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In the context of “session behaviors” for client/serverteyss, we propose a weakening of the com-
pliance and sub-behaviour relations where the bias towasdclient (whose “requests” must be
satisfied) is pushed further with respect to the usual difirst by admitting that “not needed” out-
put actions from the server side candieppedby the client. Both compliance and sub-behaviour
relations resulting from this weakening remain decidathleugh the proof of the duals-as-minima
property for servers, on which the decidability of the s@hdviour relation relies, requires a tighter
analysis of client/server interactions.

1 Introduction

The formal specification of web-services behaviour is aiafussue toward automatic discovery and
composition of software modules available through a netwdimong several approaches we consider
here the theory of contracts introduced|in [6] and develdpeiseries of papers e.d.| [8, 7]. We focus
here on the scenario of client/server architecture, whergces stored in a repository are queried by
clients to establish a two-sided communication.

To check the matching of client's requirements against émeice offered by a server, both server
and client behaviours are described via a CCS-like formmalwithout T-actions nor parallel compo-
sition), whose terms are dubbedntracts The basic notion studied in the theory is tbempliance
relation, writtenp 4 o, meaning that all requirements by the clignare eventually matched by some
communication action by the servetl. This is mathematically defined using an LTS semantics of the
communication behaviour of the pair of contraptis, wherep||a —s p’[|a’ holds whenevep = o/,

o -2 ¢’ anda and@ are dual actions. Now, writing=- for the reflexive and transitive closure e,

the relationp - o holds if and only ifp||c = p’||0’=~ impliesp’ = 1, wherel is the behaviour of the

completed process. Whgn- o we say thap is aclient of theservera, slightly abusing terminology.
The compliance relation characterises client/serveracten with a bias toward the client, which is

the sole guaranteed to complete. To illustrate this by amele, let us consider a ballot service whose

behaviour is described by the following server contract:

BallotServiceAB = recx. Login.(Wrong.x ¢ Overload.X & Ok.(VoteA+ VoteB)).

This service can receive a login from a client, a voter, vaitiput actionLogin; if the login is correct
the server issues to the client the messaig€an output action), enabling the client to vote for either
candidates A or B via a continuation consisting of the exechoice+ of the input action¥oteA and

11t is not feasible, however, to allow the client to termintite interaction at any point, since, trivially, any serveubd be
compliant with such a sort of client.
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VoteB. In case the login is incorrect or the service is busy, thesamgsiirong andOverload are sent
to the client respectively, both by output actions. In bakes the voter is allowed to retry the login by
recursion. The output actiol@%, Wrong andOverload are composed by an internal choigesince they
depend on internal decisions on the server side. Now letnsiader the following client:

Voter £ recx. Login.(Wrong.X+ Overload.X+ Ok.Voteh).

Voter will not give up synchronizing wittBallotService until eventually allowed to send her vote. Ac-
cording to the definition of compliance we have tWater 4 BallotServiceAB, and this remains true also
in the case of the slightly different server:

BallotServiceABC £ recx. Login.(Wrong.X & Ok.(VoteA + VoteB+ VoteC)).

which is not willing to issue th@verload message, and allows one more candidate to be voted. Indeed
what matters is the fact that no interaction among clientsawrder will ever get stuck in a state in which
some client action is pending. Because of the same reasarli¢héVoter is also compliant with the
service:

recX. Login.(Wrong.X @ Overload.X @ Ok.(VoteA.(Val+Va2)+ VoteB.(Vbl+Vb2))),

whereval andVa2 are choices depending on the veteteA, and similarly forvb1 andvb2. However
Voter is not compliant with

BallotServiceBehSkp £
recX. Login.(Wrong.InfoW.x @ Overload.X @ 0k.Id.( VoteA.(Val-+Va2)
+ VoteB.(Vb1+Vb2) ) )

because of the actiomsif oW andId (the former representing infos about the failure of theramid the
latter representing an identifier of the voting transagtiohat do not have any correspondent input on
the client side. However these outputs have hardly any absitgnificance, which is especially the case
in the setting okession-behaviounse have introduced in[2] and that have been also investigat{5]
(where they are dubbeskssion contrac)s In fact session-behaviours are contracts in which thg onl
terms that can occur in an internal choice have to be prefixgdeéooutput of pairwise distinct messages
(the internal choice being the only truly non-determiwgiddature of a session-behaviour).

In this paper we investigate the possibility of loosening tfotion of compliance for session be-
haviours by admitting that a client, before an actual symization, carskip (disregard) a finite number
of consecutive output actions by the server, provided tiese are not the dual of some immediate input
actions of the client. The overall number of (non consee)tskipped actions in an interaction, how-
ever, can be possibly infinite. We call the resulting relagap-complianceand writep =4 o for “p
is skp-compliant witha”. There is a contrast between these two conditions; whiteldfter is easily
decidable by looking at the contract syntax (and by adngjttinly guarded recursion), the former is an
infinitary condition, ruling out those infinite interacti®rvhich happen to beefinitelyskip actions. The
first result which we obtain is that, in spite of its infinitaghgfinition, the so obtained compliance notion
is decidable.

Compliance naturally induces a preorder over contracts asehe behavioural specification of a
server. In[[24] we say that <5 g’ if any client of g is also a client ofo’ according to the compliance
relation-. It can be checked that, for exampallotServiceAB =g BallotServiceABC, but neither of
them is comparable tBallotServiceBehSkp. By replacing—* in this definition one obtains a similar
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preordero <= ¢’, which also turns out to be decidable. The proof of the |dtter relies on the notion
of dual behavioup of p and on the property th& is the minimal server gb w.r.t. <=,

Overview of the papeiThe notion of session-behaviour is recalled in Sedtion ZnTthe definition of
skp-compliance is given in Subsection 2.1. In Secfidon 3 it isvigled a coinductive characterization
of skp-compliance, via a formal system to deduce (conditios&l)-compliance, which is proved to
be sound and complete. Decidability then follows, beingdygem algorithmic. The notion afkp-
subbehaviour=* is introduced in Sectidn 4, and the propertydagls as minimas proved. Decidability
of <= is a consequence of such a property. In Sedflon 5 we exténsiigeuss the relationship of our
skp-compliance with another weak notion of compliance allayviar a sort of “action skipping”™: the
(orchestrated) weak-compliance proposed by Padovahidh [lh Sectior[ 6 a discussion about future
works concludes the paper.

2 Session Behaviours and thekp-compliance relation
Contracts([12, 9] are a subset of CCS terms, defined by thengaam
o:=1|a.0|oc+0|0®0|X|recx.0

wherea ranges over a set of actions and co-actidnis, the same as the CCS term 0, namely the com-
pleted protocol+ and® are external and internal choices respectivélgssion behaviourss defined
below are a further restriction of this set. They are desigimebe in one-to-one correspondence to
session types [11] without delegation (in [2] and [4] ses$ehaviours were extended by send/receive
actions of session behaviours to model delegation). ThHdatien is achieved by constraining internal
and external choices in a way that limits the non-determirtis (internal) output selection.

Definition 2.1 (Session Behaviours)

i) Let.#" be some countable set of symbols arld= {a|ac .4}, with .4 NV = 0.
The seBE of raw behaviour expressioiis defined by the following grammar:

ot = 1 inaction
| a1.01+---+an.0, external choice
| 3.01®---@a,.0, internal choice
| x variable
| recx.o recursion

where
-n>1landae .4 (henceg € .4 )forall 1<i<n;
- X is a session behaviour variable out of a denumerable sg&itda bound by theec operator.

As usual,o is said to beclosedwheneverv (o) = 0, whererv (o) denotes the set of free variables
ino.

ii) The setSB of session behaviourss the subset of closed raw behaviour expressions suchrhat i
a1.01+ -+ ay.0, anda;.01 b - -- P an.0n, the a and theg; are, respectively, pairwise distinct;
moreover inrecX.g the expressiow is not a variable.
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We abbreviatey.o1+ - +an,.0n by 31, &.0i, anday.01 6 - -- & 3@,.0, by @i, d.0i. We also use the
notationsy | 8.0; and @, §.0;, for finite and not empty. The trailing1 is normally omitted: we
write e.g.a+bforal+b.1

Note that recursion iSB is guarded and hence contractive in the usual semnse [1]io8dx=haviours
will be considered modulo commutativity of internal andesrial choices.

A syntactical notion ofduality on SB is easily obtained by interchangirsgwith a, and+ with &.
Its formal definition can obtained by restricting $8 a straightforward definition by induction on the
structure of the raw expressionsBi (i.e. also for open expressi@jSThe dual of a session-behaviour
o will be denoted, as usual, ly. As expectedg = o for all o.

The operational semantics of session behaviours is givieenrims of a labeled transition system (LTS)
a / / . .

o — o’ whereo, o0’ € SB anda belongs to an appropriate set of actidyd.

Definition 2.2 (Behaviour LTS)

Let skp ¢ .4+ and define the set of actiomsct = .4 U4 and @,rec ¢ Act; then define the LTS
(SB,ActU{@®,rec},—) by the rules:

A.01+ -+ 8n.0n -5 0y aoc-5o
.01 D8n.0n — Ay Ok recX.0 — g{recx.g/x}

wherel < k < nando -2+ y abbreviate o, a,y) € —.

rec

We abbreviate—s =25 U 5. Note that neitherd nor rec are actions, so that they are unob-
servable and used just for technical reasons; indeed we #uogtandard— (from CCS withoutr)
in the subsequent definition of the parallel operator fotings As usual, we write—=—* and
Lo— % ¥ for a € Act.

We observe that if == o’ or 0 = ¢’ for o € SB, theno’ € SB.
Lemma 2.3 For any o € SB there exists a unique and finite seeR 0’ € SB| 0 = ¢’ A=}, which is
either of shapd1} or {a;.01+---+an.0n} Or {§.0; | i € 1}. Moreover R is computable io.

Proof. By induction of the structure af. Since recursion is guarded and internal choices are finitar
no infinite — reductions are possible out af on the other hand i € SB then it is closed, so the case
0 = x for some variablexis impossible. O

In the sequel we writer|} 1ando || 3¢ &.p if the Rin the above lemma is, respectively, of the first
two shapes, and write || @i, §.0; if R={g.0; |i € |}.

We shall denote finite or infinite sequences of elemengscbfi.e. elements afct® U Act®, by bold
charactersx, B,.... Bold italic (overlined) charactera,b,c,... (a,b,c,...) shall denote sequences of
elements of 4 (resp../"). We shall represent the fact that a sequemds infinite by writinga®. The
length of a sequence will be denoted bya|, and it is either finite oro.

We write 0 =% ¢’ if @ = 01+~ and g == ... =% ¢’ Also we writed —» ando —% if there
existsg’ s.t. 0 — ¢’ ando = ¢’ respectively, andr ~— when—(o —). Givena = a; ... a, the
notationf € a will stand for3 € {az,...,dn}.

We define the set of traces of a session behaviour as follows.

“To avoid too cumbersome definitions, any time an inductivinii®n on elements o$B will be provided, it will be tacitly
assumed to be actually the restrictiortt® of the corresponding inductive definition &tk.
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Definition 2.4 (Traces) The mappindlr : SB — (Z2(Act*) U Z(Act”)) is defined by

Tr(Yic &.01) = Ui {aa [ a € Tr(0i)} Tr(1) = {e}
Tr(Dic1 &.0) =Uic{aa | a e Tr(a)} Tr(recx.0) = Tr(o[recx.0/X])

A session-behaviourg is said to bdinite wheneverTr(o) € Z(Act™).

2.1 Theskp-compliance relation

As for contract compliance, we use an LTS of client/serverspal|o to define the notion okkp-
compliance on session-behaviours. The actions of the L&Shar silent actiorr, representing a full
handshake between synchronizing actions on the client anetrssides, together with a “skipping”
actionskp, representing the fact that an action on the server’'s sidééen discarded.

As mentioned in the introduction, we allow only output antcon the server side to be discarded.
However we disallow the skip of an output action that synotmes with some input action by the client.
Let us write:

plae-3p.p=p.

Observe that the statement/ a is decidable because it is the negatiomdf 5 i; a.0; or || P;c; a.0,
with a € {&,a | i € |}, which are decidable by Lemrha P.3.

The next definitions formally introduce the LTS for cliemtfger pairs and the relation afkp-
compliancefor session behaviours, that we dufs.

Definition 2.5 (LTS for Client-Server pairs)
LetsAct= {1,skp} be the set of the synchronization actions @@ denote the parallel composition
of session behaviors B, then define:

p—p o—a
pllo — p'llo pllo — pllo’
pya 050 59y g9
pllo =2 p||o’ plo—p'llo’

where ac .4 (and henc&@ c /"), a € Act andd is its dual, such thall = a.

The ratio of introducing the ability of clients to skip sometians on the server side is to allow more
clients to synchronize with servers that essentially mtethe required service but for some supplemen-
tary (and possibly redundant) information.

We abbreviate— = —* and:£> = —o0 i> o =, whereé € sAct.
Moreover, byZ:i we denote_i>*o :€> wherel, & € sAct.
Remark 2.6 We observe that it would be unreasonable to allow clientsetoydeplies to server input

actions, as this would result into a complete loss of corfthihk of theLogin action in the ballot service
examples). On the other hand we balance the possibility ippslg server outputs by two principles.
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The first one is that the client is not allowed to defer the bByogization with an output action of the
server which it is ready to accept, avoiding the indetereyraf synchronizations like

a|baba>® ajaba-> 1|ba

and
a|paba>® aaba >3 a|pa % aja - 1|1

of which only the first one is legal. The second principle iatta client has not to be compliant with
a server that will never provide the required output. Thipd®ms in an infinite interaction which is
definitelymade ofskp-synchronization actions, as in the caseseafx.b.x||rec x.@a.x and of the subtler
b||recx.(a.x® b).

However, itis reasonable to allow the overall number of gkigs to be infinite. A simple example of that
is when all the infinitéo’s of the clientrec x.b.x manage to syncronize withteof the serverecx.a.a.b.x,
each time skipping tha preceding thé and thea following it.

So, as previously discussed, the notion of compliance wa widormalize is an extension of the
usual notion of compliance such that any finite or infinite benmof output actions from the server can be
discarded. We wish however to rule out the possibility ofiantlindefinitely discarding output actions
coming from the server. So, in order to do that, we formalizeow the skp-compliance relation in
terms ofsynchronization tracesA synchronization trace describes a possible clientésanteraction as
a sequence of successful handshak@o( skipping actionsgkp). Such traces can be either finite or
infinite. A client will then be compliant with a server when #ie client/server finite synchronization
traces ends witk” (which can occur only in case the client completes, i.e. e13 and all the infinite
synchronization traces are not formed of jskp elements from a certain point on, i.e. are definitely
skp.

Definition 2.7 (Synchronization traces)
The mappingTr : SB x SB — ((SActU {v'})* UsAct”?) is defined by

{v'} if p=1
sTr(po) =4 {Ex|pllo==p/|0’ & xesTr(p||a")} if 3¢ € sAct. pljo =
{e} otherwise
Let& € sAct” with & = £:1&>.... We say€ to bedefinitelyskp whenevedk. vh > k. &, = skp.

Then the notion ogkp-compliance can be formalised in terms of synchronizatiands as follows.

Definition 2.8 (skp-compliance) Theclient p is skip-compliantwith the serverog, written p =+ g,
whenever, for an§ € sTr(p||o) either& = &'y or & is infinite and not definitelykp.

In the remaining part of the paper we just say “compliantteasl of ‘skp-compliant” when any ambi-
guity cannot arise.

By the previous definition we have that, as stated in the dloicton,Voter =4°** BallotServiceBehSkp.
In the following example we provide, instead, two behawsailnat are not compliant.

Example 2.9 Let us consider the following malicious server that, afemaiving a login, sendsi&rong
message and then, indefinitely, the messafw, that is

BallotServiceMalicious = Login.(Wrong.rec X.Inf oW.x)
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It is easy to check thatoter /** BallotServiceMalicious.

In fact we have thadTr(Voter||BallotServiceMalicious) = {1 T skpskpskp...}, that is the only element

of the set of synchronization traces is a sequence that,thftiegwo 1 actions due to the login message
and the message that the login procedure went wrong, is niatdmfinite number of consecutivp’s,

since the server would keep on skipping all Thef oW messages from the server. Such a sequence is an
obviouslydefinitelyskp one.

Remark 2.10 Itis clear that4 C 4. This inclusion is strict: in fach =4 a.b with a # b, butb 4 a.b.

3 Coinductive characterization and decidability.

To prove that thet=*? relation is decidable we work out a coinductive characédidn. In doing that we
use the relatiorsynch between actions and traces.synch o holds whenever all traces of the sereer
contain the actiomr possibly prefixed by a finite sequencesifppableoutput actions.

Definition 3.1 (Coinductive Skip-Relations)
i) The relation synch C Act x SB is defined by
asyncho 2 Va € Tr(o)3b,a’. a =baa’ & a¢b;
asyncho £ Va € Tr(o)3b,a’. a =bada’,

whereb is possibly empty.

ii) The operator.#’ : 22(SB x SB) — Z?(SB x SB) is defined as follows:
for any relation® C SB x SB, we have(p,0) € (R ) if and only if eitherp || 1 or the following
statements hold:

Jkel.asyncho &
@ plJica.p = _ ckp'T

VielVa' [(g.pillc = pi||o’) = pRrd';
Viel.asyncho &

) pl@aao = { o
Vielvo' [(g.pllc = pllo’) = piRro'].

iii) Arelation ® C SB x SB is acoinductive Skip-relatiorif and only if R C 77 (R).

SinceR occurs covariantly in the clauses definisg(R ), the operator#” is monotonic with respect
to subset inclusion. Then the following fact immediatelildas by Tarsky theoreni [17] (see also [16]
for a discussion about the use of this result):

Fact 3.2 Let.s#° £ SB x SB and s#%+1 £ 7 (#¥); then
V(#) = U{R CSBXSB|R C H(R)} = Mken
is the greatest fixed point .

Then we define coinductively the following relation:
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Definition 3.3 (Coinductive skp-Compliance)

42 & % and B 2 y(2),

cok

where X is defined as in Fa¢t3.2.
A client p is said to becoinductivelyskp-compliantwith a servero, whenevep—£¢ o holds.

We say “coinductively compliant” as short for “coinductiyeskp-compliant”. By the last defini-
tion we have thatecx.b.x Afrecx.ax. We have as well tha A2%recx.(ax@b). In fact,aaa... €
Tr(recx.(@ax@b)) and—[b synch (recx.(ax®b))].

Proposition 3.4

skp _ skp
- = 23

Proof. [sketch] €) It sufficies to show that what stated in Definition]8I1(ii)ld®when we replace
-2 by +**. In casep || 1, we have thap +** o immediately by definition. Let us consider the case
pl Sic @.pi- Then we observe that—=* g andp | 1if and only if for any trace otr there exists a prefix
a such thato =2 @Dnen an.on for someH C | andpy, H oy, for all he H. Moreover,3k € |. a syncho
holds sincevk € |. —(ax synch o) contradicts Definitio 218. 1p || @;c, &.pi the proof proceeds in a
similar way.

(D) Let us assume /** g. This implies that-(p |} 1). Then, by Definitio_218, there exists
& c sTr(p| /o) such that eithef is finite but& # &'v for any &', or & is infinite and definitelyskp.

In the first case we proceed by induction on the lenght ofttaetions iné to contradict condition
Jk € 1. ax synch o in Definition[3.1(). In the infinite case, we get a contraitin to the
Vielva'. [(a.plo TR pillo’) = piRo’] (for the propem;) clauses in Definition 31L{ii). O

It is possible to show the relatioff*® to be decidable. In order to do that we define a formal system
that reflects the coinductive definition of tHe&® relation, and whose derivation rules can be looked at as
rules of a recursive, syntax-driven decision algorithmewehthe decision process coincides with a proof
reconstruction procedure.

In the formal system, the assumptions in an environment etteally markedassumptions. The
markings are used to prevent the possibility of getting asmbderivation for compliance statements that
allow for definitelyskp client||server interactions.

Definition 3.5 (A formal system for +*?)

i) A marked environment is a finite set of marked assumptions of the fqmh—* g’),, where
p’,0’ € SBande € {ok,no}.

i) Ajudgment is an expression of the fofim> p 4** g, wherel is a marked environment. The axioms
and rules of the system deriving judgments are in Figlire Erevthe environmerity, is defined by
Mok = {(p' % 0")okl (P’ % 0") gk €TV (p 4% 0")no € T},

We assume any marked environment t@bkerentthat is there can be no two assumptions with the same
compliance statement and different markings in the samgagmaent, like(p —*® o) and(p -
O)no. Moreover, it will be easy to check that the derivation restauction procedure always produce
coherent environments.

The intended meaning of a judgmént> p 4=* o is that if, for any(p’ =4 g’), € I, p’ 4** ¢’
holds, thenp —** ¢ holds as well, except for some judgments for which the ictéva betweerp and
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— (AX) - — (HyP)
F>1-F*g M (p 4 0)ox>p 40

[ > o{recx.a/x} 4 g’ (UNE-L) > o =" g{recx.0/x}

— (UNF-R)
N> o 4P recx.0

I > rec.o +* g’
vie(I\K).T"> S acpe ™ 0p Vje(Knl).T" > pj = 0
kekK
re Y acpc 1™ Paio
kek el
wherel” =T, (T ek a-Px 7** Dic) &.0i)no
M= Mok (ZkeK a-Px 1** Dic &-0i) ok

viel. e Pach 7o KCl  VkeK.[' o p 4 o
keK

—— (0.4-CpPL) - % T o
> Paco 4 Pbi.o FDK@ak-pw ga.o.
keK iel

wherel” =T, (@yek -k +** Bic bi-0i)no wherel” =T g1, (Brek 3Pk ™ Yicl &.01) ok

(+.®-CpPL)

(®.4+-CpL)

Figure 1: The formal system for ¢

o would produce definitelygkp syncrhonization traces. The use of markings rules out sydssiblity.
In fact the following Soundness and Completeness resultbtarois, as needed, for derivations with
empty environment.

Theorem 3.6 (Soundness and Completeness)
p1®o < 0>p-+®o.

The proof of the Soundness and Completeness property alaovbecobtained by first proving it
for a system without markings and allowing for definitelyp interaction sequences in the definition of
compliance. And then by showing that such definiteky sequences are ruled out if the derivations
are properly marked. The proof of the first part can be obthaleng the lines used inl[4] for a similar
system.

Theorem 3.7 (Decidability ofr>) The system of Figui€ 1 is decidable.

Proof. [Sketch] The system in Figufé 1 satisfies a sort of subformpubmerty. As a matter of fact
the behaviours used in the premises of any rule are subtdama Euitable and natural definition of
subterm) of those used in the premises of the rule. This @aflie system to be algorithmic: a decision
procedure consists in a breadth first searching for a proafjofigment in a bottom-up, syntax-driven,
way. Such proof reconstruction ends since, for any possitdech of the proof, we eventually find
either (1) an axiom(AX) or (2) an hypothesigHYP) or (3) a wrong hypothesis, that is a judgment
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of the form[,(p =4** 0)no > p =% o or, by the subformula property4) a previously encountered
judgment. In cas€3) or (4) are encountered along a branch, the derivation reconistnuatgorithm
fails. In particular, the presence (8) denotes the possibility of a definitellep synchronization trace.
Notice that the proof reconstruction is also determinjgiit possibly for the choice of the order in which
(UNF-L) and (UNF-R) occur along a branch in the proof tree, which is immateriahayg have to be
consecutive. The complete proof develops along the sameg lised for a similar proof in[[4], where we
resort to a similar argument used in [15] and thereafter @j.[1 O

Decidability of compliance is how easily got as a corollary.

Corollary 3.8 The relation—** is decidable.
Proof. By Theorem$ 3)6 arld 3.7. O

In the following we provide two simple example of applicatiof the syntax-driven derivation re-
construction algorithm described in the proof of Theotet 3n the first example the algorithm fails
because one of the possible interaction sequences foriéme Izland the serverecx.(a.x @ b) interac-
tion would be definitelyskp. In the second one the algorithm succeeds and produce titelgagvation.
Notice how the failure in the first example is due to the faat #dong the leftmost branch we encounter
awrong hypothesighat is a judgment of the fori, (p 4% 0)pno > p 1°* O.

Example 3.9 Giveng = recx.(a.x@® b), the reconstruction algorithm for b —** ¢ produces the fol-
lowing result:

FAIL!
b4*ac®db)pno>b+*acab
(sk _@ )no skj = h (UNF-R) skj h skj (AX)
(b+*a.0®bno > b—+** recx.(axeb) (b+*aocdb)ge > 1471
(+.®-CpPL)

> b+*aocaeb

— (UNF-R)
> b 4" recx.(a.x@b)

Example 3.10 Givenp = recx.b.x ando = recy.(a.b.ay® b.recx.b.x), the reconstruction algorithm for
> p ** g produces the following result:

(HYP)
(Vl)oka(VZ)oka(Vf%)oka(ﬁ)nO > Y (UNF-R) (HYP)
(V)ok: (V2)ok: (V) ok (Ya)no > bp 4" 0 (Le-CrL) (V1)ok, (V2)ok» (V6)ok > V5 (UNF-L-R)
(Vi)ok, (V2)ok, (BB)ok > bp 4**ac (UNF-L) (V1)ok: (¥2)oks (B)ok > P17 p (+.0-CPL)
(V)ox, (V2)ok, (B)ox > p 1*Fa.0 (++.6-CPL) (Yi)no, (¥2)no > bp 4 b.p (UNF-L-R)
(Vi)no, (V¥2)no > b.p bao - (Vi)no, (¥2)no > p % recx.b.x (+.6-CPL)
(Vi)no > b.p " ab.aodb.recx.b.x) '
— (UNF-R)
(Yi)no > bp+* 0o
— (+.®-CpPL)
> b.p*tC.o (UNF-L)
— — — NF-
> recX.b.x 4%® CT.recy.(a.b.ay® b.recx.b.x)
where y1=b.pF*®tT.o vaw=hp+*®ao
Yo =b.p * ab.a.o ®b.recx.b.x ¥ =b.p " b.p

ys=b.p +*bac
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4 The skp-subbehaviour relation

As mentioned in the Introduction, in the theory of contratis compliance relation induces a preorder
=. The relationo < ¢’ holds whenever, for any cliemt, if p 4 o thenp 4o’ .

If o, o’ andp are required to be iiB then this relation, which we calubbehaviour relatiofdubbed
=sin [2]), coincides with the testing must-preorder[13], ahis not the case if arbitrary contracts are
considered (see[5]). Here we relativize the definition & slubbehavior relation to the™® relation
studied in the previous section, obtaining a new relatidmctvwe callskp-subbehaviouand dub==®.

Definition 4.1 (skp-Subbehaviour)
OverSB it is defined the binary relatiow <=* ¢’ by

o=<*®g & VpeSB.[p*o=p-*0a].

Remark 4.2 It is not difficult to check thatx**Z < by means of the following easy counterexample.
We have that <*=** T.a. In fact all the possiblekp-compliant clients o are{1,a}, which are trivially
alsoskp-compliant with the servet.a by skipping the actio. Without the possibilty of skipping such
an action, we have thatis not a client oft.a anymore, whereas it is still so af That isa A C.a.

For what concern the opposite inclusion, we conjecture hdla. Of course the proof would not be
immediate. By Remark 2.10, we know thatC —=**, but this fact doesn’t imply thak is included in
=< because&r <*** g’ depends on a negative occurrence of the hypotlesi¥ o.

4.1 Dualsasminima property and decidability of <=

We proceed now towards the proof of decidability of #x@-subbehaviour relation. This will be obtained
as a corollary of the property that the dual of a sessionabetais actually the minimum among its
servers w.r.t=**. For any theory of subcontracts tlisals as minimaesult is quite relevant, since the
possibility of implementing contract-based query engirgdies on it. This is well explained in [14] in
the paragraph that we quote below.

Formal notions of compliance and subcontract relation neayded for implementing contract-based

query engines. The query for services that safisfg answered with the se?1(p) = {o | p 1 0}.

The complexity of running this query grows with the numbeisefvices stored in the repository.

A better strategy is to compute the dual contracpefdenoted byp' [p in our contex}, which

represents the canonical service satisfyinghat isp 4 p*) and then answering the query with the

set2;(p) ={o| o < pt}. If ptisthe<-smallest service that satisfipswe have2;(p) = 2,(p),

namely we are guaranteed that no service is mistakenly @xdluThe advantage of this approach is

that=< can be precomputed when services are registered in that@ypand the query engine needs

only scan through th&-minimal contracts.

(L.Padovant [14], Sect.1)

The minimum property of dual behaviours can be proved ugiaddllowing property:
pF*Py& y+*o = p+®a Q)
This property, however, is not easy to establish in presefickipped actions, as exemplified in the
following. It is immediate to check that:
ad-*bbad & bbad-+*ababad

Eachb in b.b.a.d skips ana before synchronizing with its du&l, whereas the action that synchronizes
with theain b.b.a.d is the last of a.b.a.b.a.d. Now, thea in a.d synchronizes after skipping the tvas
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corresponding to the first twio's of b.b.a.d. The action ira.b.a.b.a.d synchronizing with the in a.d,
however, it is not the last of a.b.a.b.a.d, but actually the first one.

This fact, fortunately, does not cause any problemafdr** a.b.a.b.a.d since thed in a.d synchro-
nizes with thed of a.b.a.b.a.d by skipping all the actionb.a.b.a between the firsi andd. The presence
of cases like these require to be carefully handled whenipggeroperty [(1) that is otherwise similar to
the analogous facts inl[2} 4].

To ease the proof we first consider an equivalent formulabibtine skp-compliance relation. We
introduce a relatioC between sequences of actions, such #iat.a, C b ... by holds whenever any
a; (going from left to right) coincides with sonig, provided that all the elements between the element
bn coinciding witha;_; andb; are distinct fromb;. For instancebbadC abababdandad C abababd
whereasad Z bbaa

Definition 4.3 (The C relation.)

i) The binary relation= C .#"*x 4" on finite and non empty sequences of input actions is indalgtiv
defined as follows.
Letabe /.

ebCaj...ab £ k>0 & b#ay,...,a
ebalCa;...axbb £ aCb& k>0 & b+#ay,...,a

i) The above relation is naturally extended.t¢6® x .4* and to.4"* x A4"®

The relationC will be used in the alternative coinductiwgp-compliance provided in Lemnia 4.5
below. It will be used to represent, on the left-hand side, ghinchronizing actions of the client and
on the right-hand side the corresponding actions of theesepossibly preceded by a finite number of
skippedactions. The relation is extended.t6” x .4 since a client can bekp-compliant with a server
even without ever terminating. It is extended 6" x .4 since a client can succesfully terminate even
if its server could be able to going on indefinitely.

The following property holds foi.

Lemma 4.4 The relationC is transitive.

Lemma 4.5 (Alternative coinductive skp-compliance)

V() =v(J)

where the operator # : #(SB x SB) — #(SB x SB) is defined as follows: for any relatior. C

SBx SB, (p,0) € # (&) if and only if eitherp | 1 or, wheneveip §{ 3 a.p1 & 0§ ¥ ic33;.0j], the
following statements hold:

(B||b|>0,0-2)#0
a) plYicai-p = vbst. o -2 o, JaC b. (p%p’ & p' 7o)
vb*” € Tr(o). JaC b. (p%l v pmé}x)
@ o 1-0

b) pll Diciai.pi = ~ _
o {Vjel.Vast.a%.(agg’&pj/a/)
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whereo =25 £ [0=2,8 Acc #.028] and 0==5 £ [0=25& ATc. V.0 =22
max max

The following property will be useful to show the dual-asamum property.

Lemma 4.6 Giveno m:i; with y ¥ g, there existT.t. y% Y & VI @Ej.yj. Moreover, for any

= ab .
bj we haves == o] with y, < g7
Lemma 4.7 For all p,o,y € SB: if p 4 yandy —** g thenp < o.

Proof. By Lemma 3.4, we have to prove the relatian= {(p,0) | Jy. p ¥** y & y+I** o} to be
a coinductive Skip-compliance. We shall do that by usingaliernative characterization of coinductive
skp-compliance of Lemmia4.5. Letando be such thap = y andy —** g for somey. There are two
cases, of which we consider the most complex one for lackatesp

pl ®ica.p : Letkel. Fromp - y,[4.5, we get tha{C® | yE:m>} = 0 and that,

vest.y=vy". y'| Y by, & Fnbn=ac & pT Y, 2)
max

By duality, we get that for alt s.t. V% V', ¥’ | @b;.y;. We can now infer thafa®” | o 2

} = 0, by distinguishing two cases: ¥l @Tp.Vp, it is immediate byy 4 o and Lemma 4J5.
Otherwise, by contradiction, let assume that there edStsuch thato a5 By y +4** ¢ and
Lemmd4.b we get that there exigt§~ a such that eitheT/% OFV%}X- We obtain an immediate
contradiction in the second case, whereas in the first ongyetva contradiction by the fact that

y:a> 1 and by [(2). Now, givero =2, from y ¥ g and Lemm&4)6, givea =2, there existg’
max max max

- I _ ab . .
sty= Vi, ¥i I ©bj.y;, moreover, for anp; we haveo =L oj with y;; = 7. From [2) we
max
get that

V==V LY b & Fhbn=ac & o v,

Sincey;,, 1% o}, we getp Ky,



F. Barbanera & U. de’Liguoro 107

Proposition 4.8 (Duals as minima)
Letp € SB. Thenp is the minimum server @, i.e. . Vo. p4* g = p=x* g

Proof. Let o andy be such thap 4% g andy = 0. It is immediate to check th@ 4** p. Hence,
by Lemmal 4.7 and the fact that theoperation is involutive, we have that—** g, so showing that
p =X g. O

We are finally in place to establish the following result.
Theorem 4.9 g=<®g < TI®g

Proof. (=) Letd /* g’. Since we hav& —** g, we get then thatr A** ¢’.
(«<) Let@ = @’. Then, by Propositioh 4.8, we get= 0 <** ¢’. O

By Theoreni 4.0 and decidability ef** stated in Corollary_3]8 we conclude:

Corollary 4.10 The relation==** is decidable.

5 Related works

What we devised in the present paper is not the only podgibiliweakening the notions of compliance
and sub-behaviour. An alternative approach in the settir(§jret-order and unrestricted) contracts has
been followed by Luca Padovani in [14].

We briefly recall Padovani's approach to compare with ouriclvis possible because session-
behaviours are particular contracts.[Inl[14] the inteoadibetween a client and a server can be mediated
(coordinated) by anrchestrator a particular process (a sortadtive channebr channel controlley with
the capability of buffering messages. Thanks to that, thees's “answers” to the client’s “requests” can
be delivered in a different order, so enabling a form of alymigous interactions, or kept indefinitely
in the buffer, that is equivalent tdiscardingthem. The weak-compliance relation resulting from the
presence of orchestrators, that we denote heré’binduces a preorder that is also investigated in [14],
and that here we refer to a§’.

Let us explain the use of orchestrators by means of an exarmptefollowing is the behaviour of a
ballot service similar to one we already described in theothiction. Logging-in can be retried in case
of wrong login or system overload. The messagalenotes the identifier of the transaction provided by
the server to its clients.

BallotServiceBehP £
recX.Login.(Wrong.X ¢ Overload.X ¢ 0k.Id.( VoteA.(Val-+Va2)
+ VoteB.(Vbl+Vb2) ) )

Now, let us assume to have a voter with the following behaviou
VoterBehP £ recx. Login.(Wrong.X+ Overload.X+ 0k.Vbl.VoteB)

Such a voter, besides not needing any identifier of the tcliosa intends to give the preference for
the vice-candidatdeforethe one for the main candidate. The feasibility of the irtBom between
VoterBehP andBallotServiceBehP can be guaranteed only by the presence of an orchestratoasuc

BallotOrchP £ recx. (Login,Login).( (Wrong,Wrong).X
V (Overload,Overload).X
V (0k,0k).(g,1d).(Vb1,¢€).(VoteB,VoteB).(€,Vbl))
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The actions of an orchestrator are actually pairs. The fidtestrating actioLogin,Login) means
that BallotOrch immediately delivers to the server a login, representechbyattionLogin to the right

of the first pair, as soon as this is received from the cliegpresented by the actidrogin to the left

of the same pair. Then, the orchestrating actiff1®ng, Wrong), (Overload,Overload) and(0Ok,0k),
and the use of the operator, express that, in caBellotOrch gets a messagérong, Overload or Ok
from the server, this message is immediately passed to igret ¢hnd the orchestration starts again in
case ofWrong or Overload).

In case the messa@ is received, the subsequent orchestrating actions begja, by).(VoteB, €).
The symbole represents ao-actionby the client and by the server respectively, and it has treetedf
buffering the other action in the pair. Therefore the mesgagrom the server is kept in a buffer since
the no-action symbat to the left of the first orchestrating action replaces theeetgdId. Simlarly
the messag®b1 is also kept in the buffer. Only after the reception of the saggeVoteB, which is
immediately passed to the server, the mes¥agdas delivered to the server, and the orchestration stops.
The messagé&d, instead, is never delivered.

The presence of an orchestrator hence allows for both asymohs interactions and the possibility
of disregarding messages. A natural restriction is impasedrchestrators irl_[14]: an orchestrator
cannot send a message if this has not been previously rdcéivéact, in the correct orchestrator above,
(VoteB, &) comes beforde,VoteB). This implies that also in Padovani’s setting it is not pbiesito
disregard input actions.

The generality of Padovani’s notion of orchestrated coamgle is paid in terms of a more complex
LTS formalizing client/server interaction, which depermsan orchestratof, that we denote byi. In
[14] the relationp <" o holds whenever there exists an orchestrdtsuch thaip % o.

To save decidability of the relevant properties, any caroechestrator must be dihite rank, where
the rank of an orchestratdris the bound of its buffering capability. To make this exjpltbe notation
p I o is used whenever there exists an orchestratof rankk such thap -} o.

In [14] the sub-behaviour relation induced by orchestratpliance is defined by:

o=fo & Vp[pio=3f.pd.

Notice that the relation! in the antecedent of the implication is just the usual stromgpliance. In the
same work the relatior” is proved to be decidable. Moreover the orchestrétor the definition can
be inferred fromo ando’ and it is the same for any possible clignt

From what said up to now Padovani orchestrated-compliaglaéon seems to include ours, since the
possibility of skippingoutput actions can be mimicked by orchestrators that keegsages indefinitely
inside their buffers, without ever delivering them.

However, apart from the restriction to session behavidhesiwo compliance relations are actually
incomparablebecause of the finiteness of the ranks of correct orchestratal of the possibility in our
setting to discard infinitely many (non consecutive) ouguttons from the server side. A counterexam-
ple to the inclusion ofi*** in <* can be obtained by slightly modifying the example used lgefdret
us consider the ballot service with the extra output aclimfioW, representing some informations about
why a login has not been accepted:

BallotServiceBehP2 £
recX. Login.(Wrong.InfoW.X ¢ Overload.x ¢ 0k.Id.( VoteA.(Val+Va2)
+ VoteB. (Vb1 +Vb2) ) )

Consider now the behaviour of a possible voter who can initietfiriry to log-in until (if ever) the login
is accepted. This voter is not interested about why a loginrwd been accepted, nor it is interested in
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getting the transaction identifier. Also it does not wishxpress a vote for the vice-candidates:
VoterBehP2 = recx. Login.(Wrong. X+ Overload. X+ Ok.VoteB).

Then we have tha¥oterBehP2 " BallotServiceBehP2, that isVoterBehP2 is not compliant with the
serverBallotServiceBehP2 according to the Padovani’s orchestrated compliance.dirilfe voter could
keep on sending an incorrect login indefinitely, but no adrarchestrator is allowed to buffer an un-
bounded number of messages, like 1l oW ones. As a matter of fact, the actual interaction between
VoterBehP2 and BallotServiceBehP2 should be carried on in Padovani's setting through the usof
orchestrator like the following one:

BallotOrchP2 £ recx. (Login,Login).( (Wrong,Wrong).(¢, InfoW).X
V (Overload,Qverload). X
V (Ok,0k).(g,1d).(VoteB,VoteB) )

which should be able to buffer an unbounded numberndfoWw messages corresponding to the output
actionsInfoW on the server side. This implies tHaallotOrchP2 is not of finite rank and hence it is not
correct.

The definition ofskp-compliance allows to diregard infinitely many output actidrom the server,
provided that they are not all consecutive. In particMaterBehP2 <= BallotServiceBehP2. So, for-
mally we get:

Proposition 5.1 Let " be Padovani’'s weak k-compliance restricted to session\ietes. Then, for
any k, we have: e g

The inclusion does hold, instead, if we consider dittite behaviours (see Definitidn 2.4):
Proposition 5.2 For any pair offinite session behaviours, g, there exists a k 0 such that
pi*®0c=p+Ho

In a sense, we think that th&p-compliance relation we investigate in the present pap¢neas
minimal weakening of the standard notion of compliance aqtiring the introduction of orchestrators.

6 Conclusion and future work

In the setting of session-behaviors we have relaxed thehsynization rules by allowing output actions
on the server side to be skipped by a client that cannot imatedglisynchronize with them. This gives
rise to a weaker notion of compliance, callgkp-compliance, and consequently to a new concept of
sub-behaviour among servers. We have provedsdhptcompliance is still decidable, by exhibiting a
derivation system which is sound and complete w.r.t. thecmwpliance relation, and which is algorith-
mic, namely it implicitly describes an algorithm to deciglep-compliance. Further we have shown that
the duals-as-minima property is preserved in the new gettitich implies decidability of the induced
sub-behaviour relation.

In the Introduction we have justified the loosening of comptie by means of examples. Another
contexts in which discarding some actions during cliemiseinteraction seems a desirable feature worth
to be investigated is that of reversible computations. Ini@dar when the client (or server) of an
interaction can roll-back to a previously encountered kpemt (so forcing a roll-back on the server
(client) side). Then the notion of compliance should bergftieened to guarantee that client's requests
keep on being satisfied even in case, for any reason, clielgemwer perform a roll-back, as formalized
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and investigated in [3]. It is not difficult to envisage a ation where the interaction partners could roll-
back in two states that would be compliant but for the presefan output that should have been already
sent and received before the roll-back took place. It iscealsle to let the two partners be compliant,
since that particular output action could be safely disedrd
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