
I. Lanese, A. Lluch Lafuente, A. Sokolova, H. T. Vieira (Eds.):
7th Interaction and Concurrency Experience (ICE 2014)
EPTCS 166, 2014, pp. 94–110, doi:10.4204/EPTCS.166.10

c© F. Barbanera & U. de’Liguoro
This work is licensed under the
Creative Commons Attribution License.

Loosening the notions of compliance and sub-behaviour in
client/server systems

Franco Barbanera
Dipartimento di Matematica e Informatica

University of Catania

barba@dmi.unict.it

Ugo de’Liguoro
Dipartimento di Informatica

University of Torino

ugo.deliguoro@di.unito.it

In the context of “session behaviors” for client/server systems, we propose a weakening of the com-
pliance and sub-behaviour relations where the bias toward the client (whose “requests” must be
satisfied) is pushed further with respect to the usual definitions, by admitting that “not needed” out-
put actions from the server side can beskippedby the client. Both compliance and sub-behaviour
relations resulting from this weakening remain decidable,though the proof of the duals-as-minima
property for servers, on which the decidability of the sub-behaviour relation relies, requires a tighter
analysis of client/server interactions.

1 Introduction

The formal specification of web-services behaviour is a crucial issue toward automatic discovery and
composition of software modules available through a network. Among several approaches we consider
here the theory of contracts introduced in [6] and developedin a series of papers e.g. [8, 7]. We focus
here on the scenario of client/server architecture, where services stored in a repository are queried by
clients to establish a two-sided communication.

To check the matching of client’s requirements against the service offered by a server, both server
and client behaviours are described via a CCS-like formalism (without τ-actions nor parallel compo-
sition), whose terms are dubbedcontracts. The basic notion studied in the theory is thecompliance
relation, writtenρ ⊣ σ , meaning that all requirements by the clientρ are eventually matched by some
communication action by the serverσ 1. This is mathematically defined using an LTS semantics of the
communication behaviour of the pair of contractsρ‖σ , whereρ‖σ −→ ρ ′‖σ ′ holds wheneverρ α

−→ ρ ′,

σ α
−→ σ ′ andα andα are dual actions. Now, writing=⇒ for the reflexive and transitive closure of−→,

the relationρ ⊣ σ holds if and only ifρ‖σ =⇒ ρ ′‖σ ′ 6=⇒ impliesρ ′ = 1, where1 is the behaviour of the
completed process. Whenρ ⊣ σ we say thatρ is aclient of theserverσ , slightly abusing terminology.

The compliance relation characterises client/server interaction with a bias toward the client, which is
the sole guaranteed to complete. To illustrate this by an example, let us consider a ballot service whose
behaviour is described by the following server contract:

BallotServiceAB, recx. Login.(Wrong.x ⊕ Overload.x ⊕ Ok.(VoteA+VoteB)).

This service can receive a login from a client, a voter, via the input actionLogin; if the login is correct
the server issues to the client the messageOk (an output action), enabling the client to vote for either
candidates A or B via a continuation consisting of the external choice+ of the input actionsVoteA and

1It is not feasible, however, to allow the client to terminatethe interaction at any point, since, trivially, any server would be
compliant with such a sort of client.
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VoteB. In case the login is incorrect or the service is busy, the messagesWrong andOverload are sent
to the client respectively, both by output actions. In both cases the voter is allowed to retry the login by
recursion. The output actionsOk, Wrong andOverload are composed by an internal choice⊕ since they
depend on internal decisions on the server side. Now let us consider the following client:

Voter , recx. Login.(Wrong.x+Overload.x+Ok.VoteA).

Voter will not give up synchronizing withBallotService until eventually allowed to send her vote. Ac-
cording to the definition of compliance we have thatVoter ⊣ BallotServiceAB, and this remains true also
in the case of the slightly different server:

BallotServiceABC, recx. Login.(Wrong.x ⊕ Ok.(VoteA+VoteB+VoteC)).

which is not willing to issue theOverload message, and allows one more candidate to be voted. Indeed
what matters is the fact that no interaction among client andserver will ever get stuck in a state in which
some client action is pending. Because of the same reason theclient Voter is also compliant with the
service:

recx. Login.(Wrong.x ⊕ Overload.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2))),

whereVa1 andVa2 are choices depending on the voteVoteA, and similarly forVb1 andVb2. However
Voter is not compliant with

BallotServiceBehSkp,

recx. Login.(Wrong.InfoW.x ⊕ Overload.x ⊕ Ok.Id.( VoteA.(Va1+Va2)
+ VoteB.(Vb1+Vb2) ) )

because of the actionsInfoW andId (the former representing infos about the failure of the login and the
latter representing an identifier of the voting transaction), that do not have any correspondent input on
the client side. However these outputs have hardly any control significance, which is especially the case
in the setting ofsession-behaviourswe have introduced in [2] and that have been also investigated in [5]
(where they are dubbedsession contracts). In fact session-behaviours are contracts in which the only
terms that can occur in an internal choice have to be prefixed by the output of pairwise distinct messages
(the internal choice being the only truly non-deterministic feature of a session-behaviour).

In this paper we investigate the possibility of loosening the notion of compliance for session be-
haviours by admitting that a client, before an actual syncronization, canskip (disregard) a finite number
of consecutive output actions by the server, provided that these are not the dual of some immediate input
actions of the client. The overall number of (non consecutive) skipped actions in an interaction, how-
ever, can be possibly infinite. We call the resulting relation skp-complianceand writeρ ⊣skp σ for “ρ
is skp-compliant withσ ”. There is a contrast between these two conditions; while the latter is easily
decidable by looking at the contract syntax (and by admitting only guarded recursion), the former is an
infinitary condition, ruling out those infinite interactions which happen to bedefinitelyskip actions. The
first result which we obtain is that, in spite of its infinitarydefinition, the so obtained compliance notion
is decidable.

Compliance naturally induces a preorder over contracts seen as the behavioural specification of a
server. In [2, 4] we say thatσ �s σ ′ if any client ofσ is also a client ofσ ′ according to the compliance
relation⊣. It can be checked that, for example,BallotServiceAB �s BallotServiceABC, but neither of
them is comparable toBallotServiceBehSkp. By replacing⊣skp in this definition one obtains a similar
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preorderσ �skp σ ′, which also turns out to be decidable. The proof of the latterfact relies on the notion
of dual behaviourρ of ρ and on the property thatρ is the minimal server ofρ w.r.t. �skp.

Overview of the paper.The notion of session-behaviour is recalled in Section 2. Then the definition of
skp-compliance is given in Subsection 2.1. In Section 3 it is provided a coinductive characterization
of skp-compliance, via a formal system to deduce (conditional)skp-compliance, which is proved to
be sound and complete. Decidability then follows, being thesystem algorithmic. The notion ofskp-
subbehaviour�skp is introduced in Section 4, and the property ofduals as minimais proved. Decidability
of �skp is a consequence of such a property. In Section 5 we extensively discuss the relationship of our
skp-compliance with another weak notion of compliance allowing for a sort of “action skipping”: the
(orchestrated) weak-compliance proposed by Padovani in [14]. In Section 6 a discussion about future
works concludes the paper.

2 Session Behaviours and theskp-compliance relation

Contracts [12, 9] are a subset of CCS terms, defined by the grammar :

σ ::= 1 | α .σ | σ +σ | σ ⊕σ | x | recx.σ

whereα ranges over a set of actions and co-actions,1 is the same as the CCS term 0, namely the com-
pleted protocol,+ and⊕ are external and internal choices respectively.Session behavioursas defined
below are a further restriction of this set. They are designed to be in one-to-one correspondence to
session types [11] without delegation (in [2] and [4] session behaviours were extended by send/receive
actions of session behaviours to model delegation). The restriction is achieved by constraining internal
and external choices in a way that limits the non-determinism to (internal) output selection.

Definition 2.1 (Session Behaviours)

i) Let N be some countable set of symbols andN = {a | a∈ N }, with N ∩N = /0.
The setBE of raw behaviour expressionsis defined by the following grammar:

σ ,τ ::= 1 inaction
| a1.σ1+ · · ·+an.σn external choice
| a1.σ1⊕·· ·⊕an.σn internal choice
| x variable
| recx.σ recursion

where

- n≥ 1 and ai ∈ N (henceai ∈ N ) for all 1≤ i ≤ n;

- x is a session behaviour variable out of a denumerable set and it is bound by therec operator.

As usual,σ is said to beclosedwheneverFV(σ) = /0, whereFV(σ) denotes the set of free variables
in σ .

ii) The setSB of session behavioursis the subset of closed raw behaviour expressions such that in
a1.σ1 + · · ·+ an.σn and a1.σ1 ⊕ ·· · ⊕ an.σn, the ai and theai are, respectively, pairwise distinct;
moreover inrecx.σ the expressionσ is not a variable.
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We abbreviatea1.σ1+ · · ·+an.σn by ∑n
i=1 ai .σi , anda1.σ1⊕·· ·⊕an.σn by

⊕n
i=1 ai .σi. We also use the

notations∑i∈I ai .σi and
⊕

i∈I ai .σi, for finite and not emptyI . The trailing1 is normally omitted: we
write e.g.a+b for a.1+b.1.

Note that recursion inSB is guarded and hence contractive in the usual sense [1]. Session behaviours
will be considered modulo commutativity of internal and external choices.

A syntactical notion ofduality on SB is easily obtained by interchanginga with a, and+ with ⊕.
Its formal definition can obtained by restricting toSB a straightforward definition by induction on the
structure of the raw expressions inBE (i.e. also for open expressions2). The dual of a session-behaviour
σ will be denoted, as usual, byσ . As expected,σ = σ for all σ .

The operational semantics of session behaviours is given interms of a labeled transition system (LTS)
σ α
−→ σ ′ whereσ ,σ ′ ∈ SB andα belongs to an appropriate set of actionsAct.

Definition 2.2 (Behaviour LTS)
Let skp 6∈ N and define the set of actionsAct = N ∪N and ⊕, rec 6∈ Act; then define the LTS
(SB,Act∪{⊕, rec},−→) by the rules:

a1.σ1+ · · ·+an.σn
ak−→ σk a.σ a

−→ σ

a1.σ1⊕·· ·⊕an.σn
⊕

−→ ak.σk recx.σ rec
−→ σ{recx.σ/x}

where1≤ k≤ n andσ α
−→ γ abbreviates(σ ,α ,γ) ∈ −→.

We abbreviate−→=
⊕

−→ ∪
rec
−→. Note that neither⊕ nor rec are actions, so that they are unob-

servable and used just for technical reasons; indeed we adopt the standard−→ (from CCS withoutτ)
in the subsequent definition of the parallel operator for testing. As usual, we write=⇒=−→∗ and

α
=⇒=−→∗ α

−→−→∗ for α ∈ Act.
We observe that ifσ α

=⇒ σ ′ or σ =⇒ σ ′ for σ ∈ SB, thenσ ′ ∈ SB.

Lemma 2.3 For anyσ ∈ SB there exists a unique and finite set R= {σ ′ ∈ SB | σ =⇒ σ ′ 6=⇒}, which is
either of shape{1} or {a1.σ1+ · · ·+an.σn} or {ai .σi | i ∈ I}. Moreover R is computable inσ .

Proof. By induction of the structure ofσ . Since recursion is guarded and internal choices are finitary,
no infinite−→ reductions are possible out ofσ ; on the other hand ifσ ∈ SB then it is closed, so the case
σ =⇒ x for some variablex is impossible. �

In the sequel we writeσ ⇓ 1 andσ ⇓ ∑i∈I ai .ρi if the R in the above lemma is, respectively, of the first
two shapes, and writeσ ⇓

⊕

i∈I ai .σi if R= {ai.σi | i ∈ I}.

We shall denote finite or infinite sequences of elements ofAct, i.e. elements ofAct∗∪Act∞, by bold
charactersααα ,βββ , . . .. Bold italic (overlined) charactersaaa,bbb,ccc, . . . (aaa,bbb,ccc, . . .) shall denote sequences of
elements ofN (resp.N ). We shall represent the fact that a sequenceααα is infinite by writingααα∞. The
length of a sequenceααα will be denoted by|ααα |, and it is either finite or∞.

We writeσ ααα
=⇒ σ ′ if ααα = α1 · · ·αn andσ α1=⇒ ···

αn=⇒ σ ′. Also we writeσ −→ andσ α
−→ if there

existsσ ′ s.t. σ −→ σ ′ andσ α
−→ σ ′ respectively, andσ 6−→ when¬(σ −→). Givenααα = α1 . . .αn the

notationβ ∈ ααα will stand forβ ∈ {α1, . . . ,αn}.

We define the set of traces of a session behaviour as follows.
2To avoid too cumbersome definitions, any time an inductive definition on elements ofSB will be provided, it will be tacitly

assumed to be actually the restriction toSB of the corresponding inductive definition onBE.
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Definition 2.4 (Traces) The mappingTr : SB→ (P(Act∗)∪P(Act∞)) is defined by

Tr(∑i∈I ai .σi) =
⋃

i∈I{ai ααα | ααα ∈ Tr(σi)} Tr(1) = {ε}

Tr(
⊕

i∈I ai .σi) =
⋃

i∈I{ai ααα | ααα ∈ Tr(σi)} Tr(recx.σ) = Tr(σ [recx.σ/x])

A session-behavioursσ is said to befinite wheneverTr(σ) ∈ P(Act∗).

2.1 Theskp-compliance relation

As for contract compliance, we use an LTS of client/server pairs ρ‖σ to define the notion ofskp-
compliance on session-behaviours. The actions of the LTS are the silent actionτ , representing a full
handshake between synchronizing actions on the client and server sides, together with a “skipping”
actionskp, representing the fact that an action on the server’s side has been discarded.

As mentioned in the introduction, we allow only output actions on the server side to be discarded.
However we disallow the skip of an output action that synchronizes with some input action by the client.
Let us write:

ρ 6⇓ α ⇔¬∃ρ ′. ρ α
=⇒ ρ ′.

Observe that the statementρ 6⇓ α is decidable because it is the negation ofσ⇓ ∑i∈i ai .σi or σ ⇓
⊕

i∈i ai.σi ,
with α ∈ {ai ,ai | i ∈ I}, which are decidable by Lemma 2.3.

The next definitions formally introduce the LTS for client/server pairs and the relation ofskp-
compliancefor session behaviours, that we dub⊣skp.

Definition 2.5 (LTS for Client-Server pairs)
Let sAct= {τ ,skp} be the set of the synchronization actions andρ‖σ denote the parallel composition
of session behaviors inSB, then define:

ρ −→ ρ ′

ρ‖σ −→ ρ ′‖σ

σ −→ σ ′

ρ‖σ −→ ρ‖σ ′

ρ 6⇓ a σ a
−→ σ ′

ρ‖σ skp
−→ ρ‖σ ′

ρ α
−→ ρ ′ σ α

−→ σ ′

ρ‖σ τ
−→ ρ ′‖σ ′

where a∈ N (and hencea∈ N ), α ∈ Act andα is its dual, such thatα = α .

The ratio of introducing the ability of clients to skip some actions on the server side is to allow more
clients to synchronize with servers that essentially provide the required service but for some supplemen-
tary (and possibly redundant) information.

We abbreviate=⇒ = −→∗ and
ξ

=⇒ = =⇒◦
ξ

−→ ◦=⇒, whereξ ∈ sAct.

Moreover, by
ζ ∗ξ
=⇒ we denote

ζ
=⇒∗◦

ξ
=⇒, whereζ ,ξ ∈ sAct.

Remark 2.6 We observe that it would be unreasonable to allow clients to deny replies to server input
actions, as this would result into a complete loss of control(think of theLogin action in the ballot service
examples). On the other hand we balance the possibility of skipping server outputs by two principles.
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The first one is that the client is not allowed to defer the synchronization with an output action of the
server which it is ready to accept, avoiding the indeterminacy of synchronizations like

a‖b.a.b.a
skp
−→ a‖a.b.a

τ
−→ 1‖b.a

and
a‖b.a.b.a

skp
−→ a‖a.b.a

skp
−→ a‖b.a

skp
−→ a‖a

τ
−→ 1‖1

of which only the first one is legal. The second principle is that a client has not to be compliant with
a server that will never provide the required output. This happens in an infinite interaction which is
definitelymade ofskp-synchronization actions, as in the cases ofrecx.b.x‖recx.a.x and of the subtler
b‖recx.(a.x⊕b).
However, it is reasonable to allow the overall number of skippings to be infinite. A simple example of that
is when all the infiniteb’s of the clientrecx.b.x manage to syncronize with ab of the serverrecx.a.a.b.x,
each time skipping thea preceding theb and thea following it.

So, as previously discussed, the notion of compliance we wish to formalize is an extension of the
usual notion of compliance such that any finite or infinite number of output actions from the server can be
discarded. We wish however to rule out the possibility of a client indefinitely discarding output actions
coming from the server. So, in order to do that, we formalize below theskp-compliance relation in
terms ofsynchronization traces. A synchronization trace describes a possible client/server interaction as
a sequence of successful handshakes (τ) or skipping actions (skp). Such traces can be either finite or
infinite. A client will then be compliant with a server when all the client/server finite synchronization
traces ends withX (which can occur only in case the client completes, i.e. getsto 1) and all the infinite
synchronization traces are not formed of justskp elements from a certain point on, i.e. are notdefinitely-
skp.

Definition 2.7 (Synchronization traces)
The mappingsTr : SB×SB→ ((sAct∪{X})∗∪sAct∞) is defined by

sTr(ρ‖σ) =















{X} if ρ = 1

{ξ χχχ | ρ‖σ ξ
=⇒ ρ ′‖σ ′ & χχχ ∈ sTr(ρ ′‖σ ′)} if ∃ζ ∈ sAct. ρ‖σ ζ

=⇒

{ε} otherwise

Let ξξξ ∈ sAct∞ with ξξξ = ξ1ξ2 . . .. We sayξξξ to bedefinitely-skp whenever∃k. ∀h> k. ξh = skp.

Then the notion ofskp-compliance can be formalised in terms of synchronization traces as follows.

Definition 2.8 (skp-compliance) The client ρ is skip-compliantwith the serverσ , written ρ ⊣skp σ ,
whenever, for anyξξξ ∈ sTr(ρ‖σ) eitherξξξ = ξξξ ′

X or ξξξ is infinite and not definitely-skp.

In the remaining part of the paper we just say “compliant” instead of “skp-compliant” when any ambi-
guity cannot arise.

By the previous definition we have that, as stated in the Introduction,Voter ⊣skp BallotServiceBehSkp.
In the following example we provide, instead, two behaviours that are not compliant.

Example 2.9 Let us consider the following malicious server that, after receiving a login, sends aWrong
message and then, indefinitely, the messageInfoW, that is

BallotServiceMalicious, Login.(Wrong.recx.InfoW.x)
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It is easy to check thatVoter 6⊣skp BallotServiceMalicious.
In fact we have thatsTr(Voter‖BallotServiceMalicious) = {τ τ skpskpskp . . .}, that is the only element
of the set of synchronization traces is a sequence that, after the twoτ actions due to the login message
and the message that the login procedure went wrong, is made of an infinite number of consecutiveskp’s,
since the server would keep on skipping all theInfoW messages from the server. Such a sequence is an
obviouslydefinitely-skp one.

Remark 2.10 It is clear that⊣ ⊆ ⊣skp. This inclusion is strict: in factb⊣skp a.b with a 6= b, butb 6⊣ a.b.

3 Coinductive characterization and decidability.

To prove that the⊣skp relation is decidable we work out a coinductive characterization. In doing that we
use the relationsynch between actions and traces.α synchσ holds whenever all traces of the serverσ
contain the actionα possibly prefixed by a finite sequence ofskippableoutput actions.

Definition 3.1 (Coinductive Skip-Relations)

i) The relation synch ⊆ Act×SB is defined by

a synchσ , ∀ααα ∈ Tr(σ)∃bbb,ααα ′. ααα = bbbaααα ′ & a 6∈ bbb;

a synchσ , ∀ααα ∈ Tr(σ)∃bbb,ααα ′. ααα = bbbaααα ′,

wherebbb is possibly empty.

ii) The operatorH : P(SB×SB)→ P(SB×SB) is defined as follows:
for any relationR ⊆ SB×SB, we have(ρ ,σ) ∈ H (R ) if and only if eitherρ ⇓ 1 or the following
statements hold:

(a) ρ ⇓ ∑i∈I ai .ρi ⇒







∃k∈ I . ak synchσ &

∀i ∈ I .∀σ ′. [(ai .ρi‖σ skp∗τ
=⇒ ρi‖σ ′) ⇒ ρiR σ ′];

(b) ρ ⇓
⊕

i∈I ai .ρi ⇒







∀i ∈ I . ai synchσ &

∀i ∈ I .∀σ ′. [(ai.ρi‖σ skp∗τ
=⇒ ρi‖σ ′) ⇒ ρiR σ ′].

iii) A relation R ⊆ SB×SB is acoinductive Skip-relationif and only ifR ⊆ H (R ).

SinceR occurs covariantly in the clauses definingH (R ), the operatorH is monotonic with respect
to subset inclusion. Then the following fact immediately follows by Tarsky theorem [17] (see also [16]
for a discussion about the use of this result):

Fact 3.2 LetH 0 , SB×SB andH k+1 , H (H k); then

ν(H ) =
⋃

{R ⊆ SB×SB | R ⊆ H (R )} =
⋂

k∈NH k

is the greatest fixed point ofH .

Then we define coinductively the following relation:
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Definition 3.3 (Coinductiveskp-Compliance)

⊣skp

co.k , H k and ⊣skp

co , ν(H ),

whereH k is defined as in Fact 3.2.
A client ρ is said to becoinductivelyskp-compliantwith a serverσ , wheneverρ⊣skp

co σ holds.

We say “coinductively compliant” as short for “coinductively skp-compliant”. By the last defini-
tion we have thatrecx.b.x 6⊣skp

co recx.a.x. We have as well thatb 6⊣skp

co recx.(a.x⊕ b). In fact, aaa... ∈
Tr(recx.(a.x⊕b)) and¬[b synch (recx.(a.x⊕b))].

Proposition 3.4
⊣skp = ⊣skp

co

Proof. [sketch] (⊆) It sufficies to show that what stated in Definition 3.1(ii) holds when we replace
⊣skp

co by ⊣skp. In caseρ ⇓ 1, we have thatρ ⊣skp σ immediately by definition. Let us consider the case
ρ⇓∑i∈I ai .ρi . Then we observe thatρ ⊣skp σ andρ 6⇓ 1 if and only if for any trace ofσ there exists a prefix
aaa such thatσ aaa

=⇒
⊕

h∈H ah.σh for someH ⊆ I andρh ⊣ σh for all h∈ H. Moreover,∃k∈ I . ak synchσ
holds since∀k ∈ I . ¬(ak synchσ) contradicts Definition 2.8. Ifρ ⇓

⊕

i∈I ai .ρi the proof proceeds in a
similar way.

(⊇) Let us assumeρ 6⊣skp σ . This implies that¬(ρ ⇓ 1). Then, by Definition 2.8, there exists
ξξξ ∈ sTr(ρ‖σ) such that eitherξξξ is finite butξξξ 6= ξξξ ′

X for any ξξξ ′, or ξξξ is infinite and definitely-skp.
In the first case we proceed by induction on the lenght of theτ-actions inξξξ to contradict condition
∃k∈ I . ak synchσ in Definition 3.1(ii). In the infinite case, we get a contradiction to the

∀i ∈ I .∀σ ′. [(αi .ρi‖σ skp∗τ
=⇒ ρi‖σ ′) ⇒ ρiR σ ′] (for the properαi) clauses in Definition 3.1(ii). �

It is possible to show the relation⊣skp to be decidable. In order to do that we define a formal system
that reflects the coinductive definition of the⊣skp relation, and whose derivation rules can be looked at as
rules of a recursive, syntax-driven decision algorithm, where the decision process coincides with a proof
reconstruction procedure.

In the formal system, the assumptions in an environment are actually markedassumptions. The
markings are used to prevent the possibility of getting a correct derivation for compliance statements that
allow for definitely-skp client‖server interactions.

Definition 3.5 (A formal system for⊣skp)

i) A marked environmentΓ is a finite set of marked assumptions of the form(ρ ′ ⊣skp σ ′)•, where
ρ ′,σ ′ ∈ SB and• ∈ {ok,no}.

ii) A judgment is an expression of the formΓ ⊲ ρ ⊣skp σ , whereΓ is a marked environment. The axioms
and rules of the system deriving judgments are in Figure 1, where the environmentΓok is defined by
Γok = {(ρ ′ ⊣skp σ ′)ok|(ρ ′ ⊣skp σ ′)ok ∈ Γ∨ (ρ ′ ⊣skp σ ′)no ∈ Γ}.

We assume any marked environment to becoherent, that is there can be no two assumptions with the same
compliance statement and different markings in the same environment, like(ρ ⊣skp σ)ok and (ρ ⊣skp

σ)no. Moreover, it will be easy to check that the derivation reconstruction procedure always produce
coherent environments.

The intended meaning of a judgmentΓ ⊲ ρ ⊣skp σ is that if, for any(ρ ′ ⊣skp σ ′)• ∈ Γ, ρ ′ ⊣skp σ ′

holds, thenρ ⊣skp σ holds as well, except for some judgments for which the interaction betweenρ and
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(AX)
Γ ⊲ 1⊣skp σ

(HYP)
Γ,(ρ ⊣skp σ)ok ⊲ ρ ⊣skp σ

Γ ⊲ σ{recx.σ/x} ⊣skp σ ′

(UNF-L)
Γ ⊲ rec .σ ⊣skp σ ′

Γ ⊲ σ ′ ⊣skp σ{recx.σ/x}
(UNF-R)

Γ ⊲ σ ′ ⊣skp recx.σ

∀i ∈ (I \K). Γ′ ⊲ ∑
k∈K

ak.ρk ⊣
skp σi ∀ j ∈ (K ∩ I). Γ′′ ⊲ ρ j ⊣

skp σ j

(+.⊕-CPL)
Γ ⊲ ∑

k∈K

ak.ρk ⊣
skp

⊕

i∈I

ai .σi

whereΓ′ = Γ, (∑k∈K ak.ρk ⊣
skp

⊕

i∈I ai.σi)no
Γ′′ = Γok, (∑k∈K ak.ρk ⊣

skp
⊕

i∈I ai.σi)ok

∀i ∈ I . Γ′ ⊲
⊕

k∈K

ak.ρk ⊣
skp σi

(⊕.⊕-CPL)
Γ ⊲

⊕

k∈K

ak.ρk ⊣
skp

⊕

i∈I

bi .σi

K ⊆ I ∀k∈ K. Γ′ ⊲ ρk ⊣
skp σk

(⊕.+-CPL)
Γ ⊲

⊕

k∈K

ak.ρk ⊣
skp ∑

i∈I
ai .σi

whereΓ′ = Γ, (
⊕

k∈K ak.ρk ⊣
skp

⊕

i∈I bi .σi)no whereΓ′ = Γok, (
⊕

k∈K ak.ρk ⊣
skp ∑i∈I ai .σi)ok

Figure 1: The formal system⊲ for ⊣skp

σ would produce definitely-skp syncrhonization traces. The use of markings rules out such apossiblity.
In fact the following Soundness and Completeness result we obtain is, as needed, for derivations with
empty environment.

Theorem 3.6 (Soundness and Completeness)

ρ ⊣skp σ ⇔ /0⊲ ρ ⊣skp σ .

The proof of the Soundness and Completeness property above can be obtained by first proving it
for a system without markings and allowing for definitely-skp interaction sequences in the definition of
compliance. And then by showing that such definitely-skp sequences are ruled out if the derivations
are properly marked. The proof of the first part can be obtained along the lines used in [4] for a similar
system.

Theorem 3.7 (Decidability of⊲) The system of Figure 1 is decidable.

Proof. [Sketch] The system in Figure 1 satisfies a sort of subformulaproperty. As a matter of fact
the behaviours used in the premises of any rule are subterms (for a suitable and natural definition of
subterm) of those used in the premises of the rule. This implies the system to be algorithmic: a decision
procedure consists in a breadth first searching for a proof ofa judgment in a bottom-up, syntax-driven,
way. Such proof reconstruction ends since, for any possiblebranch of the proof, we eventually find
either (1) an axiom(AX) or (2) an hypothesis(HYP) or (3) a wrong hypothesis, that is a judgment
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of the form Γ,(ρ ⊣skp σ)no ⊲ ρ ⊣skp σ or, by the subformula property,(4) a previously encountered
judgment. In case(3) or (4) are encountered along a branch, the derivation reconstruction algorithm
fails. In particular, the presence of(3) denotes the possibility of a definitely-skp synchronization trace.
Notice that the proof reconstruction is also deterministic, but possibly for the choice of the order in which
(UNF-L) and(UNF-R) occur along a branch in the proof tree, which is immaterial asthey have to be
consecutive. The complete proof develops along the same lines used for a similar proof in [4], where we
resort to a similar argument used in [15] and thereafter in [10]. �

Decidability of compliance is now easily got as a corollary.

Corollary 3.8 The relation⊣skp is decidable.

Proof. By Theorems 3.6 and 3.7. �

In the following we provide two simple example of application of the syntax-driven derivation re-
construction algorithm described in the proof of Theorem 3.7. In the first example the algorithm fails
because one of the possible interaction sequences for the client b and the serverrecx.(a.x⊕b) interac-
tion would be definitely-skp. In the second one the algorithm succeeds and produce the right derivation.
Notice how the failure in the first example is due to the fact that along the leftmost branch we encounter
awrong hypothesis, that is a judgment of the formΓ,(ρ ⊣skp σ)no ⊲ ρ ⊣skp σ .

Example 3.9 Givenσ = recx.(a.x⊕ b), the reconstruction algorithm for⊲ b ⊣skp σ produces the fol-
lowing result:

FAIL!
(b⊣skp a.σ ⊕b)no ⊲ b⊣skp a.σ ⊕b

(UNF-R)
(b⊣skp a.σ ⊕b)no ⊲ b⊣skp recx.(a.x⊕b)

(AX)
(b⊣skp a.σ ⊕b)ok ⊲ 1⊣skp 1

(+.⊕-CPL)
⊲ b⊣skp a.σ ⊕b

(UNF-R)
⊲ b⊣skp recx.(a.x⊕b)

Example 3.10 Givenρ = recx.b.x andσ = recy.(a.b.a.y⊕b.recx.b.x), the reconstruction algorithm for
⊲ ρ ⊣skp σ produces the following result:

(HYP)
(γ1)ok,(γ2)ok,(γ3)ok,(γ4)no ⊲ γ2

(UNF-R)
(γ1)ok,(γ2)ok,(γ3)ok,(γ4)no ⊲ b.ρ ⊣skp σ

(+.⊕-CPL)
(γ1)ok,(γ2)ok,(γ3)ok ⊲ b.ρ ⊣skp a.σ

(UNF-L)
(γ1)ok,(γ2)ok,(γ3)ok ⊲ ρ ⊣skp a.σ

(+.⊕-CPL)
(γ1)no,(γ2)no ⊲ b.ρ ⊣skp b.a.σ

(HYP)
(γ1)ok,(γ2)ok,(γ5)ok ⊲ γ5

(UNF-L-R)
(γ1)ok,(γ2)ok,(γ5)ok ⊲ ρ ⊣skp ρ

(+.⊕-CPL)
(γ1)no,(γ2)no ⊲ b.ρ ⊣skp b.ρ

(UNF-L-R)
(γ1)no,(γ2)no ⊲ ρ ⊣skp recx.b.x

(+.⊕-CPL)
(γ1)no ⊲ b.ρ ⊣skp a.b.a.σ ⊕b.recx.b.x)

(UNF-R)
(γ1)no ⊲ b.ρ ⊣skp σ

(+.⊕-CPL)
⊲ b.ρ ⊣skp c.σ

(UNF-L)
⊲ recx.b.x⊣skp c.recy.(a.b.a.y⊕b.recx.b.x)

where γ1 = b.ρ ⊣skp c.σ γ4 = b.ρ ⊣skp a.σ
γ2 = b.ρ ⊣skp a.b.a.σ ⊕b.recx.b.x γ5 = b.ρ ⊣skp b.ρ
γ3 = b.ρ ⊣skp b.a.σ
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4 Theskp-subbehaviour relation

As mentioned in the Introduction, in the theory of contractsthe compliance relation induces a preorder
�. The relationσ � σ ′ holds whenever, for any clientρ , if ρ ⊣ σ thenρ ⊣ σ ′ .

If σ , σ ′ andρ are required to be inSB then this relation, which we callsubbehaviour relation(dubbed
�s in [2]), coincides with the testing must-preorder [13], which is not the case if arbitrary contracts are
considered (see [5]). Here we relativize the definition of the subbehavior relation to the⊣skp relation
studied in the previous section, obtaining a new relation, which we callskp-subbehaviourand dub�skp.

Definition 4.1 (skp-Subbehaviour)
OverSB it is defined the binary relationσ �skp σ ′ by

σ �skp σ ′ ⇔ ∀ρ ∈ SB. [ρ ⊣skp σ ⇒ ρ ⊣skp σ ′].

Remark 4.2 It is not difficult to check that�skp 6⊆� by means of the following easy counterexample.
We have thata�skp c.a. In fact all the possibleskp-compliant clients ofa are{1,a}, which are trivially
alsoskp-compliant with the serverc.a by skipping the actionc. Without the possibilty of skipping such
an action, we have thata is not a client ofc.a anymore, whereas it is still so ofa. That isa 6� c.a.
For what concern the opposite inclusion, we conjecture it tohold. Of course the proof would not be
immediate. By Remark 2.10, we know that⊣ ⊂ ⊣skp, but this fact doesn’t imply that� is included in
�skp, becauseσ �skp σ ′ depends on a negative occurrence of the hypothesisρ ⊣skp σ .

4.1 Duals as minima property and decidability of �skp

We proceed now towards the proof of decidability of theskp-subbehaviour relation. This will be obtained
as a corollary of the property that the dual of a session-behaviour is actually the minimum among its
servers w.r.t.�skp. For any theory of subcontracts thisduals as minimaresult is quite relevant, since the
possibility of implementing contract-based query enginesrelies on it. This is well explained in [14] in
the paragraph that we quote below.

Formal notions of compliance and subcontract relation may be used for implementing contract-based
query engines. The query for services that satisfyρ is answered with the setQ1(ρ) = {σ | ρ ⊣ σ}.
The complexity of running this query grows with the number ofservices stored in the repository.
A better strategy is to compute the dual contract ofρ , denoted byρ⊥ [ρ in our context], which
represents the canonical service satisfyingρ (that isρ ⊣ ρ⊥) and then answering the query with the
setQ2(ρ) = {σ | σ � ρ⊥}. If ρ⊥ is the�-smallest service that satisfiesρ , we haveQ1(ρ) =Q2(ρ),
namely we are guaranteed that no service is mistakenly excluded. The advantage of this approach is
that� can be precomputed when services are registered in the repository, and the query engine needs
only scan through the�-minimal contracts.
(L.Padovani- [14], Sect.1)

The minimum property of dual behaviours can be proved using the following property:

ρ ⊣skp γ & γ ⊣skp σ ⇒ ρ ⊣skp σ (1)

This property, however, is not easy to establish in presenceof skipped actions, as exemplified in the
following. It is immediate to check that:

a.d ⊣skp b.b.a.d & b.b.a.d ⊣skp a.b.a.b.a.d

Eachb in b.b.a.d skips ana before synchronizing with its dualb, whereas the action that synchronizes
with thea in b.b.a.d is the lasta of a.b.a.b.a.d. Now, thea in a.d synchronizes after skipping the twob’s
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corresponding to the first twob’s of b.b.a.d. The action ina.b.a.b.a.d synchronizing with thea in a.d,
however, it is not the lasta of a.b.a.b.a.d, but actually the first one.

This fact, fortunately, does not cause any problem fora.d ⊣skp a.b.a.b.a.d since thed in a.d synchro-
nizes with thed of a.b.a.b.a.d by skipping all the actionsb.a.b.a between the firsta andd. The presence
of cases like these require to be carefully handled when proving property (1) that is otherwise similar to
the analogous facts in [2, 4].

To ease the proof we first consider an equivalent formulationof the skp-compliance relation. We
introduce a relation⊑ between sequences of actions, such thata1 . . .an ⊑ b1 . . .bm holds whenever any
ai (going from left to right) coincides with someb j , provided that all the elements between the element
bh coinciding withai−1 andb j are distinct fromb j . For instance,bbad⊑ abababdandad⊑ abababd,
whereasad 6⊑ bbaa.

Definition 4.3 (The⊑ relation.)

i) The binary relation⊑ ⊆N +×N + on finite and non empty sequences of input actions is inductively
defined as follows.
Let aaa,bbb∈ N +.

• b⊑ a1 . . .akb , k≥ 0 & b 6= a1, . . . ,ak

• baaa⊑ a1 . . .akbbbb , aaa⊑ bbb & k≥ 0 & b 6= a1, . . . ,ak

ii) The above relation is naturally extended toN ∞ ×N ∞ and toN +×N ∞

The relation⊑ will be used in the alternative coinductiveskp-compliance provided in Lemma 4.5
below. It will be used to represent, on the left-hand side, the synchronizing actions of the client and
on the right-hand side the corresponding actions of the server, possibly preceded by a finite number of
skippedactions. The relation is extended toN ∞×N ∞ since a client can beskp-compliant with a server
even without ever terminating. It is extended toN +×N ∞ since a client can succesfully terminate even
if its server could be able to going on indefinitely.

The following property holds for⊑.

Lemma 4.4 The relation⊑ is transitive.

Lemma 4.5 (Alternative coinductiveskp-compliance)

ν(H ) = ν(J )

where the operatorJ : P(SB× SB) → P(SB× SB) is defined as follows: for any relationR ⊆
SB×SB, (ρ ,σ) ∈ J (R ) if and only if eitherρ ⇓ 1 or, whenever[ρ 6⇓ ∑i∈I ai .ρi & σ 6⇓ ∑ j∈J a j .σ j ], the
following statements hold:

a) ρ ⇓ ∑i∈I ai .ρi ⇒



























{bbb | |bbb|> 0, σ bbb
=⇒} 6= /0

∀bbb s.t. σ bbb
=⇒ σ ′. ∃aaa⊑ bbb. (ρ aaa

=⇒
max

ρ ′ & ρ ′J σ ′)

∀bbb∞ ∈ Tr(σ). ∃aaa⊑ bbb. (ρ aaa
=⇒
max

1 ∨ ρ aaa∞
=⇒
max

)

b) ρ ⇓
⊕

i∈I ai .ρi ⇒







{aaa∞ | σ aaa∞
=⇒}= /0

∀ j ∈ I .∀aaa s.t. σ aaa
=⇒
max

. (σ
aaaaj
=⇒ σ ′ & ρ jJ σ ′)
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whereσ aaa
=⇒
max

, [σ aaa
=⇒ & 6 ∃c∈ N .σ aaac

=⇒] and σ aaa
=⇒
max

, [σ aaa
=⇒ & 6 ∃c∈ N .σ aaac

=⇒].

The following property will be useful to show the dual-as-minimum property.

Lemma 4.6 Givenσ aaa
=⇒
max

with γ ⊣skp σ , there exists ccc s.t. γ ccc
=⇒
max

γ ′ & γ ′⇓
⊕

b j .γ ′j . Moreover, for any

b j we haveσ
aaa bj
=⇒ σ ′

j with γ ′j ⊣skp σ ′
j .

Lemma 4.7 For all ρ ,σ ,γ ∈ SB: if ρ ⊣skp γ andγ ⊣skp σ thenρ ⊣skp σ .

Proof. By Lemma 3.4, we have to prove the relationK = {(ρ ,σ) | ∃γ . ρ ⊣skp γ & γ ⊣skp σ} to be
a coinductive Skip-compliance. We shall do that by using thealternative characterization of coinductive
skp-compliance of Lemma 4.5. Letρ andσ be such thatρ ⊣skp γ andγ ⊣skp σ for someγ . There are two
cases, of which we consider the most complex one for lack of space.

ρ ⇓
⊕

i∈I ai.ρi : Let k∈ I . Fromρ ⊣skp γ , 4.5, we get that{ccc ∞ | γ ccc∞
=⇒}= /0 and that,

∀ c s.t. γ ccc
=⇒
max

γ ′′ . γ ′′⇓ ∑b j .γ ′j & ∃h. bh ≡ ak & ρk ⊣
skp γ ′h. (2)

By duality, we get that for allccc s.t. γ ccc
=⇒
max

γ ′′, γ ′′ ⇓
⊕

b j .γ ′ j . We can now infer that{aaa∞ | σ aaa∞
=⇒

} = /0, by distinguishing two cases: ifγ ⇓
⊕

cp.γp, it is immediate byγ ⊣skp σ and Lemma 4.5.

Otherwise, by contradiction, let assume that there existsaaa∞ such thatσ aaa ∞
=⇒. By γ ⊣skp σ and

Lemma 4.5 we get that there existsddd ⊑ aaa such that eitherγ ddd
=⇒
max

or γ ddd∞
=⇒
max

. We obtain an immediate

contradiction in the second case, whereas in the first one, weget a contradiction by the fact that

γ ddd
=⇒
max

1 and by (2). Now, givenσ aaa
=⇒
max

, from γ ⊣skp σ and Lemma 4.6, givenσ aaa
=⇒
max

, there existsccc′

s.t. γ ccc′′′
=⇒
max

γ ′′1 , γ ′′1 ⇓
⊕

b j .γ ′1 j , moreover, for anyb j we haveσ
aaa bj
=⇒ σ ′

j with γ ′1 j ⊣
skp σ ′

j . From (2) we

get that

γ ccc′′′
=⇒
max

γ ′′ . γ ′′1 ⇓ ∑b j .γ1
′
j & ∃h. bh ≡ ak & ρk ⊣

skp γ1
′
h.

Sinceγ ′1h ⊣
skp σ ′

h, we getρkK σ ′
h.

�
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Proposition 4.8 (Duals as minima)
Let ρ ∈ SB. Thenρ is the minimum server ofρ , i.e. : ∀σ . ρ ⊣skp σ ⇒ ρ �skp σ

Proof. Let σ andγ be such thatρ ⊣skp σ andγ ⊣skp ρ. It is immediate to check thatρ ⊣skp ρ . Hence,
by Lemma 4.7 and the fact that the· operation is involutive, we have thatγ ⊣skp σ , so showing that
ρ �skp σ . �

We are finally in place to establish the following result.

Theorem 4.9 σ �skp σ ′ ⇐⇒ σ ⊣skp σ ′

Proof. (⇒) Let σ 6⊣skp σ ′. Since we haveσ ⊣skp σ , we get then thatσ 6�skp σ ′.
(⇐) Let σ ⊣skp σ ′. Then, by Proposition 4.8, we getσ = σ �skp σ ′. �

By Theorem 4.9 and decidability of⊣skp stated in Corollary 3.8 we conclude:

Corollary 4.10 The relation�skp is decidable.

5 Related works

What we devised in the present paper is not the only possibility of weakening the notions of compliance
and sub-behaviour. An alternative approach in the setting of (first-order and unrestricted) contracts has
been followed by Luca Padovani in [14].

We briefly recall Padovani’s approach to compare with ours, which is possible because session-
behaviours are particular contracts. In [14] the interactions between a client and a server can be mediated
(coordinated) by anorchestrator, a particular process (a sort ofactive channelor channel controller) with
the capability of buffering messages. Thanks to that, the server’s “answers” to the client’s “requests” can
be delivered in a different order, so enabling a form of asynchronous interactions, or kept indefinitely
in the buffer, that is equivalent todiscarding them. The weak-compliance relation resulting from the
presence of orchestrators, that we denote here by⊣P, induces a preorder that is also investigated in [14],
and that here we refer to as�P.

Let us explain the use of orchestrators by means of an example. The following is the behaviour of a
ballot service similar to one we already described in the Introduction. Logging-in can be retried in case
of wrong login or system overload. The messageId denotes the identifier of the transaction provided by
the server to its clients.

BallotServiceBehP,

recx.Login.(Wrong.x ⊕ Overload.x ⊕ Ok.Id.( VoteA.(Va1+Va2)
+ VoteB.(Vb1+Vb2) ) )

Now, let us assume to have a voter with the following behaviour:

VoterBehP , recx. Login.(Wrong.x+Overload.x+Ok.Vb1.VoteB)

Such a voter, besides not needing any identifier of the transaction, intends to give the preference for
the vice-candidatebefore the one for the main candidate. The feasibility of the interaction between
VoterBehP andBallotServiceBehP can be guaranteed only by the presence of an orchestrator such as:

BallotOrchP , recx. 〈Login,Login〉.( 〈Wrong,Wrong〉.x
∨ 〈Overload,Overload〉.x
∨ 〈Ok,Ok〉.〈ε ,Id〉.〈Vb1,ε〉.〈VoteB,VoteB〉.〈ε ,Vb1〉)
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The actions of an orchestrator are actually pairs. The first orchestrating action〈Login,Login〉 means
thatBallotOrch immediately delivers to the server a login, represented by the actionLogin to the right
of the first pair, as soon as this is received from the client, represented by the actionLogin to the left
of the same pair. Then, the orchestrating actions〈Wrong,Wrong〉, 〈Overload,Overload〉 and〈Ok,Ok〉,
and the use of the∨ operator, express that, in caseBallotOrch gets a messageWrong, Overload or Ok
from the server, this message is immediately passed to the client (and the orchestration starts again in
case ofWrong or Overload).

In case the messageOk is received, the subsequent orchestrating actions begin by〈ε ,Id〉.〈VoteB,ε〉.
The symbolε represents ano-actionby the client and by the server respectively, and it has the effect of
buffering the other action in the pair. Therefore the message Id from the server is kept in a buffer since
the no-action symbolε to the left of the first orchestrating action replaces the expectedId. Simlarly
the messageVb1 is also kept in the buffer. Only after the reception of the messageVoteB, which is
immediately passed to the server, the messageVb1 is delivered to the server, and the orchestration stops.
The messageId, instead, is never delivered.

The presence of an orchestrator hence allows for both asynchronous interactions and the possibility
of disregarding messages. A natural restriction is imposedon orchestrators in [14]: an orchestrator
cannot send a message if this has not been previously received. In fact, in the correct orchestrator above,
〈VoteB,ε〉 comes before〈ε ,VoteB〉. This implies that also in Padovani’s setting it is not possible to
disregard input actions.

The generality of Padovani’s notion of orchestrated compliance is paid in terms of a more complex
LTS formalizing client/server interaction, which dependson an orchestratorf , that we denote by⊣P

f . In
[14] the relationρ ⊣P σ holds whenever there exists an orchestratorf such thatρ ⊣P

f σ .
To save decidability of the relevant properties, any correct orchestrator must be offinite rank, where

the rank of an orchestratorf is the bound of its buffering capability. To make this explicit the notation
ρ ⊣P

k σ is used whenever there exists an orchestratorf of rankk such thatρ ⊣P

f σ .
In [14] the sub-behaviour relation induced by orchestratedcompliance is defined by:

σ �P σ ′ ⇔ ∀ρ .[ ρ ⊣ σ ⇒∃ f . ρ ⊣P

f σ ′].

Notice that the relation⊣ in the antecedent of the implication is just the usual strongcompliance. In the
same work the relation�P is proved to be decidable. Moreover the orchestratorf in the definition can
be inferred fromσ andσ ′ and it is the same for any possible clientρ .

From what said up to now Padovani orchestrated-compliance relation seems to include ours, since the
possibility ofskippingoutput actions can be mimicked by orchestrators that keep messages indefinitely
inside their buffers, without ever delivering them.

However, apart from the restriction to session behaviours,the two compliance relations are actually
incomparablebecause of the finiteness of the ranks of correct orchestrators and of the possibility in our
setting to discard infinitely many (non consecutive) outputactions from the server side. A counterexam-
ple to the inclusion of⊣skp in ⊣P can be obtained by slightly modifying the example used before. Let
us consider the ballot service with the extra output actionInfoW, representing some informations about
why a login has not been accepted:

BallotServiceBehP2,

recx. Login.(Wrong.InfoW.x ⊕ Overload.x ⊕ Ok.Id.( VoteA.(Va1+Va2)
+ VoteB.(Vb1+Vb2) ) )

Consider now the behaviour of a possible voter who can indefinitely try to log-in until (if ever) the login
is accepted. This voter is not interested about why a login has not been accepted, nor it is interested in
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getting the transaction identifier. Also it does not wish to express a vote for the vice-candidates:
VoterBehP2 = recx. Login.(Wrong. x+Overload. x+Ok.VoteB).
Then we have thatVoterBehP2 6⊣P BallotServiceBehP2, that isVoterBehP2 is not compliant with the
serverBallotServiceBehP2 according to the Padovani’s orchestrated compliance. In fact the voter could
keep on sending an incorrect login indefinitely, but no correct orchestrator is allowed to buffer an un-
bounded number of messages, like theInfoW ones. As a matter of fact, the actual interaction between
VoterBehP2 andBallotServiceBehP2 should be carried on in Padovani’s setting through the use ofan
orchestrator like the following one:

BallotOrchP2 , recx. 〈Login,Login〉.( 〈Wrong,Wrong〉.〈ε,InfoW〉.x
∨ 〈Overload,Overload〉. x
∨ 〈Ok,Ok〉.〈ε,Id〉.〈VoteB,VoteB〉 )

which should be able to buffer an unbounded number ofInfoW messages corresponding to the output
actionsInfoW on the server side. This implies thatBallotOrchP2 is not of finite rank and hence it is not
correct.

The definition ofskp-compliance allows to diregard infinitely many output actions from the server,
provided that they are not all consecutive. In particularVoterBehP2 ⊣skp BallotServiceBehP2. So, for-
mally we get:

Proposition 5.1 Let ⊣P be Padovani’s weak k-compliance restricted to session behaviours. Then, for
any k, we have: ⊣skp 6⊆ ⊣P

k

The inclusion does hold, instead, if we consider onlyfinite behaviours (see Definition 2.4):

Proposition 5.2 For any pair offinite session behavioursρ ,σ , there exists a k≥ 0 such that

ρ ⊣skp σ ⇒ ρ ⊣P

k σ

In a sense, we think that theskp-compliance relation we investigate in the present paper isthe
minimal weakening of the standard notion of compliance not requiring the introduction of orchestrators.

6 Conclusion and future work

In the setting of session-behaviors we have relaxed the synchronization rules by allowing output actions
on the server side to be skipped by a client that cannot immediately synchronize with them. This gives
rise to a weaker notion of compliance, calledskp-compliance, and consequently to a new concept of
sub-behaviour among servers. We have proved thatskp-compliance is still decidable, by exhibiting a
derivation system which is sound and complete w.r.t. the newcompliance relation, and which is algorith-
mic, namely it implicitly describes an algorithm to decideskp-compliance. Further we have shown that
the duals-as-minima property is preserved in the new setting, which implies decidability of the induced
sub-behaviour relation.

In the Introduction we have justified the loosening of compliance by means of examples. Another
contexts in which discarding some actions during client/server interaction seems a desirable feature worth
to be investigated is that of reversible computations. In particular when the client (or server) of an
interaction can roll-back to a previously encountered checkpoint (so forcing a roll-back on the server
(client) side). Then the notion of compliance should be strengthened to guarantee that client’s requests
keep on being satisfied even in case, for any reason, client and server perform a roll-back, as formalized
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and investigated in [3]. It is not difficult to envisage a situation where the interaction partners could roll-
back in two states that would be compliant but for the presence of an output that should have been already
sent and received before the roll-back took place. It is reasonable to let the two partners be compliant,
since that particular output action could be safely discarded.
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