ABS-NET: Fully Decentralized Runtime Adaptation for
Distributed Objects

Karl Palmskog Mads Dam Andreas Lundblad Ali Jafari
School of Computer Science and Communication School of Computer Science
KTH Royal Institute of Technology Reykjavik University
Stockholm, Sweden Reykjavik, Iceland
{palmskog,mfd,landreas }@kth.se alill@ru.is

We present a formalized, fully decentralized runtime seraffior a core subset of ABS, a language
and framework for modelling distributed object-orientgdtems. The semantics incorporates an ab-
stract graph representation of a network infrastructuit, metwork endpoints represented as graph
nodes, and links as arcs with buffers, corresponding to @girl2 interconnects. The key prob-
lem we wish to address is how to allocate computational taskedes so that certain performance
objectives are met. To this end, we use the semantics as adtan for performing network-
adaptive task execution via object migration between nodemptability is analyzed in terms of
three Quality of Service objectives: node load, arc loadrapdsage latency. We have implemented
the key parts of our semantics in a simulator and evaluatedvell objectives are achieved for
some application-relevant choices of network topologgnation procedure and ABS program. The
evaluation suggests that it is feasible in a decentraligéithg to continually meet both the objective
of a node-balanced task allocation and make headway towarisizing communication, and thus
arc load and message latency.

1 Introduction

An important problem, made more relevant by recent interesioud computing, is how to decou-
ple computational processes from the underlying physitahstructure on which they execute. One
motivation for such decoupling is to free applications froandling resource allocation issues, which
can instead be taken care of in a provably correct and tra@mspfashion using generic, application-
independent mechanismis [8]. Potentially, tasks can thepebfermed at the physical machine most
suited at the moment, continually meeting global systenuirements such as utilization and power
consumption, or task-local requirements such as a respionse

We consider the problem of runtime adaptation of tasks irctimgext of a core subset of ABS [12],
a language for modelling distributed object-oriented eyt developed in the EU FP7 HATS project. In
ongoing work [8/ 7] we are developing network-aware sengarftr different fragments of ABS with
some novel features. Specifically, we let objects executeetwork nodes connected point-to-point
using asynchronous message passing links, and show hatiofogaependent routing in such a setting
can be used to support efficient, transparent, and robudt-fiee) object migration. Here, we examine
how adaptation can be performed in such a model by a contmiteess running on each node.

To enable precise reasoning and experiments on adaptalitdefine three central Quality of Ser-
vices (Qo0S) objectives against which a solution for runtedeptation in our context can be assessed:
node load, arc load and message latency. We abstract from pnactical, implementation-level con-
cerns when interpreting these objectives in our setting [dad for a node is the number of active tasks
running on it. The load for an arc is the number of messagesrsing the arc. The latency for a message

M. Carbone, I. Lanese, A. Lluch-Lafuente, A. Sokolova (fEds.
6th Interaction and Concurrency Experience (ICE 2013) © K. Palmskog, M. Dam, A. Lundblad & A. Jafari
EPTCS 131, 2013, pp. 85=100, d0i:10.4204/EPTCS.131.8

http://dx.doi.org/10.4204/EPTCS.131.8

86 ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

is the number of hops needed to reach its destination. Wer#sgrict our consideration of adaptability
to the problem of how and when to migrate objects to achiegeptijectives as well as possible, given
a specific network topology, ABS program, and node-locatedoire for managing migrations. Using a
simulator which implements the key parts of our semantieshave investigated how well objectives are
met for some application-relevant choices of network togws, programs and migration procedures.
Sectior 2 anf]3 describe the ABS language and our novel ABBdé¢Bantics for execution of ABS
programs in a network. Sectidnh 4 describes our approachntinte adaptation via object migration.
Sectior b describes the simulator, our benchmark scenarodssimulation results; Sectibh 6 concludes.

2 ABS Background

ABS [11] is a language and framework for modelling distrdalibbject-oriented systems, developed in
the EU FP7 HATS project. Core ABS [12] is a language which aimst the main features of ABS: a
functional level for expressing data structures and sftieefree internal computations of objects, and
an object level for expressing concurrent objects, and conication among such objects via method
invocation. The object level defines syntax—reminiscenafa’s—for interfaces, classes, methods,
object creation and method calls. The object level is aceomeol by a type system and an operational
semantics which preserves well-typing. One consequenaelbtyping is that many runtime errors are
ruled out for type-checked programs; when an object makal &o@ methodnusing an object identifier
0, there always exists an object associated wjtlvhich is an instance of a class which implememts
ABS uses placeholders in the form of futures for the resutnethod calls, allowing a caller to avoid
blocking until the result value is actually required. In tegiant of Core ABS we consider, a single
object is the unit of concurrency, as in the variant of Alegral. [1]. This means that objects at runtime
can be viewed as actors, communicating between themseailgsia asynchronous message passing.
An example of an ABS interface with implementing classesvusmbelow. TheCastNode inter-
face defines a methajgregate , which, when called on an object, performs a convergecasatipn
in the object-reference binary tree rooted at that objepec8ically, this means that if an object imple-
mentingCastNode is a leaf in the tree (an instance lodafNode), it simply returns a locally known
integer, but if the object has child nodes in the tree (arams ofBranchNode), aggregate is
called on both of those objects and the results are added todhl integer and returned. In this way, the
aggregate method for the objeab always returns the aggregate (sum) of all local values itiihary
tree of objects rooted @& The variablegLeft andfRight in the implementation ohggregate
hold the placeholders (futures) for integers that resolinfthe asynchronous method calls. The values
are then retrieved through thget operator, which can cause blocking until the method calffimeshed.

i nterface CastNode { cl ass LeafCastNode(Int val) i npl emrent's CastNode {
Int aggregate(); Int aggregate() { return val; }

} }

cl ass BranchCastNode(Int val, CastNode left, CastNode right) i npl emrent's CastNode {

Int aggregate() {
Fut<int> fLeft = leftlaggregate();
Fut<Int> fRight = rightlaggregate();
Int aggregateLeft = flLeft. get;
Int aggregateRight = fRight. get;
return val + aggregateLeft + aggregateRight;

K. Palmskog, M. Dam, A. Lundblad & A. Jafari 87

3 Network Model and Semantics

To reason about object adaptability with respect to enwiremtal conditions, we bring selected parts of
the infrastructure of a distributed system into our modamaly, network endpoints and links. Endpoints
and links are modelled as graph nodes and arcs with FIFQ-etdressage queues, respectively. Con-
ceptually, a node consists of an interpreter layer, whera! lobjects reside, and a node controller, which
acts as a mediator between the environment and node-loegitsjas illustrated in Figukeé 1. The dashed
arrow in the figure signifies that the identifier of obj@stis known by objecio,, allowing o1 to send
method invocations to,. The structure is similar to that used in other programnt@émguage oriented
distributed system models, e.g., a proposed semanticsitiomef Erlang[[18]. Here, the node controller
also contains logic for decision-making on adaptabilitge abstractly, adaptability in this context be-
comes the problem of deciding when and where to migrate tshje@achieve the QoS objectives—with
the added constraint that all reallocations must be dedatzdly at each node.

nodeug] (nodeu;
node controller node controller
routing table 1T routing table
O
interpreter | | interpreter

Figure 1: Nodes, node controllers, and interpreter layers.

To achieve location transparency, the basic problem isutermessages correctly between objects
that have no prior, mutual knowledge of where they are |latdtéany solutions have been examined in
the literature, including centralized or decentralizechlon servers, pointer chaining, and broadcast or
multicast search. Sewell et al. [16] discuss many of thekgisos, and their relative merits.

We are developing a novel approach to location transparbasgd on location-independent (also
called name-independent) routirig [8], where the idea issferdthe maintenance of message routes to
an explicit routing process executing independently ofiapfion-level messaging. Adapted to the ap-
proach suggested here, a node controller executing on easienk node is responsible for maintaining
routing information by exchanging routing tables with adiat nodes in the network. This allows object
migration to be supported in a transparent fashion with ambglest extension to the runtime state.

We have defined a new operational semantics of Core ABS pragrim the same rewriting logic
style [B] as the standard semantics, that characterizket@sution of objects located on, and moving
between, network nodes. Adaptability features such asngtdble exchange and object migration are
modelled as nondeterministic events, with the node cdatrobnsisting of nothing more than a globally
unique identifier and a routing table. We refer to the contimnaof the Core ABS functional layer,
Core ABS object syntax, and our novel operational semaatigsBS-NET. We intend for the semantics
to both guide implementation, by defining a baseline foringtg program runtime behaviour similar to
Core ABS in a networked, decentralized setting, and prosfrtunities for further theoretical analysis
of specific adaptability strategies by refinement.

88 ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

A complete description of the syntax and formal semanticbath Core ABS and ABS-NET is
available in an appendix_[14], with semantic equivalencplaed elsewhere [7]. Below, we give an
overview of the ABS-NET network model and semantics, witlaidle on node controller behaviour,
which is to an extent agnostic towards the underlying aaterrenment.

3.1 Runtime Configurations

The node controller’s relationship with the interpretgrdiaresiding on the node is symbiotic. On one
hand, the node controller provides message delivery ssnand callback functions to obtain new glob-
ally unique object identifiers for objects residing in théeipreter layer. On the other hand, the node
controller triggers object movement by using callback fiors that the interpreter layer makes avail-
able. We assume a node controller is aware of the asynctsdimis through which it can communicate
via message passing with other node controllers. In essémea@im is that node controllers should be
realizable on top of a network with only OSI layer 2 interceats, meaning that the required primitives
for computation and communication can be implemented tyrechardware with high performance. If
this is the case, running controllers on top of overlaysgibigher-layer interconnects such as sockets is
also feasible, which is what we do in our simulator.

The global state in ABS-NET is formally a pajnet} {cn}. The network parfnet} is a set of
nodes and arcs. In a nodd (u,), u is a node identifier (assumed globally unique) and a routing
table, used to route object-related messages in the pragetidn. In an arar (u,Q,U'), representing
a unidirectional link fromu to U, Q is a FIFO-ordered queue of messages. The other part of thalglo
state,{cn}, is a set of objects, with each object implicitly attachedtoode in the network, and able
to send and receive messages with the assistance of itsthostssagensgcan be (1) a table message
TABLE (T), used to pass a routing takt€from one node to another to update local routes, (2) an object
message @®JECT(object) containing a complete runtime objeabjectto facilitate mobility, or (3) an
application-level message transmitted from one objectntutheer, which for ABS is either a method
invocation (Q\LL message) or the resolved value of a futureXBRE message). Given an application-
level message, the functiatest(msg returns the identifier of the intended recipient object, levkiie
function id returns the identifier of a given runtime object.

The nature of a FIFO queu@ of messages is specified through three functiemsueue, dequeue
andfirst. enqueue(Q, msg returns the queue that results when the mesezges added to the back
of Q. If Qis non-emptyfirst(Q) returns the message at the front@fanddequeue(Q) returns the
queue that results when the front message is removed. Ratybrnqueue(Q, msg = Q' is defined as

a relationQ **(™9, oy while the conjunction thatirst(Q) = msganddequeue(Q) = Q is defined
asQ

dequeue (MsgQ Q/-

The nature of a routing table is specified through the funeti@pdate, next, register and
replace, and an infix operatoe. The functionupdate takes three arguments: the routing table
of the current node, the node identifigrof the adjacent node, and the routing tablef the adjacent
node. The function returns a routing talsle which incorporates the routes frorhinto t if appropriate,
with the constraint that all such routes must go through tieden/. For brevity,update(t,u,1’) = 1”
is defined as a relation 22", 7 The functionnext takes three arguments: the routing tablef
the current node, the object identifier of the node we want the next hop for, and the default hop
which is the identifier of the current node. The function retuthe node identifiet’ which is the next
hop ofd’ according to the table. The functiargister takes four arguments: the routing tallef the
current node, the object identifiet of the object we want to add a route for, the node identifief a

K. Palmskog, M. Dam, A. Lundblad & A. Jafari 89

neighbour node (usually self) which is the next hop, and amegative integek for the distance to the
object (in all instances in the rules, itis 0). The functieturns a routing table’ which incorporates the
new route. For brevityregister(7,0,u,k) = 7’ is defined as a relation &%= "X, 1 The function
replace takes four arguments (of the same typeragister): the routing table of the current node,
the object identifieo’ of the object we want to replace the route for, the node iflenti of a neighbour
node which is the next hop, and a natural numbéar the distance to the object. The function returns
a routing tabler’ which has removed any existing routes rand added the route given. For brevity,
replace(T,0,u,k) = T’ is defined as a relation=222°°%Y, 1/ The claimo € 7, with a node identifier
u given by the context, means that, according tthe object with identifieo is located on the node

The two parts of the global state can evolve jointly by parfimg synchronized labelled transitions,
but also separately without exchanging information. THesdior such synchronization and separate
evolution are shown in Figufé 2. A labelis eithermv(object) (moving an object)rg(0o,0’) (registering
a new object identifier), otr(o,msg (transporting a message). Intuitively, a label with an twer
means that information is outgoing or being sent, while &llaithout overline means information is
incoming or being received. An ABS-NET execution of an ABSgyam is a possibly infinite sequence
of global states, such that the transition between a prevétate and the next is valid. The program is
not explicitly represented in a state, since it assumedwaya be available unaltered at all nodes. The
network topology is static during an execution, and we docoosider failures such as message losses.

(CN-QUT-NET—IN-RED) (NET—(_)UT-CN-IN-RED)
(NET-RED) (CN-RED) {ent = {en'} {net} % {net}
{net} — {net} {cn} — {cn'} {nett % {net} {cn} & {en'}
{net} {cn} — {net}{cn} {net}{cn} — {net}{cn'} {net} {cn} — {net} {cn'} {net} {cn} — {net} {cn'}

Figure 2: ABS-NET reduction rules connecting objects artavaeks.

Intuitively, transitions by the ruleeT-Rep are driven by node-related events, e.g., timeouts triggeri
routing table exchanges, or application-level messagesveceived and routed further. Transitions
by cn-ReD are triggered when objects execute ABS program statemesti®nly change internal state.
CN-OuT-NET-IN-RED IS USed when program execution requires interaction wiletivironment to proceed
(e.g., method calls) and for object migratiameT-OuT-Cn-IN-RED iS Used when a node transmits objects
or application-level messages received through linkseddbal interpreter layer.

3.2 Node Controller Behaviour

The reduction relation for networks, alluded to Figlte 2défined by the rules in Figuld 3. The
rules apply to subsets of nodes and arcs, such that the demram be rearranged to match the left-
hand side. The labelled-transition rulestMsc-Recv-OuT, NET-MSG-SEND-IN, NET-OBJECTSEND-IN and
NeT-New-OBJec®IN, Where a node exchanges information with an object, all hegtemiseo € T to
restrict actions to pertain to node-local objects. Thisaw lobject location is reflected in ABS-NET.
fresh(0) means that the identifieris globally unique.

For proper progress in execution, we assume networks aretsat (1) there are no dangling arcs
referencing non-existent nodes, (2) for every arc betweeles there is an arc in the opposite direction,
and (3) every node comes with a self-loop arc, i.e., an amggbbm and to the node. Self-loop arcs
are important for two reasons. First, it allows us to use #rmaesrules for message passing in both the
case where the sender object is at a different node from tiedver object, and where the sender is at
the same node as the receiver. Once a message has been musaifdoop queue, it appears as if it

90

(NET-TABLE-SEND)

ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

(NET-TABLE-RECV)

doqueus (TABLE (7)) (NET-MSG-ReECV-OUT)
_—

u #U Q dequeue (MsQ

Q enqueue (TABLE (T)) Q/ update (7/,U) 7 (?est (msg -0 QIO cr
nd (U T)ar (LQ.U) or (¥, Qund .1 ar (/,Q.U)nd (u,7)

— nd(u T)ar(u,Q,U) %ar(u Q,u)nd (u, ") tr(oms

(NET-MSG-SEND-IN)

0€T dest(msg=0

next (1,0 ,u) =Uu
enqueue (MsQ
Q———«Q

9 ar(U,Q,u)nd (u,1)

270

(NET-ROUTE-FURTHER)
dequeue (MsQ
_—

Q | dest(msg=0 O¢T
next (T,0,u)=U" Q M) Q,

nd (u,T)ar (u,Q,u

tr(0,ms
(0.msg

)
nd (u,T)ar (u,Q,

(NET-OBJECTSEND-IN)

oetr U#u

. replace(o,U,1)
B

T/

enqueue (OBJECT(object) Q,

ar (U,Qq,u)nd (u,T)ar (u,Qz,u")

— ar(U,Qq,u)nd (u,) ar (u, Q,, u")

u)
(NET-OBJECTFRECV-OUT)

id(objec) =0 (NET-NEW-OBJECTIN)

nd (u,T) ar (u,Q,u’)

OB (1, ar (U, Q1)

Figure

o] bj
0 dequeue (OBJECT (object) Q fresh(d) ocT
replace(0u0), [register(0.u0)
/
b_ar(u .Q.u)nd (u,T) nd (U, 7) 5% nd (u,)
= (OB ar (W, Q) nd (u,)

3: Node controller reduction rules.

came from some other node, and the mide-Msc-Recv-OuT can be applied. Second, it is not always the

case that there is a route to the rec

ipient of a message, deechthe possibility of stale routing tables.

However, messages must be dealt with somehow, in partidutey are coming from some other node,
from which there could be other important messages pend#irgce, they are put in the self-loop queue,
i.e., the default next hop of an application-level messadbéa node itself.

The ABS-NET reduction rules for objects at runtime are defito a technical report [14]. Com-
pared to Core ABS, the state of an object has been extende@mwihput and an output queues for asyn-

chronous transfer of application-lev
In contrast, the standard Core ABS

el messages, andiatste to keep track of resolved future values.
semantics handles tesoaAnd querying of futures in a centralized

way. In fact, all rule premises from the standard semantiasgertain to more than object-local state are
absent in ABS-NET—its decentralized nature is syntad{icgbparent.

4 Adaptation

We consider three QoS objectives a

gainst which runtimetatiap solutions can be assessed: node load,

arc load and message latency. In our setting, the definifionde load is simple but coarse grained: the
load on a node is the number of objects located amwith active tasks. One advantage of this measure

is that it is an intrinsic property of ru

ntime configuratioMe need a model-intrinsic measure of load to

enable reasoning at an abstract level about convergenedatoded allocation and that loads stay within
a certain range. One disadvantage of the approach is thaitsitté take into account the varying use
of memory and processing power among tasks. However, in ateimentation, a more fine-grained
measure of load can be adopted, as long as it is linear in tmdauof active tasks.

We define the load of a particular arc as the number of mess$emyessing it per simulated unit of
time. Hence, global minimization of arc load means that aimmath number of inter-node messages are

K. Palmskog, M. Dam, A. Lundblad & A. Jafari 91

sent overall, with respect to the current state of routidmets at nodes. Unless all routing tables are
optimal (minimum stretch), however, there is no guarantet the number of hops, i.e., latency, of a
particular object-addressed message is minimal.

In our evaluation of runtime adaptation, we use ABS progrtrasare nonterminating and cyclical.
The motivation is that for adaptations to current condgitmhave a chance of conveying benefits, similar
conditions must hold in the future. There is no obvious phyoattempting to adapt when future states
are random independently of the current state.

Although we wish to simultaneously meet all of our QoS oljes fully, we consider node load
balancing our primary concern. Load balancing solutioesaéso relatively well-studied in the literature,
making it easier to find a good starting point. Azar etlal. [@jsider the problem of achieving balanced
allocations in the framework of stochastic processes, avtiés viewed as stepwise allocations of balls
into bins. They highlight the use of greedy schemes for dyicknverging to a ball-to-bin assignment
where the maximum number of balls in any bin is minimized. Ten drawback of this approach in
a distributed setting is the reliance on atomic, singlegassints of a ball to a bin at each algorithm
step. Even-Dar and Mansour! [9] study load balancing in ailiged setting where allocations are
not necessarily done one-at-a-time. They give a distribatgorithm for selfish rerouting that quickly
converges to a Nash equilibrium, which corresponds to anbathresource allocation. However, at
each round, locally computing a new allocation requiresiftaexact knowledge of all loads in the
system, which is complicated and costly to acquire in theetursetting. Berenbrink et al.][3] describe
and analyze fully distributed algorithms which requireyotdcal knowledge of the total number of
resources and the load of one other resource to perform ke gk migration step. The algorithms,
some of which have attractive expected time for convergeoae be straightforwardly translated to a
synchronous, round-based distributed setting and futtharmessage-passing setting, assuming some
inherent synchrony. One important assumption made in ti@ighm analysis is that a task can migrate
to any other resource in a single concurrent round. For ttapasty to hold, the underlying network
graph must be complete, which we do not generally assume.

A factor in the convergence time is whether neutral movesboeed, i.e., whether a migration can
happen even when, as far as can be told locally, the move dbessult in a more balanced allocation but
merely an equally good one. For allocations in a sparse mktgraph where load differences between
neighbours are one, there can nevertheless be maximalifter@dces in the order of the graph diameter,
which can be significant. With neutral moves, such allocetican be improved on.

The problem of oscillating behaviour during task balanaiag be mitigated by the use of coin flips
before finalizing decisions to migrate tasks, as in the #lyois of Berenbrink et al. Oscillation can be
worsened by reliance on stale information, but if the infation is nottoo stale, oscillation periods can
sometimes be bounded [10].

The literature on load balancing related to scientific cotimgucontains work on simultaneously op-
timizing task allocations and communication overhead.dxample, Cosenza et &l [6] give a distributed
load balancing scheme for simulations involving agentsingin space from worker to worker. The
scheme, which is validated experimentally, optimizes batiker load and communication overhead
between workers, but assumes only a small area of intenesaét agent, with agents unable to commu-
nicate with other agents outside this area. In the curremkwewo objects can communicate whenever
the identifier of one of them is known to the other, making itdes to minimize communication over-
head. Catalyurek et al.][4] describe how to use hypergragitipaing to minimize both communication
volume and migration time of tasks for parallel scientifienputations. However, the repartitioning is
performed in batch and requires complete knowledge of tteeafad computations on each node.

At this initial stage of the work, we do not consider the cdsnagration itself in terms of messaging

92 ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

and other resources. Hence, we only measure communicattenns of messages exchanged between
objects, ignoring overhead in terms of routing and loadtesl messages.

5 Simulator

We have evaluated our runtime adaptation approach by dewgla simulator for running ABS programs
in a network of nodes according to the ABS-NET semantics. e lhun the simulator with a variety of
network node topologies and object migration procedurea namber of proposed synthetic scenarios
defined by ABS programs.

Our simulator’s main purposes are to serve as a proof-ofequinfor ABS-NET and to allow us to
run adaptability case studies with particular programs tapdlogies. Specifically, we are interested
in studying convergence properties of object migratiorcedures in practice, and in showing that our
approach to distributed execution scales to networks withymodes.

The simulator is implemented in Java. Each node contr@dlenplemented as a Java thread, which
communicates with other controllers through TCP socketisigthe KryoNet network library [13]. One
reason for the choice of sockets is to enable to scale siloutabver several physical machines and a
large number of simulated network nodes. All node contrslla the network have a representation of
the abstract syntax tree of the ABS program being executkeidivis generated from ABS program code
by the lexing and parsing frontend shared by most ABS backend

As in the conceptual model and the formal semantics, a nauteatier can have zero or more objects,
each having at most one active task. An active task has aensgferto the statement currently being
executed in the abstract syntax tree. We call an objecteaigtivhas an active task. Scheduling of active
tasks is done at the node controller level in a round-robshitan for active objects. More precisely, the
scheduler deterministically steps all active tasks, chdgkactive objects, and then repeats the process
on the new set of active tasks.

We implement statement execution by interpretation. Thameason for this choice is to enable
easy serialization of objects between executing statesnengiet immediate results from load balancing,
we must be able to migrate active objects. One drawback ofjusterpretation is that local execution
is slow and resource-demanding compared to execution isttémelard ABS backends.

A node controller is associated with a unique TCP port on tst iystem. Besides a list of neighbour
handles, which abstract over underlying sockets, and afllstal objects, the node controller maintains
a routing table. The routing table is broadcasted to neigithafter entries have been changed or added
as a result of statement execution or incorporation of sofr@m neighbour messages. Hence, except
when many locations have been updated in a short intervagxyect routing tables to be up-to-date or
nearly so, taking into account the network size restrictiohthe simulator.

Network topology setup and program loading is handled biptieg on top of a custom simple
command-line interface (CLI). When starting up, a node abletr is assigned a migration procedure
through the CLI, which is the same for all node controllershie network. One desirable feature that is
not implemented is CLI control of link characteristics, s delays.

By default, the simulator starts the initial task on a sirgjertup node. The initial task is defined by
the statements in the mandatory starting block of the AB§nara. In all our programs, this task creates
all the objects used for the duration of the program. Migratind logging does not commence until a
method with the namsetupFinished is called on some object. There are several reasons for this
kind of initialization: it is easier to predict load balangibehaviour with a fixed set of objects, and it is
problematic to create new objects on the fly without garbagjection, which we have not implemented.

K. Palmskog, M. Dam, A. Lundblad & A. Jafari 93

5.1 Scenarios

A network configuration determines the size and topologyefrtetwork; large and dense networks give
more overhead in the form of routing and load messaging, mgasimulations slower. Currently, highly
connected topologies with in the order of 25 network nodasbeasimulated in reasonable time. On this
note, we limit the evaluation to networks with three distinederlying network topologies from sparsely
to fully connected: grids, hypergraphs and full meshes. lé2ge initial setup for each topology has 32
nodes. Since the simulator scales to at least in the orded®hades for sparsely connected topologies,
we also investigate grids larger than 32 nodes to companitses

For defining object behaviour, we have developed a numberB8 Arograms specifically to run
in our simulator. All programs have a setup phase, where d fixenber of objects are initialized,
and a phase where the generated objects perform some coimpubassibly involving communication;
there are no short-lived dynamically created objects. Hgrragrams but one, which implements the
Chord distributed hash table (DHT) algorithin_[17], comnuation patterns among generated objects
follow straightforwardly from the code. This makes it eas@follow what happens during a simulation
and to reason about how far an allocation of objects to ncglé®im the optimum, factors which we
considered particularly important in scenario developmefter running initial simulations, we have
adjusted parameters in our programs, and in some cases adugidnally redundant instructions to
get constant and consistent load and messaging, since gration procedures consider mainly objects
with active tasks. With spurious activity among nodes, ragsg) and load varies greatly, and progress
becomes hard to discern. The programs below are availabiedhs]:

I ndependent Tasks. abs The starting task generates objects, and each generatect abralled
upon to perform a long-running task. There is no commurdcaiimong workers—only briefly
at startup between the coordinator object, which initediand assigns tasks, and the generated
objects. Since there is no communication, an optimal aliogds an even distribution of objects
among nodes, regardless of the network topology.

St ar . abs An object star configuration consists of one center objedtare or more fringe objects.
The fringe objects in the star continually communicate wite center object, but not among
themselves. The program builds a number of independenttatifr configurations.

Ri ng. abs The starting task generates objects which know the idergtifiethe next object in the ring.
The last object generated gets the identifier of the firstabbjEhe first object, when called, calls
its next object, and so on, until the object which has the dibgect as next object is reached. In
the computation phase, many such calls traverse the ringtsineously.

Chor dDHT. abs Animplementation of the Chord DHT algorithm. Key-value rpaqms are distributed
between a number of objects, which all support a put/getfatte to clients. Objects are arranged
in aring, but aside from references to their neighboursh eagect has logn) “fingers”, references
to non-adjacent objects, wheneis the size of the keyspace. The addition, or join, of an dbjec
to the ring places the new object at a particular positioretbam its identifier and can trigger
global reconfiguration of the ring. During setup, 128 olsge&te joined to the chord, and each
object becomes associated with either a producer objesthvdontinually puts values into the
DHT, or a consumer object, which continually attempts toieee values from the DHT using
pseudorandom keys.

We consider only migration procedures that as a first pyidsdtiance out load evenly among nodes in
the network. As a consequence, a simulated node contraligimially informs neighbour nodes of its

94 ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

load when appropriate, and receives load messages frorhhaeigs in turn, regardless of the migration
procedure used. In the simulator, each migration procedefiees a callback method which takes the
affected node controller as a parameter. The callback rdethovoked, and can result in the migration
of several objects to neighbour nodes. The migration pnoesdused are described below.

Berenbrink et al. An adapted version of the distributed load balancing algoriby Berenbrink et al.
[3], which does not allow neutral moves. One notable diffieeein the simulator implementation
from the abstract description given in Algorittith 1 is thalyomfixed small number of objects (20)
have the possibility to migrate in each cycle, because dfdion the sizes of message buffers.

Berenbrink et al. with neutral moves An adapted version of the distributed load balancing atgori
by Berenbrink et al., which does allow neutral moves, andefloee converges more slowly. The
only difference from Algorithni 11 is that the if-condition s> I’ instead ofl > I’ + 1. As deter-
mined experimentally, only migrating one or two objects pede per cycle leads to significantly
less oscillation of objects, compared to when migratingetwr more.

Berenbrink et al. with communication intensity A variant of the preceding procedure, where objects
are selected for migration based on their affinity to the doemly) chosen neighbour node, as
determined by their communication history with objectshie heighbour node’s direction. The
communication history is a list of other objects that a gigbject has communicated with recently,
as given by abstract object-local time, defined by the nurobtasks finished since initialization.
The affinity of an object to the neighbour node is then quadtiis the number of objects in the
communication history that are located in the directiorhefhode, according to the routing table.

Weighted neighbour load difference Once every cycle, an object and an adjacent node are chosen un
formly at random and independently. Then, a probability ajration is calculated and enacted
based on the difference in load between the current nodeh@nchbsen node, with probability 1
for a difference of 10 or more, and probability 0 for a negatiNfference. If the load difference is
d, the migration probability becomq%, adjusted to closest number in the interj@ll].

Weighted neighbour load difference with communication inensity Given a randomly chosen object
and adjacent node as in the previous procedure, we definedhahglity of migration according
to communication intensity as the number of entries in tHeatls communication history found
in the direction of the node, divided by the total number dfies in the history. This probability
is then combined via weighted averaging with the neighboad Idifference probability to define
the weighted neighbour load with communication procedwe.have used the weight2for the
communication intensity probability and&for the neighbour’s load probability.

Algorithm 1 Berenbrink et al. load balancing cycle.
for each active objecb do
let U be a neighbour chosen uniformly at random
let| be the current load, lét be the last known load af
if 1 > 1"+ 1 then sendo to U’ with probability 1—1'/I

5.2 Scenario Objectives

Since our primary objective is to balance node load evendyrecord the load of all individual nodes
over time, and then compute the maximum load and load stdrsiation. For scenarios with little to

K. Palmskog, M. Dam, A. Lundblad & A. Jafari 95

no object communication, these are the only measures teaebkavant with respect to our objectives.
For scenarios with significant messaging, we also conshdentimber of object-related messages sent
(i.e., CaLL and FUTURE messages) by each node between sampling intervals—widivétage number
of messages and standard deviation shown. We do not cousagesssent by a node to itself via the
self-loop arc, since such messages need not go through malirk in an implementation.

We sample the required quantities from simulations at a fie@blal rate, corresponding roughly to a
certain number of transitions (1000) in the semantics withased fairness via round-robin scheduling.

5.3 Results

In this section, we describe simulation results for the ades given above.

5.3.1 Simulations ofl ndependent Tasks. abs

The program creates 201 objects in total: one starting bhijbich becomes inactive after initialization
and 200 objects that each have a task that runs for the colttse program.

As expected, the algorithm by Berenbrink et al. without redunoves converges very quickly and
stays unchanged with no migrations after reaching a stagzeneighbour load differences are at most
one, which on a full mesh is always balanced. For most of the mn a 32-node hypergraph network
topology, the stable state coincided with a completely rixzdd allocation, or very closely so. For the
grid case, the stable allocation in almost all cases del/ggmificantly from a fully balanced one.

The algorithm variant with neutral moves and two migratipascycle converges to an almost-stable
state quite quickly on a hypergraph, but continues to havenuscillation of objects. With the same
algorithm and five object migrations allowed per cycle, ¢hisrconsiderably more oscillation going on
after coming close to a balanced allocation. On a grid tapglavhere a stable allocation can be further
away from a balanced allocation, allowing neutral moveggigetter results than disallowing them, as
expected. For a grid, the gain from using neutral moves ig iisinct in a lower standard deviation
compared to the algorithm without neutral moves.

5.3.2 Simulations ofSt ar . abs

In the star program, stars are constructed so that each mordbaid a whole star, and there is pre-
cisely one star per network node. In an optimal allocatibardfore, there are no node-to-node message
exchanges at all; all messages are sent locally.

We expected the pure load balancing procedures to have dhatkerse results than the procedures
taking inter-object communication intensity into accoufte average number of sent messages and the
standard deviation of sent messages over time for the sigrgm on a grid is shown in the upper half of
Figure[4, with measurements smoothed out via averagingfweesamples to reduce noise. As can be
seen, there is a distinct improvement with respect to messsgnt when using the algorithm by Beren-
brink et al. augmented with message intensity comparisdmnveompared to the other procedures,
although it is quite far from the optimum. The algorithm wsprobabilistic weighting of load and mes-
saging seems to improve the most over time, although it pegfaimilarly to the messaging-augmented
load balancing algorithm by Berenbrink et al.

With all the tested migration strategies for a grid, loadamee evenly balanced relatively quickly,
as seen in the lower left part of Figure 4. Hence, there wadgmifisant avoidance of messaging by
communicating objects clustering at a few specific nodes.

96 ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

m Weighted neighbour load w/ comm intensity
A Berenbrink et al. w/ comm intensity
e Berenbrink et al.

m Weighted neighbour load w/ comm intensity
A Berenbrink et al. w/ comm intensity
e Berenbrink et al.

0 200 400 600 800 1000 0 200 400 600 800 1000

messages sent avg.
O P N W 01 OO N
messages sent std. dev.

O R, N W~ 01 O

k transitions k transitions
q
35 Y
o 8
301 S 7 . o
< m Weighted neighbour load w/ comm intensfgy m Berenbrink et al. w/ comm intensity
D 251 a Berenbrink et al. w/ comm intensity Q 61 @ Berenbrink et al.
© ® Berenbrink et al. = 5
5 20 o
73 = 4l
5 151 g1
S 10 E 3
9 2 2l
51 11
0- 0

0 200 400 600 800 1000 O 5 10 15 20 25 30 35
k transitions total distance

Figure 4:Star.abs running on a 32-node grid.

Because of the simplicity of the object communication grapt the fact that it is possible to reach
an allocation where no inter-node communication takeseplads worthwhile to illustrate how near
specific algorithms can get after many (1000) cycles, formanson. In a given allocation, each object
has a total distance in hops to the other object it commuesoaith. For fringe objects, the total distance
is the number of hops to its center object, but center objeat® total distance equal to the sum of
all distances to its fringes. In an optimal allocation, ahters (and all fringes) have total distance
zero. In the lower right part of Figuie 4, gray bars show tharittiution of total distance among the
32 center objects on a grid for the load balancing algoritynBérenbrink et al. The black bars show
the distribution of total distances of the objects for thgoathm by Berenbrink et al. augmented with
message intensity comparisons. The distributions interbat the former algorithm fares worse.

Results forStar.abs on a hypergraph topology give a less pronounced advantatte tavo mi-
gration procedures which take message intensity into atcddf those procedures, the Berenbrink et
al. variant produces the least messaging, but trends ayelyahe same as for the grid case; hence, we
omit plots. For the case of a complete topology, the amoumhedsaging was virtually the same for
all procedures. An intuition for why this is the case is thidtdcomes much harder to improve upon an
allocation in a situation where migrations are helpful onlyen communicating objects end up on the
same node, and there is additionally no corresponding lbpsozimity to another object. Grids of 64
and 128 nodes have the same messaging trends as the 32-sede ca

K. Palmskog, M. Dam, A. Lundblad & A. Jafari

5.3.3 Simulations ofRi ng. abs

97

When running a ring of 128 objects on a 32-node grid, therebatenced allocations with all nodes
having 4 objects, where all objects that communicate aheetn the same node or adjacent nodes. The
idea is that two of the objects on a node are part of a segmehtaing, while the other two are part
of another segment coming back the other way. In such altatgtat most one inter-node message per
object is needed for a method invocation that involves thelahing.

The upper left half of Figurel5 shows the average number ofages sent of a 128-object ring on
a grid topology, while the upper right half shows the staddiaviation of the number of sent messages;
smoothing by averaging samples has been applied in botls.ciibe pattern from the star program re-
mains, with procedures taking messaging into account paifig better, but the differences are smaller.
The progressively decreasing number of inter-node messayg are not due to clustering of many ob-
jects on a few nodes, as shown by the eventually low standaidtébn of load in the lower left part of

the figure.

In the lower right part of Figurgl5, gray bars show the disttitn of total distance among all ring
objects on a grid to the objects they communicate with, 40 migration cycles using the algorithm
by Berenbrink et al. Black bars show the distribution for dtgorithm by Berenbrink et al. with neutral
moves augmented with message intensity comparisons. &heverlap, but the latter algorithm results
in many more objects with total distance between 1 and 5. Mewvboth distributions are quite far from

being optimal.
5 4
= m Weighted neighbour load w/ comm intensi
o 37 a Berenbrink et al. w/ comm intensity
n ® Berenbrink et al.
o 2
o
B
o 11
0]
= 0
0 200 400 600 800 1000
k transitions

257

20+

151 m Weighted neighbour load w/ comm intensi

A Berenbrink et al. w/ comm intensity

® Berenbrink et al.

load std. dev.

0 200 400 600
k transitions

—

messages sent'std. dev.

number oEobjects

800 1000

N W b

mWeighted neighbour load w/ comm intensity
a Berenbrink et al. w/ comm intensity
® Berenbrink et al.

200 400 600 800 1000

k transitions

m Berenbrink et al. w/ comm intensity
O Berenbrink et al.

5 10 15
total distance

Figure 5:Ring.abs on grid.

As in the case o$tar.abs |, the performance trend in messaging over time is largelgdnee on a

grid and hypergraph topology f&ing.abs

. The main difference on a hypergraph is that procedures

98 ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

which take message intensity into account result in lesaqumaced improvements over the pure load
balancing procedure. For a complete topology, differemace®nce again small, but with an edge towards
the message intensity procedures. Once more, grids of 642thdodes preserve the trend from the 32-
node case.

5.3.4 Simulations ofChor dDHT. abs

In the Chord DHT program, the weighted neighbour’s load amdsage intensity strategy exhibited a
tendency to quickly cause message buffer overflows, whéeptlocedures based on the algorithms of
Berenbrink et al. worked largely as expected.

The left part of Figurélé shows the average number of messagasor nodes when running the
program on a grid, and the right part shows the standard titaviaf the number of messages. Again,
smoothing by averaging samples five at a time has been applibd results suggest that there is a
reasonable payoff from taking messaging into account in gration strategy, even when running a
program with relatively complex communication patterns.

T
>

67 T 61
S .
3 51 g 5
I a Berenbrink et al. w/ comm intensit =
3 4 ®Berenbrink et al. Y 3 41) . .
n n 4 Berenbrink et al. w/ comm intensity
o 31 o 31 ®Berenbrink et al.
© ©
1%,] 9]]
E 1] e 11

0 , , , , , 0 , , , , ,
0 200 400 600 800 1000 0 200 400 600 800 1000
k transitions k transitions

Figure 6:ChordDHT.abs on grid.

Simulations ofChordDHT.abs on a hypergraph show very similar trends in performance ¢o th
grid case, but give a less pronounced advantage to procedihieh take message intensity into account,
as for previous programs. In a fully connected topology, ghecedures result in effectively the same
amount of messaging, as before.

6 Conclusions and Future Work

The simulation results suggest that it is feasible in a diealired setting to meet the objective of bal-
anced resource allocation, and also make headway towardsbjbctive of minimizing communication
of distributed objects. The results also validate the appility of the ABS-NET model with location-
independent routing to decentralized runtime adaptafidre main concern for relevance to real-world
networks is the use in the model of unbounded message quautthe lack of rate limitation and latency
controls in our simulator.

K. Palmskog, M. Dam, A. Lundblad & A. Jafari 99

In future work, we plan to continue the theoretical and satiah-based studies to deepen our under-

standing of multi-dimensional resource management, toosgthe performance and accuracy of the
simulator, and to investigate adaptation in dynamic netgianitially only with benign churn, i.e., with
controlled startup and shutdown of nodes.

Acknowledgements

We thank the anonymous reviewers for their comments andestiggs, which were of significant help
in improving the paper. We also thank our colleagues in thd $lAroject for useful discussions and
criticism.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

Elvira Albert, Samir Genaim, Miguel Gbmez-Zamalloan& Broch Johnsen, Rudolf Schlatte & S. Lizeth
Tapia Tarifa (2011)Simulating Concurrent Behaviors with Worst-Case Cost Blsuim Michael Butler &
Wolfram Schulte, editorsFM 2011: Formal Methodd.ecture Notes in Computer Sciené664, Springer
Berlin Heidelberg, pp. 353-368, doi:10.1007/978-3-64237-027.

Yossi Azar, Andrei Z. Broder, Anna R. Karlin & Eli Upfal @99): Balanced AllocationsSIAM J. Comput.
29(1), pp. 180-200, d0i:10.1137/S0097539795288490.

Petra Berenbrink, Tom Friedetzky, Leslie Ann GoldbeRaul Goldberg, Zengjian Hu & Russell Mar-
tin (2007): Distributed Selfish Load Balancing SIAM Journal on Computin@7(4), pp. 1163-1181,
doii10.1137/060660345.

Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, DorlBozdag, Robert Heaphy & Lee Ann
Riesen (2007):Hypergraph-based Dynamic Load Balancing for Adaptive &die Computations In:
Parallel and Distributed Processing Symposium, 2007. BD®07. IEEE Internationalpp. 1-11,
doii10.1109/IPDPS.2007.370258.

Manuel Clavel, Francisco Duran, Steven Eker, Patrigkcbin, Narciso Marti-Oliet, José Meseguer & J. F.
Quesada (2002Maude: specification and programming in rewriting logi€heoretical Computer Science
285(2), pp. 187-243, dni:10.1016/S0304-3975(01)00359-0

Biagio Cosenza, Gennaro Cordasco, Rosario De Chiarattié Scarano (2011)Distributed Load Bal-
ancing for Parallel Agent-Based Simulations: Parallel, Distributed and Network-Based Processing (PDP)
2011 19th Euromicro International Conference pp. 62—69, dci:10.1109/PDP.2011.22.

Mads Dam & Karl Palmskog (201 3Efficient and Fully Abstract Routing of Futures in Objectietk Over-
lays Available at|http://www.csc.kth.se/ ~ palmskog/publications/efarfono.pdf
Manuscript, submitted for publication.

Mads Dam & Karl Palmskog (2013):ocation Independent Routing in Process Network OverlAyailable
at http://www.csc.kth.se/ ~ palmskog/publications/lirpno.pdf . Manuscript, submit-
ted for publication.

Eyal Even-Dar & Yishay Mansour (2005Fast convergence of selfish reroutingn: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorigun®0DA '05, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, pp. 772—-781.

Simon Fischer & Berthold Vocking (2009%daptive routing with stale informatiorrheoretical Computer
Sciencet10(36), pp. 3357-3371, doi:10.1016/j.tcs.2008.01..055.

FP7-231620 (HATS) Project (2011)Deliverable 1.2: Full ABS Modeling Framewark Available at
http://www.hats-project.eu/sites/default/files/Deli verablel2.pdf

http://dx.doi.org/10.1007/978-3-642-21437-0_27
http://dx.doi.org/10.1137/S0097539795288490
http://dx.doi.org/10.1137/060660345
http://dx.doi.org/10.1109/IPDPS.2007.370258
http://dx.doi.org/10.1016/S0304-3975(01)00359-0
http://dx.doi.org/10.1109/PDP.2011.22
http://www.csc.kth.se/~palmskog/publications/efarfono.pdf
http://www.csc.kth.se/~palmskog/publications/lirpno.pdf
http://dx.doi.org/10.1016/j.tcs.2008.01.055
http://www.hats-project.eu/sites/default/files/Deliverable12.pdf

100 ABS-NET: Fully Decentralized Runtime Adaptation for Dibtrted Objects

[12] Einar Broch Johnsen, Reiner Hahnle, Jan SchaferpR&thlatte & Martin Steffen (2012)ABS: A Core
Language for Abstract Behavioral Specificatiom Bernhard K. Aichernig, Frank S. de Boer & Marcello M.
Bonsangue, editorgzormal Methods for Components and Objettscture Notes in Computer Scierg@57,
Springer Berlin Heidelberg, pp. 142-164, d0i:10.1007/37@42-25271-8.

[13] KryoNet authorsKryoNet project Available athttp://code.google.com/p/kryonet/ |
[14] Karl Palmskog (2013): The Formal Semantics of Core ABS and ABS-

NET. Technical Report, KTH Royal Institute of Technology. Aehle at
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12 7894\

[15] Karl Palmskog, Mads Dam, Andreas Lundblad & Ali JafarABS-NET programs Available at
http://www.csc.kth.se/ ~palmskog/abs-net/

[16] Peter Sewell, Pawet T. Wojciechowski & Asis Unyapotl®1R): Nomadic Pict: Programming languages,
communication infrastructure overlays, and semanticsriobile computationACM Trans. Program. Lang.
Syst.32(4), pp. 12:1-12:63, d0i:10.1145/1734206.1734209.

[17] lon Stoica, Robert Morris, David Karger, M. Frans Kaask & Hari Balakrishnan (2001 hord: A scalable
peer-to-peer lookup service for internet applications: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols formater communicationpSIGCOMM '01, ACM, New
York, NY, USA, pp. 149-160, d0i:10.1145/383059.382071.

[18] Hans Svensson, Lakke Fredlund & Clara Benac Earle (2010):unified semantics for future Erlangn:
Proceedings of the 9th ACM SIGPLAN workshop on ErlaBglang '10, ACM, New York, NY, USA, pp.
23-32,doi:10.1145/1863509.1863514.

http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://code.google.com/p/kryonet/
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127894
http://www.csc.kth.se/~palmskog/abs-net/
http://dx.doi.org/10.1145/1734206.1734209
http://dx.doi.org/10.1145/383059.383071
http://dx.doi.org/10.1145/1863509.1863514

	1 Introduction
	2 ABS Background
	3 Network Model and Semantics
	3.1 Runtime Configurations
	3.2 Node Controller Behaviour

	4 Adaptation
	5 Simulator
	5.1 Scenarios
	5.2 Scenario Objectives
	5.3 Results
	5.3.1 Simulations of IndependentTasks.abs
	5.3.2 Simulations of Star.abs
	5.3.3 Simulations of Ring.abs
	5.3.4 Simulations of ChordDHT.abs

	6 Conclusions and Future Work

