term to be constructed over the
three nominal data-types that we gave in Definition 3.1. The question is which of all theseeventPsi-
processes correspond exactly to event structures? We want to have syntactic restrictions on how to write
eventPsi-process terms so that we are sure that there exists an event structure corresponding to each such
restricted process term.

Theorem 3.7 (syntactic restrictions) ConsidereventPsi-process terms built only with the following
grammar: PES := (|e|) | caseϕ : e〈e〉.(|e|) | PES|PES

Moreover, a term PES has to respect the following constraints, for anyϕe,ϕe′ from caseϕe : e〈e〉.(|e|)
respectivelycaseϕe′ : e′〈e′〉.(|e′|) :

1. conflict: e6∈ πR(ϕe) and e′ ∈ πR(ϕe) iff e∈ πR(ϕe′);

2. causality: e6∈ πL(ϕe) and if e∈ πL(ϕe′) then e′ 6∈ πL(ϕe)∧πL(ϕe)⊂ πL(ϕe′);

3. executed events: PES cannot have both(|e|) andcaseϕ : e〈e〉.(|e|) for any e, nor multiples of each.

For any such restricted process PES there exists an event structureE and configuration CE ∈ CE s.t.

ESPSI(E ,CE ) = PES.

Proof: From aeventPsi-processPESdefined as in the statement of the theorem, we show how to construct
an event structureE =(E,≤, ♯) and a configurationCE . We have thatPESis built up of assertion processes
and case guarded outputs, i.e.,PES= ( |e∈Ec(|e|)) | ( | f∈Er caseϕ f : f 〈 f 〉.(| f |)).

Because of the third restriction onPES we know thatEc andEr are sets, as no multiples of the same
process can exist. Moreover, these two sets are disjoint. For otherwise, assume we have(|e|)|caseϕe :
e〈e〉.(|e|) part ofPES. This is the same as ife has happened already ande may happen in future, which
cannot be the case for event structures.

We takeCE to be the frame ofF (PES) = Ec. We take the set of events to beE = Ec ∪Er . We
construct the causality and conflict relations from the processes in the second part ofPES as follows:
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≤= ∪e∈Er{(e
′,e)|e′ ∈ πL(ϕe)} and♯= ∪e∈Er{(e

′,e)|e′ ∈ πR(ϕe)}. We prove that the causality relation is
a partial order. For irreflexivity just use the first part of the second restriction onPES. For antisymmetry
assume thate≤ e′∧e′ ≤ e∧e 6= e′ which is the same as havinge∈ πL(ϕe′)∧e′ ∈ πL(ϕe). This contradicts
the second restriction onPES. Transitivity is easy to obtain from the second restrictionwhich says that
whene≤ e′ then all the conditions ofe are a subset of the conditions ofe′. We prove that the conflict
relation is irreflexive and symmetric. The irreflexivity follows from the first part of the first restriction on
PES, whereas the symmetry is given by the second part.

It is easy to see that for the constructed event structure andthe configuration chosen above, we have
ESPSI(E ,CE ) = PES. The encoding functionESPSI takes all events fromCE to the left part of thePES,
whereas the remaining events, i.e., fromEr are taken tocaseprocesses where for each eventf ∈ Er the
corresponding conditionϕ f contains the causing events respectively the conflicting events. But these
correspond to how we built the two relations above. �

3.1 Refinement

We want to be able to refine psi processes on the same line as labelled event structures are refined in [8].
We recall below the definition of refinement of event structures from [8].

A refinement function ref, is a function from actions to event structures without conflict (i.e., the
conflict relation is empty). This is considered as a given function to be used in therefinement operation.
This refinement operation can be also seen as a function from event structures together with functions as
above, and returning new event structures, i.e., like an algorithm. For notation economy this algorithm is
also denoted byre f , to connect it with the essential input it takes as the refinement functionref : Act→E 6 ♯

(with E 6 ♯ denoting conflict-free prime event structures).

Definition 3.8 (refinement for prime event structures) For an event structureE with events labelled
by l : E → Act with actions from Act we have the following definitions.

(i) A Function ref : Act → E 6 ♯ is called arefinement function(for prime event structures) iff∀a ∈
Act : ref(a) is a non-empty, finite and conflict-free labelled prime eventstructure.

(ii) Let E ∈ E and let ref be a refinement function.
Then ref(E ) is the prime event structure defined by:

• Eref(E ) := {(e,e′)|e∈ EE ,e′ ∈ Eref(lE (e))}, where Eref(lE (e)) denotes the set of events of the event
structure ref(lE (e)),

• (d,d′)≤ref(E ) (e,e
′) iff d ≤E e or (d = e∧d′ ≤ref(lE (d)) e′),

• (d,d′)♯ref(E )(e,e
′) iff d♯E e,

• lref(E )(e,e
′) := lref(lE (e))(e

′).

The intuition of refinement is to take one action (which is thought as an abstraction) and give it more
structure. Since the same action can be instantiated several times at different points in the system, i.e.,
by different events, all these events labelled by the same action are given more structure by replacing
them with a new event structure. For example one event can become a sequence of events, or the parallel
composition of deterministic components. But refinement isrestricted to not contain conflicts, i.e., not
contain choices. This is because of technical reasons that make it not possible to define the new conflict
relation so to obtain prime event structures after refinement. But there are also natural counter-examples
for requiring conflict-free refining event structures, and van Glabbeek and Goltz in [8] explain these
much better than we ever could. We need a similar refinement operation foreventPsi-process terms.
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Definition 3.9 Given a refinement function for event structures ref , we define an operation refΨ that
refines aneventPsi-process to a new one over the names

TΨ = {(e,e′) | e∈ E,e′ ∈ Ere f(l(e))}.

AneventPsi-process P, build according to Theorem 3.7, with frameF (P) = ΨP, is refined into a process

refψ(P) = |(e,e′)∈TPP(e,e′), with TP = {(e,e′)|e∈ en(P),e′ ∈ Ere f(l(e))}

and P(e,e′) = (|{(e,e′)}|), if e∈ ΨP, otherwise P(e,e′) = caseϕ(e,e′) : (e,e′)(e,e′).(|{(e,e′)}|) , with the con-
ditions being

ϕ(e,e′) = (≤(e,e′), ♯(e,e′)),

where ≤(e,e′) = {(d,d′) | d ∈ πL(ϕe)∨ (d = e∧d′ ∈≤re f(l(d)) e)} and ♯(e,e′) = {(d,d′)|d ∈ πR(ϕe)}.

The new names are pairs of a parent event name (i.e., from the original process) and one of the
event names from the refinement processes. We do not end up outside theeventPsi instance because
we can rename any pair by names fromE. Take any total order< on E and define from it a total order
(e,e′) < (d,d′) iff e< d∨ (e= d∧ e′ < d′) on the pairs; rename any pair by an event fromE while
preserving the order, thus makingTψ the same as theT of eventPsi.

We make new conditions for each of the new names(e,e′), where≤(e,e′) contains all pairs of names
s.t. either the left part is a condition fore, or the left part is the same asebut the right part is a condition for
e′. The conflicts set♯(e,e′) contains all pairs of names with the first part a conflict fore. The refinement
generates for each new pair one process which is either an assertion or acaseprocess, depending on
whether the first part of the event pair was in the frame of the old P or not.

Theorem 3.10 (refinement ineventPsi corresponds to refinement in ES)For any prime event struc-
tureE we have that: ESPSI(ref(E ), /0) = refψ(ESPSI(E , /0)).

Proof : As T = E and asTψ is built from T with the same rules asEref is built from E we have that
Tψ = Eref . Since the processes we work with are parallel compositionsof assertion andcaseprocesses,
it means we have to show that any assertion processes on the left is also found on the right of the equality
(and vice versa), and the same for thecaseprocesses. Since we work with the empty initial configuration,
then there are no assertion processes on neither sides.

The caseprocesses on the left side are those generated byESPSI from the pairs events returned by
the ref from the event structure. This means that for each pair we have its condition built up as in the
Definition 3.8. On the right side we havecaseprocesses for the original process before the refinement,
with their respective conditions. But therefΨ replaces these with manycaseprocesses, one for each new
pair, and for each the conditions are build exactly as theref is defining them. This says that we have the
same number ofcaseprocesses on both sides of the equality, and they have the same conditions. �

4 DCR graphs as psi-calculi

We achieved a rather natural and intuitive translation of the prime event structures into an instance of
psi-calculi. We made special use of the logic of psi-calculi, i.e., of the assertions and conditions and the
entailment between these, as well as the assertion processes. Noteworthy is that we have not used the
communication mechanism of psi-calculus, which is known toincrease expressiveness.
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We try to extend this approach from event structures to the DCRs. But it appears that we need the
communication constructs on processes to keep track of the current marking of a DCR. The particulari-
ties and expressiveness of DCRs do not allow for a simple way of updating the marking, as was the case
for event structures when just union with the newly executedevent was enough. But once we use the
communication, outputting a term representing the currentmarking, and incorporating an idea of gener-
ation (or age) of an assertion, where assertion compositionkeeps the newest generation which would be
used for entailments, we get a nice natural encoding for DCRsin a psi-calculus instance. We can then
see associations with the previous encoding of the event structures. The markings are kept in the asser-
tions, i.e., as the frame of the process; the same as we did with the configurations of the event structures.
Case processes are used for each event of the DCR, and the conditions of the case processes capture the
information needed to decide when events of a DCR are enabledin a marking. The entailment relation
then captures the enabling of events.

Definition 4.1 (dcrPsi instance) We define an instantiation of Psi-calculi calleddcrPsi by providing the
following definitions:

T
de f
= {m}∪A

A
de f
= 2E ×2E ×2E ×N

where E is a nominal set andN is the nominal data structure capturing natural numbers using a succes-
sor function s(·) and generator0, whereas m is a single name used for communication;

C
de f
= 2E ×2E ×E

.
↔

de f
== 1

de f
= ( /0, /0, /0,0)

(|(Ex,Re, In,G)|)⊗ (|(Ex′ ,Re′, In′,G′)|)
de f
=











(|(Ex,Re, In,G)|) if G > G′

(|(Ex′,Re′, In′,G′)|) if G < G′

(|(Ex∪Ex′,Re∪Re′, In∪ In′,G)|) if G = G′

where the comparison G< G′ is done using subterm relation, eg., s(N)> N. Entailment⊢ is defined as:

(|(Ex,Re, In,G)|) ⊢ (Co,Mi,e) iff e∈ In∧ (In∩Co)⊆ Ex∧ ((In∩Mi)∩Re) = /0.

Terms can be either a namem, which we will use for communications, or assertions which will be
the data communicated. Assertions are a tuple of three sets of events, and a number we intend to hold the
generationof the assertion. The first set is meant to capture what eventshave been executed, the second
set for those events that are pending responses, and the third set for those events that are included. These
three sets mimic the same sets that the marking of a DCR-graphcontains. The generation number is
used to get the properties of the assertion composition, which are somewhat symmetric, but still have the
composition return only the latest marking/assertion (i.e., somewhat asymmetric).

The composition of two assertions keeps the assertion with highest generation.1 This makes the
composition associative, commutative, compositional, and with identity defined to be the tuple with
empty sets and lowest possible generation number.

The conditions are tuples of two sets of events and a single event as the third tuple component. The
first set is intended to capture the set of events that are conditions for the single event. The second set is
intended to capture the set of events that are milestones forthe single event.

The entailment definition mimics the definition in DCR graphsfor when an event (i.e., the third
component of the conditions) is enabled in a marking (i.e., the first three components of the assertions).
Compare the example below with the definition of enabling from DCR graphs

(|(Ex,Re, In,G)|) ⊢ (→•e,→⋄e,e) iff e∈ In∧ (In∩→•e) ⊆ Ex∧ ((In∩→⋄e)∩Re) = /0.

1For technical reasons, when we compose two assertions with the same generation number we obtain an assertion where
the sets are the union between the associated sets in each assertion, and the generation number is unchanged.
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Definition 4.2 We define the functionDCRPSI which takes a DCR(E,M →•, •→,→⋄,→+,→%,L, l)
with distinguished marking M= (Ex′,Re′, In′) and returns adcrPsi process

Pdcr = Ps|PE

where Ps= (|(Ex′,Re′, In′,0)|) |m〈(Ex′,Re′, In′,0)〉.0 and PE = |e∈EPe

with Pe =!(caseϕe : m〈(XE,XR,XI ,XG)〉.

(m〈(XE ∪{e},(XR\{e})∪e•→,(XI \e→%)∪e→+,s(XG))〉.0|

(|(XE ∪{e},(XR\{e})∪e•→,(XI \e→%)∪e→+,s(XG))|)))

where XE,XR,XI ,XG are variables and ϕe = (→•e,→⋄e,e).

The processPdcr generated byDCRPSIcontains a starting processesPs that models the initial marking
of the encoded DCR as an assertion process, and also communicates this assertion on the channelm. The
rest of the process, i.e.,PE captures the actual DCR, being a parallel composition of processesPe for
each of the events of the encoded DCR. The events in a DCR can happen multiple times, hence the use
of the replication operation as the outermost operator. Each event is encoded, following the ideas for
event structures, using thecaseconstruct with a single guardϕe. The guard contains the information for
the evente that need to be checked against the current marking (i.e., the assertion) to decide if the event
is enabled; these information are the set of events that are prerequisites fore (i.e.,→•e) and the set of
milestones related toe. There may be several events enabled by a marking, hence several of the parallel
caseprocesses may have their guards entailed by the current assertion. Only one of these input actions
will communicate with the single output action onm, and will receive in the four variables the current
marking. After the communication, the input process will leave behind an assertion process containing
an updated marking, and also a process ready to output onm this updated marking. In fact, after a
communication, what is left behind is something looking like aPs process, but with an updated marking.
The updating of the marking follows the same definition from the DCRs.

Lemma 4.3 For any DCR graphD , the frame of the corresponding processDCRPSI(D) corresponds to
the marking of the encoded DCR (i.e., the first three components).

Proof: DCRPSI(D) return adcrPsi process with only one assertion which thus is the frame. Thisassertion
is made directly from the marking ofD and added generation 0. �

Lemma 4.4 For any DCR graphD , in the execution graph of the corresponding processDCRPSI(D) at
any execution point there will be only one output process.

Proof: Initially we have only one output in thePs part ofDCRPSI(D). Inductively we assume a reachable
processP with only one output process. If we have any enabled input processes only one of these
processes will join a communication with the single output process. All input processes are of the form
Pe, which reduces with psi rules for replication and input to

Pe|(m〈(XE ∪{e},(XR\{e})∪ •→ e,(XI\ →%e)∪→+e,s(XG))〉.0|

(|(XE ∪{e},(XR\{e})∪ •→ e,(XI \e→%)∪→+e,s(XG))|))

with XE,XR,XI ,XG substituted with the terms that were sent. The output process reduces to0. We have
added as many new output processes as we have removed, and as we initially only have one output
process by induction we always will have only one. �
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Lemma 4.5 For any DCR graphD , in the corresponding processDCRPSI(D) the message being sent
will always be the same as the frame of thedcrPsi process.

Proof : Initially, the first message being sent byPs is by construction the same as the initial frame. The
proof of Lemma 4.4 shows that with each communication a new assertion is added and a new sender
replaces the old one. The two new terms (i.e., the assertion process and the message) are identical and
have the generation part increased by one. Since the composition of assertions keeps only the assertion
with the higher generation, all older assertion processes that are still present are being ignored when
computing the frame of the new process. We thus have our result. �

Lemma 4.6 (generations count transitions)The generation part of the frame is the same as the number
of transitions we have done from the initial process.

Proof: We use induction and assume we have donen transitions and the generation part of our frame is
n′ wheren= n′. From Lemma 4.5 we have that the frame and message are equal, so we will be sending
n as generation part of the message. After the communication anew assertion with generations(n′)
is added, which by the definition of assertion composition will be the new frame. By our assumption
s(n′) = s(n) = n+1. From Lemma 4.3 we have thatn= n′ = 0 for the initial process, and by induction
we have that this holds for any number of transitions. �

Theorem 4.7 (preserving transitions) In a DCR graphD , for any transition(D ,M)
e
−→ (D ,M′) there

exists a reduction between the correspondingdcrPsi processesDCRPSI(D ,M)
τ
−→ DCRPSI(D ,M′).

Proof : From Lemma 4.3 we know that the frame and marking are the same.This means that since
M ⊢ e, the corresponding condition in theDCRPSI(D ,M) will be entailed by the frame. Therefore a
communication is possible, i.e., a transition labelled byτ . ForM = (Ex,Re, In) it means that the frame
of DCRPSI(D ,M) is (Ex,Re, In,G). From Lemma 4.5 we know that the frame is always the same as
the message being sent. When the transition corresponding to the evente happens the new frame of the
dcrPsi becomes

(|(Ex∪{e},(Re\{e})∪ •→ e,(In\e→%)∪e→+,s(G))|)

after alpha-conversion. For a transition in DCR over the event ewe get the new marking

M′ = (Ex∪{e},(Re\{e})∪e•→,(In\e→%)∪e→+),

which is the same as the new frame, with the exception of the generation part. �

Interesting would be to look closer at the encoding of event structures through theESPSI and the
encoding throughDCRPSIwhen seen as a special case of DCRs; a question on these lines would be: are
ESPSI(ES) and DCRPSI(DCR(ES)) bisimilar? First of all,ESPSI translates into theeventPsi instance,
whereasDCRPSIinto thedcrPsi instance, and these two instances work with different termsand operator
definitions. Even more, the encoding of event structures exhibits behaviour throughlabelled transitions,
whereas the behaviour ofdcrPsi encodings exposesonly τ-transitions. Therefore, it is not easy to find a
bisimulation-like correspondence.

Nevertheless, there are clear correlations. Consider an un-labelled event structure(E,≤, ♯) and its
presentation as a DCR graph(E,M,≤, /0, /0, /0, ♯ ∪ id) with the markingM = ( /0, /0,E); and denote the
associated psi-processes byPES= ESPSI(ES) andPDCR= DCRPSI(DCR(ES)). Correlate an assertion in
PDCR with the assertion inPES by looking only at the first set of the quadruple (having the second set of
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the quadruple, which encodes responses, always empty). Theconditions ofPDCR have the second set of
milestones always empty; whereas the first set is the same as the first set of the conditions inPES. One
can now check that the entailment of a condition by an assertion inPES is the same as the corresponding
entailment in thePDCR, when considering also the other behaviour aspects of thesetwo processes and
how they change the assertions. But we do define this investigation to a longer version of this paper.

5 Conclusions and outlook

We have encoded the true concurrency models of prime event structures and DCR graphs into corre-
sponding instances of psi-calculi. For this we have made useof the expressive logic that psi-calculus
provides to capture the causality and conflict relations of the prime event structures, as well as the rela-
tions of DCR-graphs. The computation in the concurrency models corresponds to reduction steps in the
psi-processes. The more expressive model of DCR-graphs required us to make use of the communication
mechanism of psi-calculi, whereas for event structures this was not needed. The data terms we sent were
tuples of terms, capturing markings of DCR-graphs with a generation number attached to them.

For the encodings we also investigated some results meant toprovide more confidence in their cor-
rectness. In particular, for event structures we also looked at action refinement as well as gave the
syntactic restrictions that capture the psi-processes that exactly correspond to event structures. Besides
providing correlations between the computations in the respective models, we also investigated how true
concurrency is correlated to the interleaving diamonds in the encodings we gave.

The purpose of our investigations was to see how well the expressiveness of psi-calculi can accom-
modate the expressiveness of true concurrency models. Nevertheless, a discrepancy remains between
the interleaving semantics based on SOS rules of psi-calculi, and the true concurrency nature of the two
models we considered. Further investigations would look for a true concurrency semantics for psi-calculi
(with initial results presented as [18]), and then see how our encodings fit with the true concurrency mod-
els that this semantics would return. One could also look into adding responses to psi-calculus, similar
to how is done in [5] for Transition Systems with Responses.
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