A standardisation proof for algebraic pattern calculi

Delia Kesner Carlos Lombardi Alejandro Rios
PPS, CNRS and Université Paris Diderot Depto. de Cienciay Tecnologia Depto. de Computacion
France Univ. Nacional de Quilmes Facultad de Cs. Exactas y Naturales
Delia.Kesner@pps.jussieu.fr Argentina Univ. de Buenos Aires — Argentina
clombardi@ung.edu.ar rios@dc.uba.ar

This work gives some insights and results on standardisétiocall-by-name pattern calculi. More
precisely, we define standard reductions for a pattern kedeuth constructor-based data terms and
patterns. This notion is based on reduction steps that @&@egeto match an argument with respect
to a given pattern. We prove the Standardisation Theoremsimguhe technique developed by
Takahashi[14] and Crarj/[[2] for-calculus. The proof is based on the fact that any developozen
be specified as a sequence of head steps followed by intechattions, i.e. reductions in which no
head steps are involved.

1 Introduction

Pattern Calculi: Several calculi, calleghattern calculj have been proposed in order to give a formal
description of pattern matching; i.e. the ability to analytse different possible forms of the argument of
a function in order to decide among different alternativénilgon clauses.

The pattern matchingoperation is the kernel of the evaluation mechanism of aé¢hformalisms,
basically because reduction can only be fired when the angupassed to a given function matches its
pattern specification. An analysis of various pattern datased on different notions of pattern matching
operations and different sets of allowed patterns can hedfau|[8].

Standardisation: A fundamental result in thé -calculus is theStandardisation Theoremvhich states
that if a termM B-reduces to a termN, then there is atandard3-reduction sequence fromd to N
which can be seen as a canonical way to reduce terms. Thi$ hesuseveral applications, e.g. it is
used to prove the non-existence of reduction between gasenst One of its main corollaries is the
guasi-leftmost-reduction theorem, which in turn is usefrtave the non-existence of a normal form for
a given term.

A first study on standardisation for call-by-namecalculus appears in|[3]. Subsequently, several
standardisation methods have been devised, for examp&eftion 11.4/114],9] and [13].

While leftmost-outermost reduction gives a standard exgator call-by-name\ -calculus, more re-
fined notions of reductions are necessary to define stanttatdgies for call-by-valué -calculus [13],
first-order term rewriting systems![6,115], Proof-Nets ;.

All standard reduction strategies require the definitiosaheselectededex by means of a partial
function from terms to redexes; they all give priority to 8eected step, if possible. This selected redex
is sometimes calledxternal[11], but we will refer here to it as thieead redexf a term.

It is also worth mentioning a generic standardisation pfi@f that can uniformly treat cal-by-name
and call-by-value\ -calculus. Itis parameterized over the set of values thawab fire the beta-reduction
rule. However, the set of values are defined there in a glaraes while in pattern calculi being a value
strongly depends on the form of the given pattern.

Standardisation in Pattern Calculi: For call-by-nameA-calculus, any term of the forfAx.M)N is
a redex, and the head redex for such a term is the whole termattarn calculi any term of the form

E. Bonelli (Ed.): 5th International Workshop © D.Kesner, C.Lombardi & A.Rios
on Higher-Order Rewriting (HOR'10) This work is licensed under the Creative Commons
EPTCS 49, 2011, pp. 58972, doi:10.4204/EPTCS]49.5 Attribution-Share Alike License.

http://dx.doi.org/10.4204/EPTCS.49.5
http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/

D.Kesner, C.Lombardi & A.Rios 59

(Ap.M)N is a redex candidate, but not necessarily a redex. The ptgamim such terms can be more
complex than a single variable, and the whole term is not exddhe argumenN does not matclp,

e., if N does not verify the structural conditions imposedbyln this case we will choose as head
a reduction step lying insidd (or even insidep) which makesp andN be closer to a possible match.
While this situation bears some resemblance wih-by-valueA -calculus [13], there is an important
difference: both the fact afA p.M)N being a redex, and whether a redex indileould be useful to get
p andN closer to a possible match, dependbmth N and p

The aim of this contribution is to analyse the existence ofaadardisation procedure for pattern
calculi in a direct way, i.e. without using any complicatetteding of such calculi into some general
computational framework [10]. This direct approach aimpubto evidence the fine interaction between
reduction and pattern matching, and gives a standardisatgorithm which is specified in terms of
the combination of computations of independent terms wattii@l computations of terms depending
on some pattern. We hope to be able to extend this algoritappcoach to more sophisticated pattern
calculi handling open and dynamic patterinis [7].

The paper is organized as follows. Sectidn 2 introduces #heults, Sectio]3 gives the main
concepts needed for the standardisation proof and the reaiiits, Sectiofil4 presents some lemmas
used in the main proofs, Sectionls 5 &4ld 6 show the main rassg in the Standardisation Theorem
proof and then the theorem itself; finally, Sectidn 7 conekidnd gives future research directions.

2 The calculus

We will study a very simple form of pattern calculus, coriegtof the extension of standaid-calculus
with a set of constructors and allowing constructed pasterinis calculus appears for example in Section
4.1in[8].

Definition 2.1 (Syntax) The calculus is built upon two different enumerable sets/oflwls, the vari-
ables xy,z,w and the constants, g, b; its syntactical categories are:

Terms M,N,Q,R := x|c|ApM|MM DataTerms D := c¢|DM
Patterns p,qg == x|d DataPatterns d := c|dp

Free and bound variables of terms are defined as expectedl@sweconversion.

Definition 2.2 (Substitution) A susbsitutiorf is a function from variables to terms with finite domain,
wheredom(6) = {x : 6(x) # x}. The extension of to terms is defined as expected. We denote
= {X3/M1,...,%/Mp} whereverdom(0) C {x1,...,X,}. Moreover, forf, v substitutions, X a set of

variables, we define

var(8) = dom(0)U (Uxedom fV())
Ve = (Uxedom {X/V QX) U (UXE dom dom {X/VX})
0 ’X n= Uxexmdom {X/QX}

Definition 2.3 (Matching) Let p be a pattern and M a term which do not share common vaabl

Matching on p and M is a partial function yielding a subsiibut and defined by the following rules

(w on substitutions denotes disjoint union with respect tir th@mains, being undefined if the domains
have a non-empty intersection):

60 Standardisation for constructor based pattern calculi

d<%D p<®N 6,w6, defined
x < ¥/NEN c<lc dp <% DN

We write p< M iff 30 p <® M. Remark that p< M implies that p is linear.

Definition 2.4 (Reduction step) We consider the following reduction steps modmgonversion:

M — M’ N — N p<fN M — M’
— SAppL ——— SAppR SBeta ————— SAbs
MN — M’'N MN — MN’ (Ap.M)N — 6M ApM — ApM

By working moduloa-conversion we can always assume in ri#Bédta) that p andN do not share
common variables in order to compute matching.

Lemma 2.5 (Basic facts about the calculus)

a. (data pattern/term structure) Lete DataPatterns (resp. De DataTerms), then d=cp; ... pn (resp.
D =cM;...Mp,) for some > 0.

b. (data patterns only match data terms) LeedataPatterns, M a term, such that @& M. Then
M € DataTerms.

c. (minimal matches) If g<® M thendom(8) = fv(p).
d. (uniqueness of match) If¢® M and p<% M, then6;, = 6,.

Crucial to the standardisation proof is the concept of dgumlent, we formalize it through the rela-
tionr>, meaningV > N iff there is a development (not necessarily complete) watliveeM and targeiN.

Definition 2.6 (Term and substitution development) We define the relation on terms and a corre-
sponding relatior» on substitutions. The relatianis defined by the following rules:

!/
DRefl MEM abs
M>M Ap.M>Ap.M
M>M' NoN MM 6p 6 p<?N
—— DApp — DBeta
MN>M'N’ (Ap.M)N>6'M

and» is defined as follows8 » 6’ iff dom(6) = dom(68’) andVx € dom(6) . Bxr>8’'x

2.1 Head step

The definition of head step will take into account the tefthp.M)N even if p « N. In such cases, the
head redex will be insidBl as the patterns in this calculus are always normal forms (il not be the
case for more complex pattern calculi).

The selection of the head redex insiNedepends on botiN and p. This differs from standard
call-by-valueA -calculus, where the selection depends onlyNon

We show this phenomenon with a simple example.d.btc be constants and = (aR;)R,, where
R: andR; are redexes. The redexesNimeeded to achieve a match with a certain patperind thus the
selection of the head redex, depend on the pattern

Take for example different patterps = (ax)(by), p> = (abx)y, ps = (abx)(cy), ps = (ax)y, and con-
sider the termQ = (A p.M)N. If p= py, then it is not necessary to reduege (because it already matches

D.Kesner, C.Lombardi & A.Rios 61

X) but it is necessary to redué®, because no redex can match the patistrihenceR, will be the head

redex in this case. Analogously, fpg it is necessary to redud® but notR,, for ps both are needed (in
this case we will choose the leftmost one) gmddoes matchN, hence the whol€) is the head redex.
This observation motivates the following definition.

Definition 2.7 (Head step) The relations;> (head step) andp» (preferred needed step to match pattern
p) are defined as follows:

|\/|—h>|\/|/ p<<9N N ~» N’
" Happl HBeta P HPat
MN?M’N (/\p.M)N—h>9|v| ()\p.M)N?(/\p.M)N'
M — M’ D~ D M~M" d< D
N PatHead =~ ——%—— Patl : — Pat2
M ~ M/ DM ~» D'M DM ~ DM
d dp dp

The rulePatHead is intended for data patterns only, not being valid for valggpatterns; we point this
by writing ad (data pattern) instead of@(any pattern) in the arrow subscript inside the conclusion.

We observe that the rule analogousHBat in the presentation of standard reduction sequences for
call-by-valueA -calculus in both[[13] and [2] reads

N—h> N’
(Ap.M)N - (Ap.M)N’

reflecting theN-only-dependency feature aforementioned.

We see also that a head step in a term (ik@.M)N determined by ruléiPat will lie inside N, but
the same step will not necessarily be considered head if agsaN alone.

It is easy to check that i¥1 ~p» M’ thenp <« M, avoiding any overlap betweétBeta andHPat and

also betweerratl andPat2. This in turn implies that all terms have at most one headx.edé remark
also that the head step depends not only on the patternis&umit also on the match or lack of match
between pattern and argument.

Lemma 2.8 (Basic facts about head steps)

a. (head reduction only if abstraction in head) Let M be a tesuch that M? M’ for some M. Then
M = (Ap.Mo1)M;...Mywithn> 1.

b. (head reduction only if no match) Let M be a term such thart?wl’ for some M, d € DataPatterns.
Then d&« M.

C. (~p» only if —h> or data term) Let p be a pattern and let M be a term such that;l\M’ for some M.
Then either Me DataTerms or M - 1Y/

Proof Item @) is trivial. Item[(b) uses Iterm(a) and[L. P[%:(b).nte) is trival by definition ofvg. O

62 Standardisation for constructor based pattern calculi

3 Main concepts and ideas needed for the standardisation pad

In order to build a standardisation proof for constructasduhpattern calculi we chose to adapt the one
in [14] for the call-by-name\ -calculus, later adapted to call-by-valdecalculus in[[2], over the classical
presentation of [13].

The proof method relies ontadevelopmentproperty stating that any development can be split into
a leading sequence of head steps followed by a developmaertiiain no head steps are performed; this
is our Corollanyf 5.4 which corresponds to the so-called fmi@mma” in the presentations by Takahashi
and Crary.

Even for a simple form of pattern calculus such as the onespted in this contribution, both the
definitions (as we already mentioned when defining head)stewisthe proofs are non-trivial extensions
of the corresponding ones for standargalculus, even in the framework of call-by-value. As menéd
before, the reason is the need to take into account, for tawob/ing the application of a function to
an argument, the pattern of the function parameter wherdishgcivhether a redex inside the argument
should be considered as a head redex.

In order to formalize the notion of “development without ooences of head steps”, amernal
developmentelation will be defined. The dependency on bbtland p when analysing the reduction
steps from a term lik¢A p.M)N is shown in the ruléApp2.

Definition 3.1 (Internal development) The relationss (internal development) anlgltp (internal devel-
opment with respect to the pattern p) are defined as follows:

IRefl MeM' L M#ApMr MEM NoN -
int — : PP
M > M Alelr;t)\pM/ Mng M/N/
/ int / NDN/ << N int /
MeM" NB>pN App2 —p PMatch N> N B Const
int N N |[r;t N/ int ,
(ApM)N > (Ap.M')N p N>cN
N ¢ DataTerms N'& N/ DTyD MsM d£D
— PNoCData — PCDataNol
N T ap N’ DM T4, D'M’

int

DD MpbpM d<D p&M

int

DM B4, D'M’

PCDataNo2

DD MM d<D p<M dpgDM

int

DM &g, D'M’
Remark that rulé®CDataNo3 is useful to deal with non-linear patterns.

Thus for exampleab((Ay.y)c) igaxx abc sinceabrab, (Ay.y)crc, ax < ab, X < (Ay.y)c but axx &
ab((Ay.y)c). _ _
We observe also that M & N’ or N 'Qtp N’ thenN>N'.

PCDataNo3

The following lemma analyses data / non-data preservation

D.Kesner, C.Lombardi & A.Rios 63

Lemma 3.2 (Development and data)

a. (internal development cannot create data terms) Lef RataTerms, N such that ME N. Then
N ¢ DataTerms

b. (development from data produces always data) Let MataTerms, N such that M-N. Then Ne
DataTerms

The formal description of the h-development condition talkéorm of an additional binary relation.
This relation corresponds to the one calétitbng parallel reductiorin [2].

Definition 3.3 (H-development) We define the relatior?and:. Let M,N be termsy, 6 substitutions.

int

a. M?N iff ()Me>N, (i)3Qs.t.M —h>* Qig N, (i) Vp.3Qps.t.M 3; Qp>pN.
b. v > 6 iff (i) Dom(v)=Dom(0), (i) ¥xe Dom(v). VXD ox.

The clausdiii) in the definition Ofi shows the dependency on the patterns that was already moted i

the definitions of head step and internal development.

This clause is needed when proving that all developmentl-de/elopments; let's grasp the reason
through a brief argument. Suppose we want to prove that dafgwent insideN in a term like(A p.M)N
is an h-development. The rules to be used in this casedRae(Def.[2.7) andApp2 (Def.[3.1). Therefore
we need to perform an analysislative to the pattern pand this is exactly expressed by claygg .
Consequently the proof of claugi#) for a term needs to consider clau$@ (instantiated to a certain
pattern) for a subterm; this is achieved by including clafii§ein the definition and by performing an
inductive reasoning on terms.

4 Auxiliary results
We collect in this section some results needed to completenttin proofs in this article.

Lemma 4.1 (pattern-head reduction only if there is no match)
Let M,N be terms, p a pattern, such that4>g4 N. Then p& M.

Proof Using L.[2.8:(b). O

Lemma 4.2 (development cannot lose matches)
Let M,N be terms, p a pattern, such thatNN and p<” M. Then p<® N for somed such thatv » 6.

Proof Induction onp <Y M. The axioms can be checked trivially. For the rule,Net= M1M5, N =
NiN2, p= p1p2 andv = v1 W vy ; pis linear since it matches a term . The only rules applicada®/fi> N
are DRefl or DApp; DBeta is not applicable becaudd; € DataTerms. If DRefl was used, the lemma
holds trivially takingd = v. If DApp was used, we apply the IH on both hypotheses obtaiping® N;
with v; » 6 ; by L.[2.8:(c) and the linearity of we know8 = 6, & 6, is well-defined; it is easy to check
that 0 satisfies the lemma conditions. 0

Lemma 4.3 {Qtp cannot create match)
Let M,N be terms, p a pattern, such that'ﬂt/|O N. Then p&£ M implies p£ N.

64 Standardisation for constructor based pattern calculi

Proof Induction onM igtp N by rule analysis

PMatch not applicable ap <« M.

PConst in this case the conditiop <« M implies p <« N equates tdVl £ p impliesN # p, aspis a
constant.

The rule premise readd igt N: if rule IRefl was used thelN = p by hypothesis, else thi&t rule
conclusions exclude the possibility Nfbeing a constant.

PNoCData M ¢ DataTermsandM igt N by rule hyp., theN ¢ DataTermsby L.[3.2:(@), finallyp <« N
by L.[2.5:(B).

PCDataNol By the IH, as rule hyp. includes boﬂmigd D’ andd <« D beingM = DT andp=dp.

PCDataNo2 Similar to the former considering= dp and usingl igtp/ T andp & T.

PCDataNo3 In this caseM =DM/, p=dp,d < D, p < M’ anddp %« DM’. We necessarily have
that@w 6’ is not defined hencp is not linear so thap <« N also holds.

0

Lemma 4.4 (left-pattern-head implies whole-pattern-headl
Let pr, p2 be patterns and W Ny, M, be terms such that Mr;» Ni. Then MM, pMS N1 M.
1 1 M2

Proof Itis clear thatp; ¢ Var, because there is ¢, such thatM; o Ny if X € Var.

If PatHead applied inM; H N, thenMy ? N1, by HAppl M1M> ? N1M,, and finally byPatHead
MiM2 ~~ NiMy.

If epiiFlzer Patl or Pat2 applied inM; H N1, thenM; is clearly a data term, Thevi;M, p:;z N1M, by
Patl.]

Lemma 4.5 (matching is compatible with substitution)
Let M be a term, p a pattern anél a substitution such that & M. Then for any substitution, the
following holds: p<Y vM wherey = v [¢y(p).

Proof By induction on the match. The axioms can be checked tnvigillen L.[2Z.51(T).
We analyze the rule applied in this context

d<®M; p<®2M,
dp=p <0=016 M = MM,

Applying the IH on both hypotheses and then using the rulesgiyp < (V&)@ (V& MyM,; an
easy check ofvoy) |sy(g) W(VO2) |sy(py= (V(61W 62)) |£y(ap) CONCludes the proof. O

Lemma 4.6 (development is compatible with substitution)
Let M,N be terms and, 6 substitutions, such that MN andv » 6. ThenvM > 6N

Proof By induction onM >N by rule analysis.
For DRefl the thesis amounts M > 6M, which can be checked by a simple inductionMnDAbs
andDApp can be simply verified by the IH.

D.Kesner, C.Lombardi & A.Rios 65

For DBeta first we mention a technical result which will be used. Bet be substitutions such that
dom(7) Nvar(8) =0, then
((67) laon(r)) @ = 6T 1)
this can be easily checked comparing the effect of applyoty bubstitutions to an arbitrary variable.
Let's analyze the rule premises and conclusion appliedigncibntext

My >M] T T p<’M;
M = ()\ p.Ml)MQDT’Mi =N

As we can freely choose the variables appearing,iwe assumév(p) N (var(v)Uvar(8)) = 0. By
L.2.5:(@) we knowdom(7) = dom(T’) = £v(p).

We apply the IH orM;>M;j and also orrx> t'x for eachx € dom(T) to concludevM; > 6M; and
(VT) |don(r)® (BT") laon(r) respectively. Furthermore, from<" M and L[4 we concludp <Vl
VM>.

We useDBeta from the three conclusions above to obtain

VM = ()\ p-VMl)(VMZ) > ((QT/) |dom(r))(eMi)

To checkfN = 6(1'M}) = ((8T') |qon(r)) (BM7) it is enough to verify
67" = ((67') |aon(r)) 0, the latter can be easily checked By (1).

Lemma 4.7 (head reduction is compatible with substitution)

(i) LetM,N be terms and a substitution such that Mr? N. ThenvM —h> VN.

(i) Let M,N be terms, p a pattern anda substitution such that M; N. ThenvM ~; VN.

Proof (sketch)
Both items are proved by simultaneous inductionvbr> N andM ~- N.

h P
We use L[4 for casklBeta, the IH and L[4.b for cas@at2, and just the IH for the remaining
cases.]

5 H-developments

The aim of this section is to prove that all developments adevelopments.
We found easier to prove separately that the h-developnosdkition is compatible with the language
constructs, diverging from the structure of the proofs n [2

Lemma 5.1 % is compatible with abstraction)
Let M,N be terms such that Isr{IN. ThenAgq.M ?/\q.N for any pattern q.

Proof Part(i) trivially holds by hyp.(i) andDAbs.
Part(ii): by hyp. (i) andlAbs we getAq.M B g.N. ThenQ =Aq.M.
Part(iii) : if p € Var thenPMatch applies, ifpis a constant or a compound data pattern th€anst

or PNoCData apply respectively asAq.M) i (Ag.N). In all cases we obtaifA g.M) igp (AQ.N). Then
Q=AgM. O

66 Standardisation for constructor based pattern calculi

Lemma 5.2 % is compatible with application)
Let Mg, M2, N1, No be terms such that Mﬁ N; and I\/IZE No. Then MMZE N1N,.

Proof Part(i) is immediate by the hypothesé¥ andDApp.

Let's prove par{ii). _

We first use hypothesi@) on Ml?Nl to obtainM; —h>* Q1 i N1 and subsequently applyAppl to
M1 ?* Q; to get

M; M, —h>* Qi1My (2

EitherQ is an abstraction or not.

AssumeQ); is not an abstraction. Sin€g; ig N1 andMa >N, we applylAppl so thatQ; M, ig N1Ny;
this together with[(2) gives the desired result.

Now assumeé); = A p.Q12. We use the hyp(iii) on MzENz, obtainingM, ?* Q2 igp N, and then
we applyHPat to get

QiM> —h>* Q1Q2 3

Moreover, a¥xQ; = A p.Q12 ig N1, the only applicable rules ai®efl or I1Abs, and in both caseBl; =
A p.N12 andQ12> N1o.

We now usdApp2 with premisesQ1o>N1o andQ, igp N, to get
int
QUQ=ApQ2)Q > (ApNiz)Na=NiN, (4)
The desired result is obtained thy (2}, (3) ald (4).
Let’s prove parfiii) .
If pe Varwe are done hyi) andPMatch; we thus geMiM, igp N1N> so thatQ = M1 M,.
If p= cthen using(ii) we obtainM;M, —h>* Q igt N1N, for someQ ; we applyPatHead andPConst
to getM1M, {» QandQ igtc N1N> respectively, concluding the proof for this case.
Considerp = pyp2 with p; a data pattern ang, a pattern.
We use the hyp.(iii) on Mllﬁle gettingMy g» Q1 'Btpl Ni. Let us defineR; as follows: if there
1

is a data term in the sequenik J; Q1 thenRy is the first of such terms; otherwi$ is Q. In both

casedV; w Ry w Q1. We necessarlly havd, —> R1 by PatHead, thenM1M, —> Ri1M, by HApp1 and
subsequenthIlMg w R1M, by PatHead.
We concluddVIle ~p» Q1Mo trivially if Q; = Ry, and applyingPatl to Ry T} Q1 to obtainR; M, %
1
Q1M otherwise.

D.Kesner, C.Lombardi & A.Rios 67

If Q1 = (Aq.Q}) then we use the hyfgiii) on leﬁ N» gettingM» 3; Q2 igq No.

We apply HPat to M, ?* Q> getting Q;M —h>* Q1Qy; therefore we obtairQ;M, % Q1Q2 by

PatHead.
In the other sid&®; = (A9.Q}) >Ny, thereforeN; = (Aq.Nj) andQ) >N;.

We apply |App2 to Q& > Ni and Q, ilr;tq N, to obtain Q1Q» ilr;t NiN,, thereforeQ1Q» igtp NN, by
PNoCData. We thus get the desired result takiQg = Q1Q>.

If Q1 is not an abstraction an@; ¢ DataTerms, then onlyPConst or PNoCData can justifyQ ig Pt
N, thus implyingQq Ig Nz1; this together with the hypothesig M, >N, givesQ1M, 'gt N1N by [Appl,
henceQ;M> 'Qtp N1N> by PNoCData. We get the desired result by takiqlp = Q:1Mo.

If Q; € DataTermswe anaylise the different alternatives for the matchingveenp; p, andQiM,.

Assumep; « Qs. In this case we appli?CDataNol to Q; 'Qtpl N; andMs, >N, to obtainQ; M- 'Etp
N:N, and thus the desired result holds by takipg= Q1 M>.

Assumep; < Qq andp, « M». In this case we use the hyfiii) on M2ﬁ N, to getM, T} Q2 'gtpz Ny,
2

then applyPat2 to getQ; M, v*p» Q1Q2. Finally fromQ; 'gtpl N1 andQ; 'gtpz N, we obtainQ1Q> 'gtp N1N>

by eitherPCDataNo2, PCDataNo3 or PMatch. We get the desired result by takiQyp = Q1Qo.
Finally assumem < Q1 andp; < Q2. In this case the hypotheses imply in particufanN; and

M, > N,. We thus conclud€; M- 'Etp N1N> using eithePMatch or PCDataNo3 (depending on whether
p < Q1M; or not), getting the desired result by takiQg = Q1 Mo.
O

Now we proceed with the proof of the h-development propéertye generalization of the statement
involving : is needed to conclude the pr@p&s can be seen in tiEBeta case below.

Lemma 5.3 (Generalized h-developments property)
Let M,N be terms and, 6 substitutions, such that MN andv : 0.

ThenvM?GN

Proof By induction onM >N analyzing the rule used in the last step of the derivation.

DRefl in this caseN = M, we proceed by induction dv
e M =x¢e& Dom(v), in this casevM = vx E 6x = 6N by hypothesis.
e M =x¢ Dom(v), in this casevM = x b X= ON.
e M = M1My, in this caseMlEQMl and szEQMz hold by the IH. The desired result is

obtained by L[5.P.
e M =Ap.My, inthis caseleE 6M; holds by the IH. The desired result is obtained by L] 5.1.

1in [2] the compoatibility of h-development with substituti®is stated as a separate lemma; for pattern calculi we cotld
find a proof of compatibility with substitution independerftthe main h-development result.

68 Standardisation for constructor based pattern calculi

DAbs in this caseM = A p.M1,N = A p.Ny, M1 > Nj.
Using the IH onM;>N; we obtainleieNl, the desired result is obtained by[L.15.1.

DApp in this caseM = MMz, N = NiNo, M > N;.
Using the IH on both rule premises we obtail; > ON;, the desired result is obtained by[L.15.2.

DBeta Let’s write down the rule instantiation
Mi2>Ni2 T o T q <! Mo
M= ()\ q.Mlz)Mz > T/N12 =N
(i) can be obtained by hypothedés- N andv : 6, and then L[4J6.

For [(iii) if p € Var]we are done byi) andPMatch.
For [(iii) if p=d]and also forii) : we know bothM - ™M1, andM = TMyp, then by L[4.¥

vM - v(tM12) and vM = v(TM12) (5)

We apply the IH on eachx> 1'x, obtaining(v1)x = v(1X) > 8(1'x) = (87")x for all x € Dom(T).
Moreover, ifx € Dom(v) —Dom(1) then(vT)x = vx > Ox = (61')x by hypothesis.
Consequentlyyt : 61’. Now we use the IH oMy5> Ny, taking vt : 01’ as second hypothesis

to obtain
V(TMy2) = (VT)My2 lﬁ (QT/)N;LZ: G(T/le) = 6N

This result along with[{5) concludes the proof for both parts

Corollary 5.4 (H-development property)
Let M,N be terms such that MN. Then I\/I;N.

6 Standardisation
The part of the standardisation proof following the prooftleé h-development property coincides in
structure with the proof given in2].

First we will prove that we can get, for any reduction invalyihead steps that follows an internal
development, another reduction in which the head stepstaree &eginning. The name given to the
Lemmd6.1 was taken frornl[2].

This proof needs again to consider explicitly the relatioglative to patterns, for similar reasons to
those described when introducing h-development in se@ion

Lemma 6.1 (Postponement)

(i) if™M BN e R then there exists some termhuich that Mﬁ N>R

(i) for any pattern p, if M'gtp N i~ R then there exists some terrj) $lich that Mvp» Np>R

D.Kesner, C.Lombardi & A.Rios 69

Proof For (i), if the rule used irM ig N is IRefl, then the result is immediate takitgf = R. Therefore,
in the following we will ignore this case.
We prove(i) and(ii) by simultaneous induction av taking into account the previous observation.

variable in this case it must bBl = M for both (i) and(ii) and neitheiM 7 RnorM ? Rfor anyp,R.

abstraction in this caseN must also be an abstraction for b@thand(ii) and neithelN 7 RnorN~ R
p

foranyp,R.
application in this caseM = MM
We prove(i) first, analysing the possible forms Bk
e AssumeM; is not an abstraction
In this casdApp1 applies, so we knoW = N1Np, M; ig N1, andMa > Ny.
SinceM, ig N1, N1 is not an abstraction, then the only applicable ruIeN(}ﬁ Ris HAppl,
henceR = R;N, andN; —h> R;.

Now we use the IH oy & Ny — Ry to getMs — Nj >Ry, then we obtairM = MiM —

NiM_ by HApp1.
Finally we applyDApp to Nj >Ry andMz >N, to getN;M2>RiN, = R, which concludes the
proof for this case.

e Now assuméM; = A p.M12 andp <« M

SinceM = (A p.M12)M; ig N, the only rule that applies iBApp2, thenN = (A p.N12)Np,

M12> Nio, andM, igp N,. By L.[4.3 we obtainp <« N, so the only applicable rule iN =
(Ap.N12)N2 —h> Ris HPat, thenR = (A p.N12)R; andN; ? R,.

Now we use the IHii) on M, igp Ny vp» Ry, to getM, ~; N> Ro.
We obtainM = ()\ p.Mlz)Mz ? ()\ p.Mlz)Né by HPat, then we get()\ p.Mlz) > ()\ p.le)

by DAbs on M12> Ny, finally we applyDApp to the previous result and; > R, to obtain
(A p-M12)N5 > (A p.N12)R2 = Rwhich concludes the proof for this case.

e Finally, assumé/l; = A p.Mpo andp <V My
Again, the only rule that applies M = (A p.M12)M; BN is [App2, thenN = (A p.N12)Ny,

M2 Npo, andM, igtp No. Now, by L.[4:2 we obtairp <® N, for some substitutior® such
thatv » 6, then the applied rule iN 2 Ris HBeta (the caséiPat being excluded by L[411),

henceR= 6N,
It is clear thatM —h> VM1,. By L.[4.8 we obtairvM1,> ON;» = R, which concludes the proof

for this case.

For (ii) we proceed by a case analysispof

If p € Varthen there is n& such thaiN vp» R for any termN.

If p< M then by L[4:2p < N, and therefore by L. 411 there can beRsuch thaiN = R

70 Standardisation for constructor based pattern calculi

If p=cthenp« M, henceM igp N ~p» RimpliesM ig N 7 R asPConst andPatHead are the
only possibilities for this case respectively. We use fiario obtainM - N>R, andM = N’ by
PatHead which concludes the proof for this case.

If p=dp, andM ¢ DataTerms, then the only possibilities fav! igp N ~; R arePNoCData and

PatHead respectively, theiM TN - R. We use parfi) to obtainM - N>R, andM ~ N’ by
p
PatHead which concludes the proof for this case.

Now assumep = d pp, M € DataTerms, andp <« M. We must analyse three possibilities

e d & My.

In this case onlyPCDataNol applies forM igp N, thereforeN = N; N, with M, igd N; and
Ma>No. By L.[4.3 we knowd « N; and moreoveN; is a data term (as can be seen by L] 3.2)
thus not having head redexes, so the only possible rulelf?f Ris Patl, thenR = R{N>

with Nq ? R;.

Now we use the IH on the derivatiavi; igd N " R; to getMy " N; >Ry, thereforeM =
Mi1M» «g N:/LMz by Patl.
Moreover as\; >Ry andMz >N, henceN;M2>Ri N, = R, which concludes the proof for this
case.

e d< M;jandp; « Ma. -
In this case onlyPCDataNo2 applies forM 'Qtp N, thereforeN = N;N, with M;>N; and
Mo 'Qtpz N,. By L.[4.2 and L[4.B respectively, we obtain batk« N; andp, <« N,. Moreover
N is a data term (as can be seen by L] 3.2) thus not having headeedHence the only
possibility forN vp» Ris Pat2, thenR = N;R, with N, T; Ry

2

We now use the IH oM, & p, Na ~ Ry t0 getMp ~ N>Ry, and byPat2 M = MyM, ~» MyN
p2 p2 p

We also us®App onM; >Nz andN, >R, to getMiN;>N; R, = R, which concludes the proof
for this case.
e d < My, pp < My anddp, €« M1Ma.

d < My implies (L[2.5:(b))M; € DataTerms so that fromM = MM, 'gtp N we can only
haveN = N;N, with M;>N; andM,>N,. L.[4.2 givesd < N; andp, < Ny. L.3.2:(B) gives
N € DataTerms. To showN ~~ Rwe have three possibilitie®atHead is not possible since

P
N € DataTerms (c.f. L[2.8:@)),Pat1 is not possible sincd < My (c.f. L[4.1),Pat2 is not
possible since, < N, (c.f. LIAT).

0

Corollary 6.2 _ _
Let M,N, R be terms such that W N - R. TherdN’ s.t. M 7* N'ER.

Proof Immediate by L[G.11 and Corollafy 5.4. O

D.Kesner, C.Lombardi & A.Rios 71

Now we generalize the h-development concept to a sequendevelopments. The name given to
Lemmd6.B was taken frornl[2].

Lemma 6.3 (Bifurcation)

int
Let M,N be terms such that M N. Then M?* R* N for some term R.
Proof Induction on the length d>* N. If M = N the result holds trivially.

i int
AssumeM >Qps* N. By C.[5.4 and IH respectively, we obtal —h>* st QandQ —h>* T >* N for

some term$SandT. Now we use Corollariy 612 (many times) & Q 7* T to getS—h>* RET.

; int
ThereforeM —h>* S?* R'Qt T >* N as we desired. O

Using the previous results, the standardisation theoremnita@ very simple proof.

Definition 6.4 (Standard reduction sequence)The standard reduction sequences are the sequences of
terms M;...; M, which can be generated using the following rules.

Mo;...;Mx M;— M Mz;...; Mg
h___ StdHead StdAbs
Mg;...; M (Ap-My);...; (A p-My)

Mz;...iMj N Ng
(M1N1);...(MjN1); (MjN2);...; (Mj Ny)

Theorem 6.5 (Standardisation)
Let M;N be terms such that M N. Then there exists a standard reduction sequenge.lWN.

int
Proof By L. we haveM —h>* R>* N; we observe that it is enough to obtain a standard reduction
sequencd;...;N, because we subsequently apptdHead many times.
Now we proceed by induction dd
e N € Var; in this caseR= N and we are done.

e N = Ap.Ng; in this caseR = A p.R; andR; >* N;. By IH we obtain a standard reduction sequence
Ry1;...;Ny, then byStdAbs so iSR=Ap.Ry;...;Ap.N; = N.

e N =NiN, soR=R;R, andN;>*R;. We use the IH on both reductions to get two standard
reduction sequencey;...;R;, then we join them usin§tdApp.

O

7 Conclusion and further work

We have presented an elegant proof of the Standardisatieor&im for constructor-based pattern calculi.

We aim to generalize both the concept of standard reduchdritee structure of the Standardisation
Theorem proof presented here to a large class of patteralicahcluding both open and closed variants
as the Pure Pattern Calcul(s [7]. It would be interestingatetsufficient conditions for a pattern calculus

72 Standardisation for constructor based pattern calculi

to enjoy the standardisation property. This will be closspirit with [8] where an abstract confluence
proof for pattern calculi is developed.

The kind of calculi we want to deal with imposes challengest dre currently not handled in the
present contribution, such as open patterns, reducibleafdic) patterns, and the possibility of having
fail as a decided result of matching. Furthermore, the podyilfi decidedfail combined with
compound patterns leads to the convenience of studyingsfofimherently parallelstandard reduction
strategies.

The abstract axiomatic Standardisation Theorem developfs] could be useful for our purpose.
However, while the axioms of the abstract formulation ohdirdisation are assumed to hold in the proof
of the standardisation result, they need to be defined arifiedefor each language to be standardised.
This could be nontrivial, as in the case of TRS[6, 15], whemeesa-level matching operation is involved
in the definition of the rewriting framework. We leave thipimas further work.

References

[1] H.P. Barendregt (1984)fhe Lambda Calculus: Its Syntax and Semantidsevier, Amsterdam.

[2] K. Crary (2009): A Simple Proof of Call-by-Value Standardizatioffechnical Report CMU-CS-09-137,
Carnegie-Mellon University.

[3] H.B. Curry & R. Feys (1958)Combinatory Logic North-Holland Publishing Company, Amsterdam.
[4] J.-Y. Girard (1987)Linear Logic Theoretical Computer Sciené@(1), pp. 1-101.

[5] G. Gonthier, J.-J. Lévy & P.-A. Mellies (1992)An abstract standardisation theoremn: Proceedings,
Seventh Annual IEEE Symposium on Logic in Computer ScieB2e?5 June 1992, Santa Cruz, California,
USA, IEEE Computer Society, pp. 72-81.

[6] G.Huet&J.-J. Lévy (1991)Computations in orthogonal rewriting systens: Jean-Louis Lassez & Gordon
Plotkin, editors:Computational Logic, Essays in Honor of Alan RobinsMiT Press, pp. 394—443.

[7] C.B. Jay & D. Kesner (2006)Pure Pattern Calculus In: Peter Sestoft, editorEuropean Symposium on
Programmingnumber 3924 in LNCS, Springer-Verlag, pp. 100-114.

[8] C.B.Jay & D. Kesner (2009¥irst-class patternsJournal of Functional Programmii&(2), pp. 191-225.

[9] Ryo Kashima (2000)A Proof of the Standardization TheoremArCalculus Research Reports on Mathe-
matical and Computing Sciences C-145, Tokyo Institute chi®logy.
[10] J.W. Klop, V. van Oostrom & R.C. de Vrijer (2008)lambda calculus with patterng’heoretical Computer
Science398(1-3), pp. 16-31.
[11] Paul-André Mellies (1996)Description Abstraite des Sgshes de Becriture. Ph.D. thesis, Université Paris
VII.

[12] Luca Paolini & Simona Ronchi Della Rocca (200Parametric parameter passing Lambda-calcullrgor-
mation and Computatiob89(1), pp. 87-106.

[13] G. Plotkin (1975):Call-by-name, call-by-value and the Lambda-calculdheoretical Computer Science
1(2), pp. 125-159.

[14] M. Takahashi (1995)Parallel reductions in lambda-calculusinformation and Computatioh18(1), pp.
120-127.

[15] Terese (2003)Term Rewriting System&ambridge Tracts in Theoretical Computer Scieblse Cambridge
University Press.

	1 Introduction
	2 The calculus
	2.1 Head step

	3 Main concepts and ideas needed for the standardisation proof
	4 Auxiliary results
	5 H-developments
	6 Standardisation
	7 Conclusion and further work

