
M. Carbone, I. Lanese, A. Lluch-Lafuente, A. Sokolova (Eds.):
6th Interaction and Concurrency Experience (ICE 2013)
EPTCS 131, 2013, pp. 85–100, doi:10.4204/EPTCS.131.8

c© K. Palmskog, M. Dam, A. Lundblad & A. Jafari

ABS-NET: Fully Decentralized Runtime Adaptation for
Distributed Objects

Karl Palmskog Mads Dam Andreas Lundblad
School of Computer Science and Communication

KTH Royal Institute of Technology
Stockholm, Sweden

{palmskog,mfd,landreas }@kth.se

Ali Jafari
School of Computer Science

Reykjavik University
Reykjavik, Iceland

ali11@ru.is

We present a formalized, fully decentralized runtime semantics for a core subset of ABS, a language
and framework for modelling distributed object-oriented systems. The semantics incorporates an ab-
stract graph representation of a network infrastructure, with network endpoints represented as graph
nodes, and links as arcs with buffers, corresponding to OSI layer 2 interconnects. The key prob-
lem we wish to address is how to allocate computational tasksto nodes so that certain performance
objectives are met. To this end, we use the semantics as a foundation for performing network-
adaptive task execution via object migration between nodes. Adaptability is analyzed in terms of
three Quality of Service objectives: node load, arc load andmessage latency. We have implemented
the key parts of our semantics in a simulator and evaluated how well objectives are achieved for
some application-relevant choices of network topology, migration procedure and ABS program. The
evaluation suggests that it is feasible in a decentralized setting to continually meet both the objective
of a node-balanced task allocation and make headway towardsminimizing communication, and thus
arc load and message latency.

1 Introduction

An important problem, made more relevant by recent interestin cloud computing, is how to decou-
ple computational processes from the underlying physical infrastructure on which they execute. One
motivation for such decoupling is to free applications fromhandling resource allocation issues, which
can instead be taken care of in a provably correct and transparent fashion using generic, application-
independent mechanisms [8]. Potentially, tasks can then beperformed at the physical machine most
suited at the moment, continually meeting global system requirements such as utilization and power
consumption, or task-local requirements such as a responsetime.

We consider the problem of runtime adaptation of tasks in thecontext of a core subset of ABS [12],
a language for modelling distributed object-oriented systems developed in the EU FP7 HATS project. In
ongoing work [8, 7] we are developing network-aware semantics for different fragments of ABS with
some novel features. Specifically, we let objects execute onnetwork nodes connected point-to-point
using asynchronous message passing links, and show how location independent routing in such a setting
can be used to support efficient, transparent, and robust (lock-free) object migration. Here, we examine
how adaptation can be performed in such a model by a controller process running on each node.

To enable precise reasoning and experiments on adaptability, we define three central Quality of Ser-
vices (QoS) objectives against which a solution for runtimeadaptation in our context can be assessed:
node load, arc load and message latency. We abstract from many practical, implementation-level con-
cerns when interpreting these objectives in our setting. The load for a node is the number of active tasks
running on it. The load for an arc is the number of messages traversing the arc. The latency for a message

http://dx.doi.org/10.4204/EPTCS.131.8


86 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

is the number of hops needed to reach its destination. We thenrestrict our consideration of adaptability
to the problem of how and when to migrate objects to achieve the objectives as well as possible, given
a specific network topology, ABS program, and node-local procedure for managing migrations. Using a
simulator which implements the key parts of our semantics, we have investigated how well objectives are
met for some application-relevant choices of network topologies, programs and migration procedures.

Section 2 and 3 describe the ABS language and our novel ABS-NET semantics for execution of ABS
programs in a network. Section 4 describes our approach to runtime adaptation via object migration.
Section 5 describes the simulator, our benchmark scenarios, and simulation results; Section 6 concludes.

2 ABS Background

ABS [11] is a language and framework for modelling distributed object-oriented systems, developed in
the EU FP7 HATS project. Core ABS [12] is a language which contains the main features of ABS: a
functional level for expressing data structures and side-effect free internal computations of objects, and
an object level for expressing concurrent objects, and communication among such objects via method
invocation. The object level defines syntax—reminiscent ofJava’s—for interfaces, classes, methods,
object creation and method calls. The object level is accompanied by a type system and an operational
semantics which preserves well-typing. One consequence ofwell-typing is that many runtime errors are
ruled out for type-checked programs; when an object makes a call to a methodmusing an object identifier
o, there always exists an object associated witho, which is an instance of a class which implementsm.
ABS uses placeholders in the form of futures for the result ofmethod calls, allowing a caller to avoid
blocking until the result value is actually required. In thevariant of Core ABS we consider, a single
object is the unit of concurrency, as in the variant of Albertet al. [1]. This means that objects at runtime
can be viewed as actors, communicating between themselves only via asynchronous message passing.

An example of an ABS interface with implementing classes is given below. TheCastNode inter-
face defines a methodaggregate , which, when called on an object, performs a convergecast operation
in the object-reference binary tree rooted at that object. Specifically, this means that if an object imple-
mentingCastNode is a leaf in the tree (an instance ofLeafNode ), it simply returns a locally known
integer, but if the object has child nodes in the tree (an instance ofBranchNode ), aggregate is
called on both of those objects and the results are added to the local integer and returned. In this way, the
aggregate method for the objecto always returns the aggregate (sum) of all local values in thebinary
tree of objects rooted ato. The variablesfLeft andfRight in the implementation ofaggregate
hold the placeholders (futures) for integers that result from the asynchronous method calls. The values
are then retrieved through the .getoperator, which can cause blocking until the method call hasfinished.

interface CastNode {
Int aggregate();

}

class LeafCastNode(Int val) implements CastNode {
Int aggregate() { return val; }

}

class BranchCastNode(Int val, CastNode left, CastNode right) implements CastNode {
Int aggregate() {

Fut<Int> fLeft = left!aggregate();
Fut<Int> fRight = right!aggregate();
Int aggregateLeft = fLeft. get;
Int aggregateRight = fRight. get;
return val + aggregateLeft + aggregateRight;

}
}



K. Palmskog, M. Dam, A. Lundblad & A. Jafari 87

3 Network Model and Semantics

To reason about object adaptability with respect to environmental conditions, we bring selected parts of
the infrastructure of a distributed system into our model, namely, network endpoints and links. Endpoints
and links are modelled as graph nodes and arcs with FIFO-ordered message queues, respectively. Con-
ceptually, a node consists of an interpreter layer, where local objects reside, and a node controller, which
acts as a mediator between the environment and node-local objects, as illustrated in Figure 1. The dashed
arrow in the figure signifies that the identifier of objecto2 is known by objecto1, allowing o1 to send
method invocations too2. The structure is similar to that used in other programming-language oriented
distributed system models, e.g., a proposed semantics for future Erlang [18]. Here, the node controller
also contains logic for decision-making on adaptability. Seen abstractly, adaptability in this context be-
comes the problem of deciding when and where to migrate objects to achieve the QoS objectives—with
the added constraint that all reallocations must be decidedlocally at each node.

nodeu0

node controller

routing table

o1o0

interpreter

nodeu1

node controller

routing table

o2

interpreter

Figure 1: Nodes, node controllers, and interpreter layers.

To achieve location transparency, the basic problem is to route messages correctly between objects
that have no prior, mutual knowledge of where they are located. Many solutions have been examined in
the literature, including centralized or decentralized location servers, pointer chaining, and broadcast or
multicast search. Sewell et al. [16] discuss many of these solutions, and their relative merits.

We are developing a novel approach to location transparencybased on location-independent (also
called name-independent) routing [8], where the idea is to defer the maintenance of message routes to
an explicit routing process executing independently of application-level messaging. Adapted to the ap-
proach suggested here, a node controller executing on each network node is responsible for maintaining
routing information by exchanging routing tables with adjacent nodes in the network. This allows object
migration to be supported in a transparent fashion with onlymodest extension to the runtime state.

We have defined a new operational semantics of Core ABS programs, in the same rewriting logic
style [5] as the standard semantics, that characterizes task execution of objects located on, and moving
between, network nodes. Adaptability features such as routing table exchange and object migration are
modelled as nondeterministic events, with the node controller consisting of nothing more than a globally
unique identifier and a routing table. We refer to the combination of the Core ABS functional layer,
Core ABS object syntax, and our novel operational semanticsas ABS-NET. We intend for the semantics
to both guide implementation, by defining a baseline for retaining program runtime behaviour similar to
Core ABS in a networked, decentralized setting, and provideopportunities for further theoretical analysis
of specific adaptability strategies by refinement.



88 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

A complete description of the syntax and formal semantics ofboth Core ABS and ABS-NET is
available in an appendix [14], with semantic equivalence explored elsewhere [7]. Below, we give an
overview of the ABS-NET network model and semantics, with details on node controller behaviour,
which is to an extent agnostic towards the underlying actor environment.

3.1 Runtime Configurations

The node controller’s relationship with the interpreter layer residing on the node is symbiotic. On one
hand, the node controller provides message delivery services and callback functions to obtain new glob-
ally unique object identifiers for objects residing in the interpreter layer. On the other hand, the node
controller triggers object movement by using callback functions that the interpreter layer makes avail-
able. We assume a node controller is aware of the asynchronous links through which it can communicate
via message passing with other node controllers. In essence, the aim is that node controllers should be
realizable on top of a network with only OSI layer 2 interconnects, meaning that the required primitives
for computation and communication can be implemented directly in hardware with high performance. If
this is the case, running controllers on top of overlays using higher-layer interconnects such as sockets is
also feasible, which is what we do in our simulator.

The global state in ABS-NET is formally a pair{net}{cn}. The network part{net} is a set of
nodes and arcs. In a nodend(u,τ), u is a node identifier (assumed globally unique) andτ is a routing
table, used to route object-related messages in the proper direction. In an arcar (u,Q,u′), representing
a unidirectional link fromu to u′, Q is a FIFO-ordered queue of messages. The other part of the global
state,{cn}, is a set of objects, with each object implicitly attached toa node in the network, and able
to send and receive messages with the assistance of its host.A messagemsgcan be (1) a table message
TABLE (τ), used to pass a routing tableτ from one node to another to update local routes, (2) an object
message OBJECT(object) containing a complete runtime objectobject to facilitate mobility, or (3) an
application-level message transmitted from one object to another, which for ABS is either a method
invocation (CALL message) or the resolved value of a future (FUTURE message). Given an application-
level message, the functiondest(msg) returns the identifier of the intended recipient object, while the
functionid returns the identifier of a given runtime object.

The nature of a FIFO queueQ of messages is specified through three functions:enqueue, dequeue
andfirst. enqueue(Q,msg) returns the queue that results when the messagemsgis added to the back
of Q. If Q is non-empty,first(Q) returns the message at the front ofQ, anddequeue(Q) returns the
queue that results when the front message is removed. For brevity, enqueue(Q,msg) = Q′ is defined as

a relationQ
enqueue(msg)
−−−−−−−−−→ Q′, while the conjunction thatfirst(Q) = msganddequeue(Q) = Q′ is defined

asQ
dequeue(msg)
−−−−−−−−−→ Q′.

The nature of a routing table is specified through the functions update, next, register and
replace, and an infix operator∈. The functionupdate takes three arguments: the routing tableτ
of the current node, the node identifieru′ of the adjacent node, and the routing tableτ ′ of the adjacent
node. The function returns a routing tableτ ′′, which incorporates the routes fromτ ′ into τ if appropriate,
with the constraint that all such routes must go through the nodeu′. For brevity,update(τ ,u′,τ ′) = τ ′′

is defined as a relationτ update(τ ′,u′)
−−−−−−−−→ τ ′′. The functionnext takes three arguments: the routing tableτ of

the current node, the object identifiero′ of the node we want the next hop for, and the default hopu,
which is the identifier of the current node. The function returns the node identifieru′ which is the next
hop ofo′ according to the table. The functionregister takes four arguments: the routing tableτ of the
current node, the object identifiero′ of the object we want to add a route for, the node identifieru of a



K. Palmskog, M. Dam, A. Lundblad & A. Jafari 89

neighbour node (usually self) which is the next hop, and a non-negative integerk for the distance to the
object (in all instances in the rules, it is 0). The function returns a routing tableτ ′ which incorporates the

new route. For brevity,register(τ ,o′,u,k) = τ ′ is defined as a relationτ register(o′,u,k)
−−−−−−−−−−→ τ ′. The function

replace takes four arguments (of the same type asregister): the routing tableτ of the current node,
the object identifiero′ of the object we want to replace the route for, the node identifier u of a neighbour
node which is the next hop, and a natural numberk for the distance to the object. The function returns
a routing tableτ ′ which has removed any existing routes foro′ and added the route given. For brevity,

replace(τ ,o′,u,k) = τ ′ is defined as a relationτ replace(o,u,k)
−−−−−−−−−→ τ ′. The claimo∈ τ , with a node identifier

u given by the context, means that, according toτ , the object with identifiero is located on the nodeu.
The two parts of the global state can evolve jointly by performing synchronized labelled transitions,

but also separately without exchanging information. The rules for such synchronization and separate
evolution are shown in Figure 2. A labelα is eithermv(object) (moving an object),rg(o,o′) (registering
a new object identifier), ortr(o,msg) (transporting a message). Intuitively, a label with an overline
means that information is outgoing or being sent, while a label without overline means information is
incoming or being received. An ABS-NET execution of an ABS program is a possibly infinite sequence
of global states, such that the transition between a previous state and the next is valid. The program is
not explicitly represented in a state, since it assumed to always be available unaltered at all nodes. The
network topology is static during an execution, and we do notconsider failures such as message losses.

(NET-RED)
{net}→ {net′}

{net}{cn}→ {net′}{cn}

(CN-RED)
{cn}→ {cn′}

{net}{cn}→ {net}{cn′}

(CN-OUT-NET-IN-RED)

{cn}
α
→{cn′}

{net}
α
→ {net′}

{net}{cn}→ {net′}{cn′}

(NET-OUT-CN-IN-RED)

{net}
α
→ {net′}

{cn}
α
→ {cn′}

{net}{cn}→ {net′}{cn′}

Figure 2: ABS-NET reduction rules connecting objects and networks.

Intuitively, transitions by the ruleNET-RED are driven by node-related events, e.g., timeouts triggering
routing table exchanges, or application-level messages being received and routed further. Transitions
by CN-RED are triggered when objects execute ABS program statements that only change internal state.
CN-OUT-NET-IN-RED is used when program execution requires interaction with the environment to proceed
(e.g., method calls) and for object migration.NET-OUT-CN-IN-RED is used when a node transmits objects
or application-level messages received through links to the local interpreter layer.

3.2 Node Controller Behaviour

The reduction relation for networks, alluded to Figure 2, isdefined by the rules in Figure 3. The
rules apply to subsets of nodes and arcs, such that the elements can be rearranged to match the left-
hand side. The labelled-transition rulesNET-MSG-RECV-OUT, NET-MSG-SEND-IN, NET-OBJECT-SEND-IN and
NET-NEW-OBJECT-IN, where a node exchanges information with an object, all use the premiseo ∈ τ to
restrict actions to pertain to node-local objects. This is how object location is reflected in ABS-NET.
fresh(o) means that the identifiero is globally unique.

For proper progress in execution, we assume networks are such that (1) there are no dangling arcs
referencing non-existent nodes, (2) for every arc between nodes there is an arc in the opposite direction,
and (3) every node comes with a self-loop arc, i.e., an arc going from and to the node. Self-loop arcs
are important for two reasons. First, it allows us to use the same rules for message passing in both the
case where the sender object is at a different node from the receiver object, and where the sender is at
the same node as the receiver. Once a message has been put in the self-loop queue, it appears as if it



90 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

(NET-TABLE -SEND)
u′ 6= u

Q
enqueue(TABLE (τ))
−−−−−−−−−−−−→ Q′

nd(u,τ)ar (u,Q,u′)
→ nd(u,τ)ar (u,Q′,u′)

(NET-TABLE -RECV)

Q
dequeue(TABLE (τ ′))
−−−−−−−−−−−−−→ Q′

τ
update(τ ′,u′)
−−−−−−−−→ τ ′′

ar (u′,Q,u)nd(u,τ)
→ ar (u′,Q′,u)nd (u,τ ′′)

(NET-MSG-RECV-OUT)

Q
dequeue(msg)
−−−−−−−−−→ Q′

dest (msg) = o o ∈ τ
ar (u′,Q,u)nd(u,τ)

tr(o,msg)
→ ar (u′,Q′,u)nd(u,τ)

(NET-MSG-SEND-IN)
o ∈ τ dest (msg) = o′

next (τ,o′,u) = u′

Q
enqueue(msg)
−−−−−−−−−→ Q′

nd(u,τ)ar (u,Q,u′)
tr(o,msg)

→ nd(u,τ)ar (u,Q′,u′)

(NET-ROUTE-FURTHER)

Q1
dequeue(msg)
−−−−−−−−−→ Q′

1 dest (msg) = o o /∈ τ

next (τ,o,u) = u′′ Q2
enqueue(msg)
−−−−−−−−−→ Q′

2

ar (u′,Q1,u)nd (u,τ)ar (u,Q2,u′′)
→ ar (u′,Q′

1,u)nd(u,τ)ar (u,Q
′
2,u

′′)

(NET-OBJECT-SEND-IN)
o ∈ τ u′ 6= u

τ
replace(o,u′,1)
−−−−−−−−−−→ τ ′

Q
enqueue(OBJECT(object))
−−−−−−−−−−−−−−−−→ Q′

nd(u,τ)ar (u,Q,u′)
mv(object)

→ nd(u,τ ′)ar (u,Q′,u′)

(NET-OBJECT-RECV-OUT)
id (object) = o

Q
dequeue(OBJECT(object))
−−−−−−−−−−−−−−−−→ Q′

τ
replace(o,u,0)
−−−−−−−−−→ τ ′

ar (u′,Q,u)nd (u,τ)
mv(object)

→ ar (u′,Q′,u)nd(u,τ ′)

(NET-NEW-OBJECT-IN)
fresh (o′) o ∈ τ

τ
register(o′,u,0)
−−−−−−−−−−→ τ ′

nd(u,τ)
rg (o,o′)
→ nd(u,τ ′)

Figure 3: Node controller reduction rules.

came from some other node, and the ruleNET-MSG-RECV-OUT can be applied. Second, it is not always the
case that there is a route to the recipient of a message, because of the possibility of stale routing tables.
However, messages must be dealt with somehow, in particularif they are coming from some other node,
from which there could be other important messages pending.Hence, they are put in the self-loop queue,
i.e., the default next hop of an application-level message is the node itself.

The ABS-NET reduction rules for objects at runtime are deferred to a technical report [14]. Com-
pared to Core ABS, the state of an object has been extended with an input and an output queues for asyn-
chronous transfer of application-level messages, and a structure to keep track of resolved future values.
In contrast, the standard Core ABS semantics handles resolution and querying of futures in a centralized
way. In fact, all rule premises from the standard semantics that pertain to more than object-local state are
absent in ABS-NET—its decentralized nature is syntactically apparent.

4 Adaptation

We consider three QoS objectives against which runtime adaptation solutions can be assessed: node load,
arc load and message latency. In our setting, the definition of node load is simple but coarse grained: the
load on a nodeu is the number of objects located onu with active tasks. One advantage of this measure
is that it is an intrinsic property of runtime configurations. We need a model-intrinsic measure of load to
enable reasoning at an abstract level about convergence to balanced allocation and that loads stay within
a certain range. One disadvantage of the approach is that it fails to take into account the varying use
of memory and processing power among tasks. However, in an implementation, a more fine-grained
measure of load can be adopted, as long as it is linear in the number of active tasks.

We define the load of a particular arc as the number of messagestraversing it per simulated unit of
time. Hence, global minimization of arc load means that a minimal number of inter-node messages are



K. Palmskog, M. Dam, A. Lundblad & A. Jafari 91

sent overall, with respect to the current state of routing tables at nodes. Unless all routing tables are
optimal (minimum stretch), however, there is no guarantee that the number of hops, i.e., latency, of a
particular object-addressed message is minimal.

In our evaluation of runtime adaptation, we use ABS programsthat are nonterminating and cyclical.
The motivation is that for adaptations to current conditions to have a chance of conveying benefits, similar
conditions must hold in the future. There is no obvious payoff in attempting to adapt when future states
are random independently of the current state.

Although we wish to simultaneously meet all of our QoS objectives fully, we consider node load
balancing our primary concern. Load balancing solutions are also relatively well-studied in the literature,
making it easier to find a good starting point. Azar et al. [2] consider the problem of achieving balanced
allocations in the framework of stochastic processes, where it is viewed as stepwise allocations of balls
into bins. They highlight the use of greedy schemes for quickly converging to a ball-to-bin assignment
where the maximum number of balls in any bin is minimized. Themain drawback of this approach in
a distributed setting is the reliance on atomic, single assignments of a ball to a bin at each algorithm
step. Even-Dar and Mansour [9] study load balancing in a distributed setting where allocations are
not necessarily done one-at-a-time. They give a distributed algorithm for selfish rerouting that quickly
converges to a Nash equilibrium, which corresponds to a balanced resource allocation. However, at
each round, locally computing a new allocation requires having exact knowledge of all loads in the
system, which is complicated and costly to acquire in the current setting. Berenbrink et al. [3] describe
and analyze fully distributed algorithms which require only local knowledge of the total number of
resources and the load of one other resource to perform a single task migration step. The algorithms,
some of which have attractive expected time for convergence, can be straightforwardly translated to a
synchronous, round-based distributed setting and furtherto a message-passing setting, assuming some
inherent synchrony. One important assumption made in the algorithm analysis is that a task can migrate
to any other resource in a single concurrent round. For this property to hold, the underlying network
graph must be complete, which we do not generally assume.

A factor in the convergence time is whether neutral moves areallowed, i.e., whether a migration can
happen even when, as far as can be told locally, the move does not result in a more balanced allocation but
merely an equally good one. For allocations in a sparse network graph where load differences between
neighbours are one, there can nevertheless be maximal load differences in the order of the graph diameter,
which can be significant. With neutral moves, such allocations can be improved on.

The problem of oscillating behaviour during task balancingcan be mitigated by the use of coin flips
before finalizing decisions to migrate tasks, as in the algorithms of Berenbrink et al. Oscillation can be
worsened by reliance on stale information, but if the information is nottoo stale, oscillation periods can
sometimes be bounded [10].

The literature on load balancing related to scientific computing contains work on simultaneously op-
timizing task allocations and communication overhead. Forexample, Cosenza et al. [6] give a distributed
load balancing scheme for simulations involving agents moving in space from worker to worker. The
scheme, which is validated experimentally, optimizes bothworker load and communication overhead
between workers, but assumes only a small area of interest for each agent, with agents unable to commu-
nicate with other agents outside this area. In the current work, two objects can communicate whenever
the identifier of one of them is known to the other, making it harder to minimize communication over-
head. Catalyurek et al. [4] describe how to use hypergraph partitioning to minimize both communication
volume and migration time of tasks for parallel scientific computations. However, the repartitioning is
performed in batch and requires complete knowledge of the data and computations on each node.

At this initial stage of the work, we do not consider the cost of migration itself in terms of messaging



92 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

and other resources. Hence, we only measure communication in terms of messages exchanged between
objects, ignoring overhead in terms of routing and load-related messages.

5 Simulator

We have evaluated our runtime adaptation approach by developing a simulator for running ABS programs
in a network of nodes according to the ABS-NET semantics. We have run the simulator with a variety of
network node topologies and object migration procedures ona number of proposed synthetic scenarios
defined by ABS programs.

Our simulator’s main purposes are to serve as a proof-of-concept for ABS-NET and to allow us to
run adaptability case studies with particular programs andtopologies. Specifically, we are interested
in studying convergence properties of object migration procedures in practice, and in showing that our
approach to distributed execution scales to networks with many nodes.

The simulator is implemented in Java. Each node controller is implemented as a Java thread, which
communicates with other controllers through TCP sockets, using the KryoNet network library [13]. One
reason for the choice of sockets is to enable to scale simulations over several physical machines and a
large number of simulated network nodes. All node controllers in the network have a representation of
the abstract syntax tree of the ABS program being executed, which is generated from ABS program code
by the lexing and parsing frontend shared by most ABS backends.

As in the conceptual model and the formal semantics, a node controller can have zero or more objects,
each having at most one active task. An active task has a reference to the statement currently being
executed in the abstract syntax tree. We call an object active if it has an active task. Scheduling of active
tasks is done at the node controller level in a round-robin fashion for active objects. More precisely, the
scheduler deterministically steps all active tasks, checks for active objects, and then repeats the process
on the new set of active tasks.

We implement statement execution by interpretation. The main reason for this choice is to enable
easy serialization of objects between executing statements; to get immediate results from load balancing,
we must be able to migrate active objects. One drawback of using interpretation is that local execution
is slow and resource-demanding compared to execution in thestandard ABS backends.

A node controller is associated with a unique TCP port on the host system. Besides a list of neighbour
handles, which abstract over underlying sockets, and a listof local objects, the node controller maintains
a routing table. The routing table is broadcasted to neighbours after entries have been changed or added
as a result of statement execution or incorporation of routes from neighbour messages. Hence, except
when many locations have been updated in a short interval, weexpect routing tables to be up-to-date or
nearly so, taking into account the network size restrictions of the simulator.

Network topology setup and program loading is handled by scripting on top of a custom simple
command-line interface (CLI). When starting up, a node controller is assigned a migration procedure
through the CLI, which is the same for all node controllers inthe network. One desirable feature that is
not implemented is CLI control of link characteristics, such as delays.

By default, the simulator starts the initial task on a singlestartup node. The initial task is defined by
the statements in the mandatory starting block of the ABS program. In all our programs, this task creates
all the objects used for the duration of the program. Migration and logging does not commence until a
method with the namesetupFinished is called on some object. There are several reasons for this
kind of initialization: it is easier to predict load balancing behaviour with a fixed set of objects, and it is
problematic to create new objects on the fly without garbage collection, which we have not implemented.



K. Palmskog, M. Dam, A. Lundblad & A. Jafari 93

5.1 Scenarios

A network configuration determines the size and topology of the network; large and dense networks give
more overhead in the form of routing and load messaging, making simulations slower. Currently, highly
connected topologies with in the order of 25 network nodes can be simulated in reasonable time. On this
note, we limit the evaluation to networks with three distinct underlying network topologies from sparsely
to fully connected: grids, hypergraphs and full meshes. Ourbase initial setup for each topology has 32
nodes. Since the simulator scales to at least in the order of 100 nodes for sparsely connected topologies,
we also investigate grids larger than 32 nodes to compare results.

For defining object behaviour, we have developed a number of ABS programs specifically to run
in our simulator. All programs have a setup phase, where a fixed number of objects are initialized,
and a phase where the generated objects perform some computation, possibly involving communication;
there are no short-lived dynamically created objects. For all programs but one, which implements the
Chord distributed hash table (DHT) algorithm [17], communication patterns among generated objects
follow straightforwardly from the code. This makes it easier to follow what happens during a simulation
and to reason about how far an allocation of objects to nodes is from the optimum, factors which we
considered particularly important in scenario development. After running initial simulations, we have
adjusted parameters in our programs, and in some cases addedfunctionally redundant instructions to
get constant and consistent load and messaging, since our migration procedures consider mainly objects
with active tasks. With spurious activity among nodes, messaging and load varies greatly, and progress
becomes hard to discern. The programs below are available online [15]:

IndependentTasks.abs The starting task generates objects, and each generated object is called
upon to perform a long-running task. There is no communication among workers—only briefly
at startup between the coordinator object, which initializes and assigns tasks, and the generated
objects. Since there is no communication, an optimal allocation is an even distribution of objects
among nodes, regardless of the network topology.

Star.abs An object star configuration consists of one center object and one or more fringe objects.
The fringe objects in the star continually communicate withthe center object, but not among
themselves. The program builds a number of independent object star configurations.

Ring.abs The starting task generates objects which know the identifiers of the next object in the ring.
The last object generated gets the identifier of the first object. The first object, when called, calls
its next object, and so on, until the object which has the firstobject as next object is reached. In
the computation phase, many such calls traverse the ring simultaneously.

ChordDHT.abs An implementation of the Chord DHT algorithm. Key-value mappings are distributed
between a number of objects, which all support a put/get interface to clients. Objects are arranged
in a ring, but aside from references to their neighbours, each object has log(n) “fingers”, references
to non-adjacent objects, wheren is the size of the keyspace. The addition, or join, of an object
to the ring places the new object at a particular position based on its identifier and can trigger
global reconfiguration of the ring. During setup, 128 objects are joined to the chord, and each
object becomes associated with either a producer object, which continually puts values into the
DHT, or a consumer object, which continually attempts to retrieve values from the DHT using
pseudorandom keys.

We consider only migration procedures that as a first priority balance out load evenly among nodes in
the network. As a consequence, a simulated node controller continually informs neighbour nodes of its



94 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

load when appropriate, and receives load messages from neighbours in turn, regardless of the migration
procedure used. In the simulator, each migration proceduredefines a callback method which takes the
affected node controller as a parameter. The callback method is invoked, and can result in the migration
of several objects to neighbour nodes. The migration procedures used are described below.

Berenbrink et al. An adapted version of the distributed load balancing algorithm by Berenbrink et al.
[3], which does not allow neutral moves. One notable difference in the simulator implementation
from the abstract description given in Algorithm 1 is that only a fixed small number of objects (20)
have the possibility to migrate in each cycle, because of limits on the sizes of message buffers.

Berenbrink et al. with neutral moves An adapted version of the distributed load balancing algorithm
by Berenbrink et al., which does allow neutral moves, and therefore converges more slowly. The
only difference from Algorithm 1 is that the if-condition isl > l ′ instead ofl > l ′+1. As deter-
mined experimentally, only migrating one or two objects pernode per cycle leads to significantly
less oscillation of objects, compared to when migrating three or more.

Berenbrink et al. with communication intensity A variant of the preceding procedure, where objects
are selected for migration based on their affinity to the (randomly) chosen neighbour node, as
determined by their communication history with objects in the neighbour node’s direction. The
communication history is a list of other objects that a givenobject has communicated with recently,
as given by abstract object-local time, defined by the numberof tasks finished since initialization.
The affinity of an object to the neighbour node is then quantified as the number of objects in the
communication history that are located in the direction of the node, according to the routing table.

Weighted neighbour load difference Once every cycle, an object and an adjacent node are chosen uni-
formly at random and independently. Then, a probability of migration is calculated and enacted
based on the difference in load between the current node and the chosen node, with probability 1
for a difference of 10 or more, and probability 0 for a negative difference. If the load difference is
d, the migration probability becomesd10, adjusted to closest number in the interval[0,1].

Weighted neighbour load difference with communication intensity Given a randomly chosen object
and adjacent node as in the previous procedure, we define the probability of migration according
to communication intensity as the number of entries in the object’s communication history found
in the direction of the node, divided by the total number of entries in the history. This probability
is then combined via weighted averaging with the neighbour load difference probability to define
the weighted neighbour load with communication procedure.We have used the weight 0.2 for the
communication intensity probability and 0.8 for the neighbour’s load probability.

Algorithm 1 Berenbrink et al. load balancing cycle.
for each active objecto do

let u′ be a neighbour chosen uniformly at random
let l be the current load, letl ′ be the last known load ofu′

if l > l ′+1 then sendo to u′ with probability 1− l ′/l

5.2 Scenario Objectives

Since our primary objective is to balance node load evenly, we record the load of all individual nodes
over time, and then compute the maximum load and load standard deviation. For scenarios with little to



K. Palmskog, M. Dam, A. Lundblad & A. Jafari 95

no object communication, these are the only measures that are relevant with respect to our objectives.
For scenarios with significant messaging, we also consider the number of object-related messages sent
(i.e., CALL and FUTURE messages) by each node between sampling intervals—with theaverage number
of messages and standard deviation shown. We do not count messages sent by a node to itself via the
self-loop arc, since such messages need not go through a physical link in an implementation.

We sample the required quantities from simulations at a fixedglobal rate, corresponding roughly to a
certain number of transitions (1000) in the semantics with imposed fairness via round-robin scheduling.

5.3 Results

In this section, we describe simulation results for the scenarios given above.

5.3.1 Simulations ofIndependentTasks.abs

The program creates 201 objects in total: one starting object which becomes inactive after initialization
and 200 objects that each have a task that runs for the course of the program.

As expected, the algorithm by Berenbrink et al. without neutral moves converges very quickly and
stays unchanged with no migrations after reaching a state where neighbour load differences are at most
one, which on a full mesh is always balanced. For most of the runs on a 32-node hypergraph network
topology, the stable state coincided with a completely balanced allocation, or very closely so. For the
grid case, the stable allocation in almost all cases deviated significantly from a fully balanced one.

The algorithm variant with neutral moves and two migrationsper cycle converges to an almost-stable
state quite quickly on a hypergraph, but continues to have minor oscillation of objects. With the same
algorithm and five object migrations allowed per cycle, there is considerably more oscillation going on
after coming close to a balanced allocation. On a grid topology, where a stable allocation can be further
away from a balanced allocation, allowing neutral moves gives better results than disallowing them, as
expected. For a grid, the gain from using neutral moves is most distinct in a lower standard deviation
compared to the algorithm without neutral moves.

5.3.2 Simulations ofStar.abs

In the star program, stars are constructed so that each node can hold a whole star, and there is pre-
cisely one star per network node. In an optimal allocation, therefore, there are no node-to-node message
exchanges at all; all messages are sent locally.

We expected the pure load balancing procedures to have markedly worse results than the procedures
taking inter-object communication intensity into account. The average number of sent messages and the
standard deviation of sent messages over time for the star program on a grid is shown in the upper half of
Figure 4, with measurements smoothed out via averaging overfive samples to reduce noise. As can be
seen, there is a distinct improvement with respect to messages sent when using the algorithm by Beren-
brink et al. augmented with message intensity comparisons when compared to the other procedures,
although it is quite far from the optimum. The algorithm using probabilistic weighting of load and mes-
saging seems to improve the most over time, although it performs similarly to the messaging-augmented
load balancing algorithm by Berenbrink et al.

With all the tested migration strategies for a grid, load became evenly balanced relatively quickly,
as seen in the lower left part of Figure 4. Hence, there was no significant avoidance of messaging by
communicating objects clustering at a few specific nodes.



96 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

0 200 400 600 800 1000
0

1

2

3

4

5

6

k transitions

m
es

sa
ge

s
se

nt
st

d.
de

v.

Berenbrink et al.
Berenbrink et al. w/ comm intensity
Weighted neighbour load w/ comm intensity

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

k transitions

m
es

sa
ge

s
se

nt
av

g.

Berenbrink et al.
Berenbrink et al. w/ comm intensity
Weighted neighbour load w/ comm intensity

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

k transitions

lo
ad

st
d.

de
v.

Berenbrink et al.
Berenbrink et al. w/ comm intensity
Weighted neighbour load w/ comm intensity

0 5 10 15 20 25 30 35
0
1
2
3
4
5
6
7
8
9

total distance

nu
m

be
r

of
ob

je
ct

s

Berenbrink et al.
Berenbrink et al. w/ comm intensity

Figure 4:Star.abs running on a 32-node grid.

Because of the simplicity of the object communication graphand the fact that it is possible to reach
an allocation where no inter-node communication takes place, it is worthwhile to illustrate how near
specific algorithms can get after many (1000) cycles, for comparison. In a given allocation, each object
has a total distance in hops to the other object it communicates with. For fringe objects, the total distance
is the number of hops to its center object, but center objectshave total distance equal to the sum of
all distances to its fringes. In an optimal allocation, all centers (and all fringes) have total distance
zero. In the lower right part of Figure 4, gray bars show the distribution of total distance among the
32 center objects on a grid for the load balancing algorithm by Berenbrink et al. The black bars show
the distribution of total distances of the objects for the algorithm by Berenbrink et al. augmented with
message intensity comparisons. The distributions intersect, but the former algorithm fares worse.

Results forStar.abs on a hypergraph topology give a less pronounced advantage tothe two mi-
gration procedures which take message intensity into account. Of those procedures, the Berenbrink et
al. variant produces the least messaging, but trends are largely the same as for the grid case; hence, we
omit plots. For the case of a complete topology, the amount ofmessaging was virtually the same for
all procedures. An intuition for why this is the case is that it becomes much harder to improve upon an
allocation in a situation where migrations are helpful onlywhen communicating objects end up on the
same node, and there is additionally no corresponding loss of proximity to another object. Grids of 64
and 128 nodes have the same messaging trends as the 32-node case.



K. Palmskog, M. Dam, A. Lundblad & A. Jafari 97

5.3.3 Simulations ofRing.abs

When running a ring of 128 objects on a 32-node grid, there arebalanced allocations with all nodes
having 4 objects, where all objects that communicate are either on the same node or adjacent nodes. The
idea is that two of the objects on a node are part of a segment ofthe ring, while the other two are part
of another segment coming back the other way. In such allocations, at most one inter-node message per
object is needed for a method invocation that involves the whole ring.

The upper left half of Figure 5 shows the average number of messages sent of a 128-object ring on
a grid topology, while the upper right half shows the standard deviation of the number of sent messages;
smoothing by averaging samples has been applied in both cases. The pattern from the star program re-
mains, with procedures taking messaging into account performing better, but the differences are smaller.
The progressively decreasing number of inter-node messages sent are not due to clustering of many ob-
jects on a few nodes, as shown by the eventually low standard deviation of load in the lower left part of
the figure.

In the lower right part of Figure 5, gray bars show the distribution of total distance among all ring
objects on a grid to the objects they communicate with, after1000 migration cycles using the algorithm
by Berenbrink et al. Black bars show the distribution for thealgorithm by Berenbrink et al. with neutral
moves augmented with message intensity comparisons. Thereis overlap, but the latter algorithm results
in many more objects with total distance between 1 and 5. However, both distributions are quite far from
being optimal.

0 200 400 600 800 1000
0

1

2

3

4

k transitions

m
es

sa
ge

s
se

nt
st

d.
de

v.

Berenbrink et al.
Berenbrink et al. w/ comm intensity
Weighted neighbour load w/ comm intensity

0 200 400 600 800 1000
0

1

2

3

4

k transitions

m
es

sa
ge

s
se

nt
av

g.

Berenbrink et al.
Berenbrink et al. w/ comm intensity
Weighted neighbour load w/ comm intensity

0 200 400 600 800 1000
0

5

10

15

20

25

k transitions

lo
ad

st
d.

de
v.

Berenbrink et al.
Berenbrink et al. w/ comm intensity
Weighted neighbour load w/ comm intensity

0 5 10 15
0

5

10

15

20

25

30

total distance

nu
m

be
r

of
ob

je
ct

s

Berenbrink et al.
Berenbrink et al. w/ comm intensity

Figure 5:Ring.abs on grid.

As in the case ofStar.abs , the performance trend in messaging over time is largely thesame on a
grid and hypergraph topology forRing.abs . The main difference on a hypergraph is that procedures



98 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

which take message intensity into account result in less pronounced improvements over the pure load
balancing procedure. For a complete topology, differencesare once again small, but with an edge towards
the message intensity procedures. Once more, grids of 64 and128 nodes preserve the trend from the 32-
node case.

5.3.4 Simulations ofChordDHT.abs

In the Chord DHT program, the weighted neighbour’s load and message intensity strategy exhibited a
tendency to quickly cause message buffer overflows, while the procedures based on the algorithms of
Berenbrink et al. worked largely as expected.

The left part of Figure 6 shows the average number of messagessent for nodes when running the
program on a grid, and the right part shows the standard deviation of the number of messages. Again,
smoothing by averaging samples five at a time has been applied. The results suggest that there is a
reasonable payoff from taking messaging into account in a migration strategy, even when running a
program with relatively complex communication patterns.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

k transitions

m
es

sa
ge

s
se

nt
st

d.
de

v.

Berenbrink et al.
Berenbrink et al. w/ comm intensity

0 200 400 600 800 1000
0

1

2

3

4

5

6

k transitions

m
es

sa
ge

s
se

nt
av

g.

Berenbrink et al.
Berenbrink et al. w/ comm intensity

Figure 6:ChordDHT.abs on grid.

Simulations ofChordDHT.abs on a hypergraph show very similar trends in performance to the
grid case, but give a less pronounced advantage to procedures which take message intensity into account,
as for previous programs. In a fully connected topology, theprocedures result in effectively the same
amount of messaging, as before.

6 Conclusions and Future Work

The simulation results suggest that it is feasible in a decentralized setting to meet the objective of bal-
anced resource allocation, and also make headway towards the objective of minimizing communication
of distributed objects. The results also validate the applicability of the ABS-NET model with location-
independent routing to decentralized runtime adaptation.The main concern for relevance to real-world
networks is the use in the model of unbounded message queues,and the lack of rate limitation and latency
controls in our simulator.



K. Palmskog, M. Dam, A. Lundblad & A. Jafari 99

In future work, we plan to continue the theoretical and simulation-based studies to deepen our under-
standing of multi-dimensional resource management, to improve the performance and accuracy of the
simulator, and to investigate adaptation in dynamic networks, initially only with benign churn, i.e., with
controlled startup and shutdown of nodes.

Acknowledgements

We thank the anonymous reviewers for their comments and suggestions, which were of significant help
in improving the paper. We also thank our colleagues in the HATS project for useful discussions and
criticism.

References

[1] Elvira Albert, Samir Genaim, Miguel Gómez-Zamalloa, Einar Broch Johnsen, Rudolf Schlatte & S. Lizeth
Tapia Tarifa (2011):Simulating Concurrent Behaviors with Worst-Case Cost Bounds. In Michael Butler &
Wolfram Schulte, editors:FM 2011: Formal Methods, Lecture Notes in Computer Science6664, Springer
Berlin Heidelberg, pp. 353–368, doi:10.1007/978-3-642-21437-027.

[2] Yossi Azar, Andrei Z. Broder, Anna R. Karlin & Eli Upfal (1999):Balanced Allocations. SIAM J. Comput.
29(1), pp. 180–200, doi:10.1137/S0097539795288490.

[3] Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg,Paul Goldberg, Zengjian Hu & Russell Mar-
tin (2007): Distributed Selfish Load Balancing. SIAM Journal on Computing37(4), pp. 1163–1181,
doi:10.1137/060660345.

[4] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, DorukBozdag, Robert Heaphy & Lee Ann
Riesen (2007):Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations. In:
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pp. 1–11,
doi:10.1109/IPDPS.2007.370258.

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer & J. F.
Quesada (2002):Maude: specification and programming in rewriting logic. Theoretical Computer Science
285(2), pp. 187–243, doi:10.1016/S0304-3975(01)00359-0.

[6] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara & Vittorio Scarano (2011):Distributed Load Bal-
ancing for Parallel Agent-Based Simulations. In: Parallel, Distributed and Network-Based Processing (PDP),
2011 19th Euromicro International Conference on, pp. 62–69, doi:10.1109/PDP.2011.22.

[7] Mads Dam & Karl Palmskog (2013):Efficient and Fully Abstract Routing of Futures in Object Network Over-
lays. Available at http://www.csc.kth.se/ ˜ palmskog/publications/efarfono.pdf .
Manuscript, submitted for publication.

[8] Mads Dam & Karl Palmskog (2013):Location Independent Routing in Process Network Overlays. Available
at http://www.csc.kth.se/ ˜ palmskog/publications/lirpno.pdf . Manuscript, submit-
ted for publication.

[9] Eyal Even-Dar & Yishay Mansour (2005):Fast convergence of selfish rerouting. In: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’05, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, pp. 772–781.

[10] Simon Fischer & Berthold Vöcking (2009):Adaptive routing with stale information. Theoretical Computer
Science410(36), pp. 3357–3371, doi:10.1016/j.tcs.2008.01.055.

[11] FP7-231620 (HATS) Project (2011):Deliverable 1.2: Full ABS Modeling Framework. Available at
http://www.hats-project.eu/sites/default/files/Deli verable12.pdf .

http://dx.doi.org/10.1007/978-3-642-21437-0_27
http://dx.doi.org/10.1137/S0097539795288490
http://dx.doi.org/10.1137/060660345
http://dx.doi.org/10.1109/IPDPS.2007.370258
http://dx.doi.org/10.1016/S0304-3975(01)00359-0
http://dx.doi.org/10.1109/PDP.2011.22
http://www.csc.kth.se/~palmskog/publications/efarfono.pdf
http://www.csc.kth.se/~palmskog/publications/lirpno.pdf
http://dx.doi.org/10.1016/j.tcs.2008.01.055
http://www.hats-project.eu/sites/default/files/Deliverable12.pdf


100 ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects

[12] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte & Martin Steffen (2012):ABS: A Core
Language for Abstract Behavioral Specification. In Bernhard K. Aichernig, Frank S. de Boer & Marcello M.
Bonsangue, editors:Formal Methods for Components and Objects, Lecture Notes in Computer Science6957,
Springer Berlin Heidelberg, pp. 142–164, doi:10.1007/978-3-642-25271-68.

[13] KryoNet authors:KryoNet project. Available athttp://code.google.com/p/kryonet/ .

[14] Karl Palmskog (2013): The Formal Semantics of Core ABS and ABS-
NET. Technical Report, KTH Royal Institute of Technology. Available at
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12 7894 .

[15] Karl Palmskog, Mads Dam, Andreas Lundblad & Ali Jafari:ABS-NET programs. Available at
http://www.csc.kth.se/ ˜ palmskog/abs-net/ .

[16] Peter Sewell, Paweł T. Wojciechowski & Asis Unyapoth (2010): Nomadic Pict: Programming languages,
communication infrastructure overlays, and semantics formobile computation. ACM Trans. Program. Lang.
Syst.32(4), pp. 12:1–12:63, doi:10.1145/1734206.1734209.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek & Hari Balakrishnan (2001):Chord: A scalable
peer-to-peer lookup service for internet applications. In: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer communications, SIGCOMM ’01, ACM, New
York, NY, USA, pp. 149–160, doi:10.1145/383059.383071.

[18] Hans Svensson, Lars-Åke Fredlund & Clara Benac Earle (2010):A unified semantics for future Erlang. In:
Proceedings of the 9th ACM SIGPLAN workshop on Erlang, Erlang ’10, ACM, New York, NY, USA, pp.
23–32, doi:10.1145/1863509.1863514.

http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://code.google.com/p/kryonet/
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127894
http://www.csc.kth.se/~palmskog/abs-net/
http://dx.doi.org/10.1145/1734206.1734209
http://dx.doi.org/10.1145/383059.383071
http://dx.doi.org/10.1145/1863509.1863514

	1 Introduction
	2 ABS Background
	3 Network Model and Semantics
	3.1 Runtime Configurations
	3.2 Node Controller Behaviour

	4 Adaptation
	5 Simulator
	5.1 Scenarios
	5.2 Scenario Objectives
	5.3 Results
	5.3.1 Simulations of IndependentTasks.abs
	5.3.2 Simulations of Star.abs
	5.3.3 Simulations of Ring.abs
	5.3.4 Simulations of ChordDHT.abs


	6 Conclusions and Future Work

