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This work gives some insights and results on standardisation for call-by-name pattern calculi. More
precisely, we define standard reductions for a pattern calculus with constructor-based data terms and
patterns. This notion is based on reduction steps that are needed to match an argument with respect
to a given pattern. We prove the Standardisation Theorem by using the technique developed by
Takahashi [14] and Crary [2] forλ -calculus. The proof is based on the fact that any development can
be specified as a sequence of head steps followed by internal reductions, i.e. reductions in which no
head steps are involved.

1 Introduction

Pattern Calculi: Several calculi, calledpattern calculi, have been proposed in order to give a formal
description of pattern matching; i.e. the ability to analyse the different possible forms of the argument of
a function in order to decide among different alternative definition clauses.

The pattern matchingoperation is the kernel of the evaluation mechanism of all these formalisms,
basically because reduction can only be fired when the argument passed to a given function matches its
pattern specification. An analysis of various pattern calculi based on different notions of pattern matching
operations and different sets of allowed patterns can be found in [8].

Standardisation: A fundamental result in theλ -calculus is theStandardisation Theorem, which states
that if a termM β -reduces to a termN, then there is astandardβ -reduction sequence fromM to N
which can be seen as a canonical way to reduce terms. This result has several applications, e.g. it is
used to prove the non-existence of reduction between given terms. One of its main corollaries is the
quasi-leftmost-reduction theorem, which in turn is used toprove the non-existence of a normal form for
a given term.

A first study on standardisation for call-by-nameλ -calculus appears in [3]. Subsequently, several
standardisation methods have been devised, for example [1]Section 11.4, [14], [9] and [13].

While leftmost-outermost reduction gives a standard strategy for call-by-nameλ -calculus, more re-
fined notions of reductions are necessary to define standard strategies for call-by-valueλ -calculus [13],
first-order term rewriting systems [6, 15], Proof-Nets [4],etc.

All standard reduction strategies require the definition ofsomeselectedredex by means of a partial
function from terms to redexes; they all give priority to theselected step, if possible. This selected redex
is sometimes calledexternal[11], but we will refer here to it as thehead redexof a term.

It is also worth mentioning a generic standardisation proof[12] that can uniformly treat cal-by-name
and call-by-valueλ -calculus. It is parameterized over the set of values that allow to fire the beta-reduction
rule. However, the set of values are defined there in a global sense, while in pattern calculi being a value
strongly depends on the form of the given pattern.

Standardisation in Pattern Calculi: For call-by-nameλ -calculus, any term of the form(λx.M)N is
a redex, and the head redex for such a term is the whole term. Inpattern calculi any term of the form
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(λ p.M)N is a redex candidate, but not necessarily a redex. The parameter p in such terms can be more
complex than a single variable, and the whole term is not a redex if the argumentN does not matchp,
i.e., if N does not verify the structural conditions imposed byp. In this case we will choose as head
a reduction step lying insideN (or even insidep) which makesp andN be closer to a possible match.
While this situation bears some resemblance withcall-by-valueλ -calculus [13], there is an important
difference: both the fact of(λ p.M)N being a redex, and whether a redex insideN could be useful to get
p andN closer to a possible match, depend onboth N and p.

The aim of this contribution is to analyse the existence of a standardisation procedure for pattern
calculi in a direct way, i.e. without using any complicated encoding of such calculi into some general
computational framework [10]. This direct approach aims toput to evidence the fine interaction between
reduction and pattern matching, and gives a standardisation algorithm which is specified in terms of
the combination of computations of independent terms with partial computations of terms depending
on some pattern. We hope to be able to extend this algorithmicapproach to more sophisticated pattern
calculi handling open and dynamic patterns [7].

The paper is organized as follows. Section 2 introduces the calculus, Section 3 gives the main
concepts needed for the standardisation proof and the main results, Section 4 presents some lemmas
used in the main proofs, Sections 5 and 6 show the main resultsused in the Standardisation Theorem
proof and then the theorem itself; finally, Section 7 concludes and gives future research directions.

2 The calculus

We will study a very simple form of pattern calculus, consisting of the extension of standardλ -calculus
with a set of constructors and allowing constructed patterns. This calculus appears for example in Section
4.1 in [8].

Definition 2.1 (Syntax) The calculus is built upon two different enumerable sets of symbols, the vari-
ables x,y,z,w and the constants c,a,b; its syntactical categories are:

Terms M,N,Q,R ::= x | c | λ p.M | MM DataTerms D ::= c | DM
Patterns p,q ::= x | d DataPatterns d ::= c | dp

Free and bound variables of terms are defined as expected as well as α-conversion.

Definition 2.2 (Substitution) A susbsitutionθ is a function from variables to terms with finite domain,
wheredom(θ) = {x : θ(x) 6= x}. The extension ofθ to terms is defined as expected. We denote
θ ::= {x1/M1, . . . ,xn/Mn} whereverdom(θ)⊆ {x1, . . . ,xn}. Moreover, forθ ,ν substitutions, X a set of
variables, we define

var(θ) ::= dom(θ)
⋃

(

∪x∈dom(θ ) fv(θx)
)

νθ ::=
(

∪x∈dom(θ ) {x/ν(θx)}
)

⋃

(

∪x∈(dom(ν)−dom(θ )) {x/νx}
)

θ |X ::= ∪x∈X∩dom(θ ){x/θx}

Definition 2.3 (Matching) Let p be a pattern and M a term which do not share common variables.
Matching on p and M is a partial function yielding a substitution and defined by the following rules
(⊎ on substitutions denotes disjoint union with respect to their domains, being undefined if the domains
have a non-empty intersection):
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x≪{x/N} N c≪ /0 c
d ≪θ1 D p≪θ2 N θ1⊎θ2 defined

dp≪θ1⊎θ2 DN

We write p≪ M iff ∃θ p≪θ M. Remark that p≪ M implies that p is linear.

Definition 2.4 (Reduction step)We consider the following reduction steps moduloα-conversion:

M → M′

SAppL
M N → M′N

N → N′

SAppR
M N → M N′

p≪θ N
SBeta

(λ p.M)N → θM

M → M′

SAbs
λ p.M → λ p.M′

By working moduloα-conversion we can always assume in rule (SBeta) that p andN do not share
common variables in order to compute matching.

Lemma 2.5 (Basic facts about the calculus)

a. (data pattern/term structure) Let d∈ DataPatterns (resp. D∈ DataTerms), then d= cp1 . . . pn (resp.
D = cM1 . . .Mn) for some n≥ 0.

b. (data patterns only match data terms) Let d∈ DataPatterns, M a term, such that d≪ M. Then
M ∈ DataTerms.

c. (minimal matches) If p≪θ M thendom(θ) = fv(p).

d. (uniqueness of match) If p≪θ1 M and p≪θ2 M, thenθ1 = θ2.

Crucial to the standardisation proof is the concept of development, we formalize it through the rela-
tion ⊲ , meaningM ⊲N iff there is a development (not necessarily complete) with sourceM and targetN.

Definition 2.6 (Term and substitution development)We define the relation⊲ on terms and a corre-
sponding relation◮ on substitutions. The relation⊲ is defined by the following rules:

DRefl
M ⊲M

M ⊲M′

DAbs
λ p.M ⊲λ p.M′

M ⊲M′ N⊲N′

DApp
M N⊲M′N′

M ⊲M′ θ ◮ θ ′ p≪θ N
DBeta

(λ p.M)N⊲θ ′M′

and◮ is defined as follows:θ ◮ θ ′ iff dom(θ) = dom(θ ′) and∀x∈ dom(θ) . θx⊲θ ′x

2.1 Head step

The definition of head step will take into account the terms(λ p.M)N even if p 6≪ N. In such cases, the
head redex will be insideN as the patterns in this calculus are always normal forms (this will not be the
case for more complex pattern calculi).

The selection of the head redex insideN depends on bothN and p. This differs from standard
call-by-valueλ -calculus, where the selection depends only onN.

We show this phenomenon with a simple example. Leta,b,c be constants andN = (aR1)R2, where
R1 andR2 are redexes. The redexes inN needed to achieve a match with a certain patternp, and thus the
selection of the head redex, depend on the patternp.

Take for example different patternsp1 = (ax)(by), p2 = (abx)y, p3 = (abx)(cy), p4 = (ax)y, and con-
sider the termQ= (λ p.M)N. If p= p1, then it is not necessary to reduceR1 (because it already matches
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x) but it is necessary to reduceR2, because no redex can match the patternby; henceR2 will be the head
redex in this case. Analogously, forp2 it is necessary to reduceR1 but notR2, for p3 both are needed (in
this case we will choose the leftmost one) andp4 does matchN, hence the wholeQ is the head redex.
This observation motivates the following definition.

Definition 2.7 (Head step) The relations→
h

(head step) and 
p

(preferred needed step to match pattern

p) are defined as follows:

M →
h

M′

HApp1
M N →

h
M′N

p≪θ N
HBeta

(λ p.M)N →
h

θM

N 
p

N′

HPat
(λ p.M)N →

h
(λ p.M)N′

M →
h

M′

PatHead
M 

d
M′

D 
d

D′

Pat1
DM 

dp
D′M

M 
p

M′ d ≪ D
Pat2

DM 
dp

DM′

The rulePatHead is intended for data patterns only, not being valid for variable patterns; we point this
by writing ad (data pattern) instead of ap (any pattern) in the arrow subscript inside the conclusion.

We observe that the rule analogous toHPat in the presentation of standard reduction sequences for
call-by-valueλ -calculus in both [13] and [2] reads

N →
h

N′

(λ p.M)N →
h
(λ p.M)N′

reflecting theN-only-dependency feature aforementioned.
We see also that a head step in a term like(λ p.M)N determined by ruleHPat will lie inside N, but

the same step will not necessarily be considered head if we analyseN alone.
It is easy to check that ifM 

p
M′ thenp 6≪ M, avoiding any overlap betweenHBeta andHPat and

also betweenPat1 andPat2. This in turn implies that all terms have at most one head redex. We remark
also that the head step depends not only on the pattern structure but also on the match or lack of match
between pattern and argument.

Lemma 2.8 (Basic facts about head steps)

a. (head reduction only if abstraction in head) Let M be a termsuch that M→
h

M′ for some M′. Then

M = (λ p.M01)M1 . . .Mn with n≥ 1.

b. (head reduction only if no match) Let M be a term such that M→
h

M′ for some M′, d∈ DataPatterns.

Then d6≪ M.

c. ( 
p

only if →
h

or data term) Let p be a pattern and let M be a term such that M 
p

M′ for some M′.

Then either M∈ DataTerms or M →
h

M′.

Proof Item (a) is trivial. Item (b) uses Item (a) and L. 2.5:(b). Item (c) is trival by definition of 
p

. �
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3 Main concepts and ideas needed for the standardisation proof

In order to build a standardisation proof for constructor based pattern calculi we chose to adapt the one
in [14] for the call-by-nameλ -calculus, later adapted to call-by-valueλ -calculus in [2], over the classical
presentation of [13].

The proof method relies on ah-developmentproperty stating that any development can be split into
a leading sequence of head steps followed by a development inwhich no head steps are performed; this
is our Corollary 5.4 which corresponds to the so-called “main lemma” in the presentations by Takahashi
and Crary.

Even for a simple form of pattern calculus such as the one presented in this contribution, both the
definitions (as we already mentioned when defining head steps) and the proofs are non-trivial extensions
of the corresponding ones for standardλ -calculus, even in the framework of call-by-value. As mentioned
before, the reason is the need to take into account, for termsinvolving the application of a function to
an argument, the pattern of the function parameter when deciding whether a redex inside the argument
should be considered as a head redex.

In order to formalize the notion of “development without occurrences of head steps”, aninternal
developmentrelation will be defined. The dependency on bothN and p when analysing the reduction
steps from a term like(λ p.M)N is shown in the ruleIApp2.

Definition 3.1 (Internal development) The relations
int
⊲ (internal development) and

int
⊲ p (internal devel-

opment with respect to the pattern p) are defined as follows:

IRefl

M
int
⊲ M

M ⊲M′

IAbs

λ p.M
int
⊲ λ p.M′

M 6= λ p.M1 M
int
⊲ M′ N⊲N′

IApp1

M N
int
⊲ M′N′

M ⊲M′ N
int
⊲ p N′

IApp2

(λ p.M)N
int
⊲ (λ p.M′)N′

N⊲N′ p≪ N
PMatch

N
int
⊲ p N′

N
int
⊲ N′

PConst

N
int
⊲ c N′

N /∈ DataTerms N
int
⊲ N′

PNoCData

N
int
⊲ dp N′

D
int
⊲ d D′ M ⊲M′ d 6≪ D

PCDataNo1

DM
int
⊲ dp D′M′

D⊲D′ M
int
⊲ p M′ d ≪ D p 6≪ M

PCDataNo2

DM
int
⊲ dp D′M′

D⊲D′ M ⊲M′ d ≪ D p≪ M dp 6≪ DM
PCDataNo3

DM
int
⊲ dp D′M′

Remark that rulePCDataNo3 is useful to deal with non-linear patterns.

Thus for example,ab((λy.y)c)
int
⊲ axx abc sinceab⊲ ab, (λy.y)c⊲ c, ax≪ ab, x ≪ (λy.y)c but axx 6≪

ab((λy.y)c).

We observe also that ifN
int
⊲ N′ or N

int
⊲ p N′ thenN⊲N′.

The following lemma analyses data / non-data preservation
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Lemma 3.2 (Development and data)

a. (internal development cannot create data terms) Let M/∈ DataTerms, N such that M
int
⊲ N. Then

N /∈ DataTerms

b. (development from data produces always data) Let M∈ DataTerms, N such that M⊲N. Then N∈
DataTerms

The formal description of the h-development condition takes a form of an additional binary relation.
This relation corresponds to the one calledstrong parallel reductionin [2].

Definition 3.3 (H-development) We define the relations⊲
h

and◮
h

. Let M,N be terms;ν ,θ substitutions.

a. M⊲
h

N iff (i) M ⊲N, (ii) ∃∃∃Q s.t. M →
h

∗ Q
int
⊲ N, (iii) ∀∀∀p . ∃∃∃Qp s.t. M

∗
 
p

Qp
int
⊲ p N.

b. ν ◮
h

θ iff (i) Dom(ν) = Dom(θ), (ii) ∀∀∀x∈ Dom(ν) . νx⊲
h

θx.

The clause(iii) in the definition of⊲
h

shows the dependency on the patterns that was already noted in

the definitions of head step and internal development.
This clause is needed when proving that all developments areh-developments; let’s grasp the reason

through a brief argument. Suppose we want to prove that a development insideN in a term like(λ p.M)N
is an h-development. The rules to be used in this case areHPat (Def. 2.7) andIApp2 (Def. 3.1). Therefore
we need to perform an analysisrelative to the pattern p; and this is exactly expressed by clause(iii) .
Consequently the proof of clause(ii) for a term needs to consider clause(iii) (instantiated to a certain
pattern) for a subterm; this is achieved by including clause(iii) in the definition and by performing an
inductive reasoning on terms.

4 Auxiliary results

We collect in this section some results needed to complete the main proofs in this article.

Lemma 4.1 (pattern-head reduction only if there is no match)
Let M,N be terms, p a pattern, such that M 

p
N. Then p6≪ M.

Proof Using L. 2.8:(b). �

Lemma 4.2 (development cannot lose matches)
Let M,N be terms, p a pattern, such that M⊲N and p≪ν M. Then p≪θ N for someθ such thatν ◮ θ .

Proof Induction onp ≪ν M. The axioms can be checked trivially. For the rule, letM = M1M2, N =
N1N2, p= p1p2 andν = ν1⊎ν2 ; p is linear since it matches a term . The only rules applicable for M ⊲N
areDRefl or DApp; DBeta is not applicable becauseM1 ∈ DataTerms. If DRefl was used, the lemma
holds trivially takingθ = ν . If DApp was used, we apply the IH on both hypotheses obtainingpi ≪

θi Ni

with νi ◮ θi ; by L. 2.5:(c) and the linearity ofp we knowθ = θ1⊎θ2 is well-defined; it is easy to check
thatθ satisfies the lemma conditions. �

Lemma 4.3 (
int
⊲ p cannot create match)

Let M,N be terms, p a pattern, such that M
int
⊲ p N. Then p6≪ M implies p6≪ N.
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Proof Induction onM
int
⊲ p N by rule analysis

PMatch not applicable asp 6≪ M.

PConst in this case the conditionp 6≪ M implies p 6≪ N equates toM 6= p implies N 6= p, as p is a
constant.
The rule premise readsM

int
⊲ N: if rule IRefl was used thenN 6= p by hypothesis, else the

int
⊲ rule

conclusions exclude the possibility ofN being a constant.

PNoCData M /∈ DataTermsandM
int
⊲ N by rule hyp., thenN /∈ DataTermsby L. 3.2:(a), finallyp 6≪ N

by L. 2.5:(b).

PCDataNo1 By the IH, as rule hyp. includes bothD
int
⊲ d D′ andd 6≪ D beingM = DT andp= dp′.

PCDataNo2 Similar to the former consideringp= dp′ and usingT
int
⊲ p′ T ′ andp′ 6≪ T.

PCDataNo3 In this caseM = DM′, p= dp′, d ≪θ D, p′ ≪θ ′
M′ anddp′ 6≪ DM′. We necessarily have

thatθ ⊎θ ′ is not defined hencep is not linear so thatp 6≪ N also holds.

�

Lemma 4.4 (left-pattern-head implies whole-pattern-head)
Let p1, p2 be patterns and M1,N1,M2 be terms such that M1 

p1
N1. Then M1M2  

p1p2
N1M2.

Proof It is clear thatp1 /∈Var, because there is noN1 such thatM1 
x

N1 if x∈Var.

If PatHead applied inM1 
p1

N1, thenM1 →
h

N1, byHApp1 M1M2 →
h

N1M2, and finally byPatHead

M1M2  
p1p2

N1M2.

If eitherPat1 or Pat2 applied inM1 
p1

N1, thenM1 is clearly a data term, ThenM1M2  
p1p2

N1M2 by

Pat1. �

Lemma 4.5 (matching is compatible with substitution)
Let M be a term, p a pattern andθ a substitution such that p≪θ M. Then for any substitutionν , the

following holds: p≪γ νM whereγ = νθ |fv(p).

Proof By induction on the match. The axioms can be checked trivially given L. 2.5:(c).
We analyze the rule applied in this context

d ≪θ1 M1 p′ ≪θ2 M2

dp′ = p≪θ=θ1⊎θ2 M = M1M2

Applying the IH on both hypotheses and then using the rule givesdp′ ≪(νθ1)|fv(d)⊎(νθ2)|fv(p) M1M2; an
easy check of(νθ1) |fv(d) ⊎(νθ2) |fv(p′)= (ν(θ1⊎θ2)) |fv(dp′) concludes the proof. �

Lemma 4.6 (development is compatible with substitution)
Let M,N be terms andν ,θ substitutions, such that M⊲N andν ◮ θ . ThenνM ⊲θN

Proof By induction onM ⊲N by rule analysis.
ForDRefl the thesis amounts toνM ⊲θM, which can be checked by a simple induction onM. DAbs

andDApp can be simply verified by the IH.
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ForDBeta first we mention a technical result which will be used. Letθ , τ be substitutions such that
dom(τ)∩var(θ) = /0, then

(

(θτ) |dom(τ)
)

θ = θτ (1)

this can be easily checked comparing the effect of applying both substitutions to an arbitrary variable.
Let’s analyze the rule premises and conclusion applied in this context

M1⊲M′
1 τ ◮ τ ′ p≪τ M2

M = (λ p.M1)M2⊲ τ ′M′
1 = N

As we can freely choose the variables appearing inp, we assumefv(p)∩ (var(ν)∪ var(θ)) = /0. By
L. 2.5:(c) we knowdom(τ) = dom(τ ′) = fv(p).

We apply the IH onM1 ⊲M′
1 and also onτx⊲ τ ′x for eachx ∈ dom(τ) to concludeνM1 ⊲ θM′

1 and
(ντ) |dom(τ)◮ (θτ ′) |dom(τ) respectively. Furthermore, fromp≪τ M2 and L. 4.5 we concludep≪(ντ |dom(τ))

νM2.
We useDBeta from the three conclusions above to obtain

νM = (λ p.νM1)(νM2)⊲
(

(θτ ′) |dom(τ)
)

(θM′
1)

To checkθN = θ(τ ′M′
1) =

(

(θτ ′) |dom(τ)
)

(θM′
1) it is enough to verify

θτ ′ =
(

(θτ ′) |dom(τ)
)

θ , the latter can be easily checked by (1).
�

Lemma 4.7 (head reduction is compatible with substitution)

(i) Let M,N be terms andν a substitution such that M→
h

N. ThenνM →
h

νN.

(ii) Let M,N be terms, p a pattern andν a substitution such that M 
p

N. ThenνM 
p

νN.

Proof (sketch)
Both items are proved by simultaneous induction onM →

h
N andM 

p
N.

We use L. 4.5 for caseHBeta, the IH and L. 4.5 for casePat2, and just the IH for the remaining
cases. �

5 H-developments

The aim of this section is to prove that all developments are h-developments.
We found easier to prove separately that the h-development condition is compatible with the language

constructs, diverging from the structure of the proofs in [2].

Lemma 5.1 (⊲
h

is compatible with abstraction)

Let M,N be terms such that M⊲
h

N. Thenλq.M ⊲
h

λq.N for any pattern q.

Proof Part(i) trivially holds by hyp.(i) andDAbs.

Part(ii) : by hyp. (i) andIAbs we getλq.M
int
⊲ λq.N. ThenQ= λq.M.

Part(iii) : if p∈Var thenPMatch applies, ifp is a constant or a compound data pattern thenPConst

or PNoCData apply respectively as(λq.M)
int
⊲ (λq.N). In all cases we obtain(λq.M)

int
⊲ p (λq.N). Then

Q= λq.M. �
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Lemma 5.2 (⊲
h

is compatible with application)

Let M1,M2,N1,N2 be terms such that M1⊲
h

N1 and M2⊲
h

N2. Then M1M2⊲
h

N1N2.

Proof Part(i) is immediate by the hypotheses(i) andDApp.
Let’s prove part(ii) .

We first use hypothesis(ii) on M1 ⊲
h

N1 to obtainM1 →
h

∗ Q1
int
⊲ N1 and subsequently applyHApp1 to

M1 →
h

∗ Q1 to get

M1M2 →
h

∗ Q1M2 (2)

EitherQ1 is an abstraction or not.

AssumeQ1 is not an abstraction. SinceQ1
int
⊲ N1 andM2⊲N2, we applyIApp1 so thatQ1M2

int
⊲ N1N2;

this together with (2) gives the desired result.

Now assumeQ1 = λ p.Q12. We use the hyp.(iii) on M2 ⊲
h

N2, obtainingM2 
p
∗ Q2

int
⊲ p N2 and then

we applyHPat to get

Q1M2 →
h

∗ Q1Q2 (3)

Moreover, asQ1 = λ p.Q12
int
⊲ N1, the only applicable rules areIRefl or IAbs, and in both casesN1 =

λ p.N12 andQ12⊲N12.

We now useIApp2 with premisesQ12⊲N12 andQ2
int
⊲ p N2 to get

Q1Q2 = (λ p.Q12)Q2
int
⊲ (λ p.N12)N2 = N1N2 (4)

The desired result is obtained by (2), (3) and (4).

Let’s prove part(iii) .

If p∈Var we are done by(i) andPMatch; we thus getM1M2
int
⊲ p N1N2 so thatQ= M1M2.

If p= c then using(ii) we obtainM1M2 →
h

∗ Q
int
⊲ N1N2 for someQ ; we applyPatHead andPConst

to getM1M2
∗
 
c

Q andQ
int
⊲ c N1N2 respectively, concluding the proof for this case.

Considerp= p1p2 with p1 a data pattern andp2 a pattern.

We use the hyp.(iii) on M1 ⊲
h

N1, gettingM1
∗
 
p1

Q1
int
⊲ p1 N1. Let us defineR1 as follows: if there

is a data term in the sequenceM1
∗
 
p1

Q1 thenR1 is the first of such terms; otherwiseR1 is Q1. In both

casesM1
∗
 
p1

R1
∗
 
p1

Q1. We necessarily haveM1 →
h

∗ R1 by PatHead, thenM1M2 →
h

∗ R1M2 byHApp1 and

subsequentlyM1M2 
p

R1M2 by PatHead.

We concludeM1M2
∗
 
p

Q1M2, trivially if Q1 = R1, and applyingPat1 to R1
∗
 
p1

Q1 to obtainR1M2
∗
 
p

Q1M2 otherwise.
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If Q1 = (λq.Q′
1) then we use the hyp.(iii) on M2⊲

h
N2 gettingM2

∗
 
q

Q2
int
⊲ q N2.

We applyHPat to M2  
q
∗ Q2 getting Q1M2 →

h

∗ Q1Q2; therefore we obtainQ1M2
∗
 
p

Q1Q2 by

PatHead.
In the other sideQ1 = (λq.Q′

1)⊲N1, thereforeN1 = (λq.N′
1) andQ′

1⊲N′
1.

We apply IApp2 to Q′
1 ⊲N′

1 and Q2
int
⊲ q N2 to obtainQ1Q2

int
⊲ N1N2, thereforeQ1Q2

int
⊲ p N1N2 by

PNoCData. We thus get the desired result takingQp = Q1Q2.

If Q1 is not an abstraction andQ1 /∈ DataTerms, then onlyPConst orPNoCData can justifyQ1
int
⊲ p1

N1, thus implyingQ1
int
⊲ N1; this together with the hypothesis(i) M2⊲N2 givesQ1M2

int
⊲ N1N2 by IApp1,

henceQ1M2
int
⊲ p N1N2 by PNoCData. We get the desired result by takingQp = Q1M2.

If Q1 ∈ DataTermswe anaylise the different alternatives for the matching betweenp1p2 andQ1M2.

Assumep1 6≪ Q1. In this case we applyPCDataNo1 to Q1
int
⊲ p1 N1 andM2⊲N2 to obtainQ1M2

int
⊲ p

N1N2 and thus the desired result holds by takingQp = Q1M2.

Assumep1 ≪ Q1 andp2 6≪ M2. In this case we use the hyp.(iii) onM2⊲
h
N2 to getM2

∗
 
p2

Q2
int
⊲ p2 N2,

then applyPat2 to getQ1M2
∗
 
p

Q1Q2. Finally fromQ1
int
⊲ p1 N1 andQ2

int
⊲ p2 N2 we obtainQ1Q2

int
⊲ p N1N2

by eitherPCDataNo2, PCDataNo3 or PMatch. We get the desired result by takingQp = Q1Q2.
Finally assumep1 ≪ Q1 and p2 ≪ Q2. In this case the hypotheses imply in particularQ1 ⊲N1 and

M2⊲N2. We thus concludeQ1M2
int
⊲ p N1N2 using eitherPMatch or PCDataNo3 (depending on whether

p≪ Q1M2 or not), getting the desired result by takingQp = Q1M2.
�

Now we proceed with the proof of the h-development property.The generalization of the statement
involving ◮

h
is needed to conclude the proof1, as can be seen in theDBeta case below.

Lemma 5.3 (Generalized h-developments property)
Let M,N be terms andν ,θ substitutions, such that M⊲N andν ◮

h
θ .

ThenνM ⊲
h

θN

Proof By induction onM ⊲N analyzing the rule used in the last step of the derivation.

DRefl in this caseN = M, we proceed by induction onM

• M = x∈ Dom(ν), in this caseνM = νx ⊲
h

θx= θN by hypothesis.

• M = x /∈ Dom(ν), in this caseνM = x ⊲
h

x= θN.

• M = M1M2, in this caseνM1 ⊲
h

θM1 and νM2 ⊲
h

θM2 hold by the IH. The desired result is

obtained by L. 5.2.

• M = λ p.M1, in this caseνM1⊲
h

θM1 holds by the IH. The desired result is obtained by L. 5.1.

1In [2] the compatibility of h-development with substitutions is stated as a separate lemma; for pattern calculi we couldnot
find a proof of compatibility with substitution independentof the main h-development result.



68 Standardisation for constructor based pattern calculi

DAbs in this caseM = λ p.M1,N = λ p.N1,M1⊲N1.

Using the IH onM1⊲N1 we obtainνM1⊲
h

θN1, the desired result is obtained by L. 5.1.

DApp in this caseM = M1M2,N = N1N2,Mi ⊲Ni.

Using the IH on both rule premises we obtainνMi ⊲
h

θNi , the desired result is obtained by L. 5.2.

DBeta Let’s write down the rule instantiation
M12⊲N12 τ ◮ τ ′ q≪τ M2

M = (λq.M12)M2 ⊲ τ ′N12 = N
(i) can be obtained by hypothesesM ⊲N andν ◮

h
θ , and then L. 4.6.

For [ (iii) if p∈Var ] we are done by(i) andPMatch.

For [ (iii) if p= d ] and also for(ii) : we know bothM →
h

τM12 andM 
p

τM12, then by L. 4.7

νM →
h

ν(τM12) and νM 
p

ν(τM12) (5)

We apply the IH on eachτx⊲τ ′x, obtaining(ντ)x= ν(τx) ⊲
h

θ(τ ′x) = (θτ ′)x for all x∈ Dom(τ).
Moreover, ifx∈ Dom(ν)−Dom(τ) then(ντ)x= νx ⊲

h
θx= (θτ ′)x by hypothesis.

Consequently,ντ ◮
h

θτ ′. Now we use the IH onM12⊲N12 takingντ ◮
h

θτ ′ as second hypothesis

to obtain
ν(τM12) = (ντ)M12 ⊲

h
(θτ ′)N12 = θ(τ ′N12) = θN

This result along with (5) concludes the proof for both parts.

�

Corollary 5.4 (H-development property)
Let M,N be terms such that M⊲N. Then M⊲

h
N.

6 Standardisation

The part of the standardisation proof following the proof ofthe h-development property coincides in
structure with the proof given in [2].

First we will prove that we can get, for any reduction involving head steps that follows an internal
development, another reduction in which the head steps are at the beginning. The name given to the
Lemma 6.1 was taken from [2].

This proof needs again to consider explicitly the relationsrelative to patterns, for similar reasons to
those described when introducing h-development in section3.

Lemma 6.1 (Postponement)

(i) if M
int
⊲ N →

h
R then there exists some term N′ such that M→

h
N′ ⊲R

(ii) for any pattern p, if M
int
⊲ p N 

p
R then there exists some term N′

p such that M 
p

N′
p⊲R
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Proof For (i), if the rule used inM
int
⊲ N is IRefl, then the result is immediate takingN′ = R. Therefore,

in the following we will ignore this case.
We prove(i) and(ii) by simultaneous induction onM taking into account the previous observation.

variable in this case it must beN = M for both(i) and(ii) and neitherM →
h

Rnor M 
p

R for any p,R.

abstraction in this caseN must also be an abstraction for both(i) and(ii) and neitherN →
h

RnorN 
p

R

for any p,R.

application in this caseM = M1M2

We prove(i) first, analysing the possible forms ofM1

• AssumeM1 is not an abstraction

In this caseIApp1 applies, so we knowN = N1N2, M1
int
⊲ N1, andM2⊲N2.

SinceM1
int
⊲ N1, N1 is not an abstraction, then the only applicable rule forN →

h
R is HApp1,

henceR= R1N2 andN1 →
h

R1.

Now we use the IH onM1
int
⊲ N1 →

h
R1 to getM1 →

h
N′

1 ⊲R1, then we obtainM = M1M2 →
h

N′
1M2 byHApp1.

Finally we applyDApp to N′
1⊲R1 andM2⊲N2 to getN′

1M2⊲R1N2 = R, which concludes the
proof for this case.

• Now assumeM1 = λ p.M12 andp 6≪ M2

SinceM = (λ p.M12)M2
int
⊲ N, the only rule that applies isIApp2, thenN = (λ p.N12)N2,

M12⊲N12, andM2
int
⊲ p N2. By L. 4.3 we obtainp 6≪ N2, so the only applicable rule inN =

(λ p.N12)N2 →
h

R isHPat, thenR= (λ p.N12)R2 andN2 
p

R2.

Now we use the IH(ii) onM2
int
⊲ p N2 

p
R2, to getM2 

p
N′

2⊲R2.

We obtainM = (λ p.M12)M2 →
h
(λ p.M12)N′

2 by HPat, then we get(λ p.M12) ⊲ (λ p.N12)

by DAbs on M12⊲N12, finally we applyDApp to the previous result andN′
2 ⊲R2 to obtain

(λ p.M12)N′
2⊲ (λ p.N12)R2 = Rwhich concludes the proof for this case.

• Finally, assumeM1 = λ p.M12 andp≪ν M2

Again, the only rule that applies inM = (λ p.M12)M2
int
⊲ N is IApp2, thenN = (λ p.N12)N2,

M12⊲N12, andM2
int
⊲ p N2. Now, by L. 4.2 we obtainp≪θ N2 for some substitutionθ such

thatν ◮ θ , then the applied rule inN→
h

R isHBeta (the caseHPat being excluded by L. 4.1),

henceR= θN12

It is clear thatM →
h

νM12. By L. 4.6 we obtainνM12⊲θN12 = R, which concludes the proof

for this case.

For (ii) we proceed by a case analysis ofp

If p∈Var then there is noRsuch thatN 
p

R for any termN.

If p≪ M then by L. 4.2p≪ N, and therefore by L. 4.1 there can be noRsuch thatN 
p

R.



70 Standardisation for constructor based pattern calculi

If p= c then p 6≪ M, henceM
int
⊲ p N 

p
R implies M

int
⊲ N →

h
R asPConst andPatHead are the

only possibilities for this case respectively. We use part(i) to obtainM →
h

N′ ⊲R, andM 
p

N′ by

PatHead which concludes the proof for this case.

If p= d p2 andM /∈ DataTerms, then the only possibilities forM
int
⊲ p N 

p
R arePNoCData and

PatHead respectively, thenM
int
⊲ N →

h
R. We use part(i) to obtainM →

h
N′ ⊲R, andM 

p
N′ by

PatHead which concludes the proof for this case.

Now assumep= d p2, M ∈ DataTerms, andp 6≪ M. We must analyse three possibilities

• d 6≪ M1.

In this case onlyPCDataNo1 applies forM
int
⊲ p N, thereforeN = N1N2 with M1

int
⊲ d N1 and

M2⊲N2. By L. 4.3 we knowd 6≪N1 and moreoverN1 is a data term (as can be seen by L. 3.2)
thus not having head redexes, so the only possible rule forN 

p
R is Pat1, thenR= R1N2

with N1 
d

R1.

Now we use the IH on the derivationM1
int
⊲ d N1 

d
R1 to getM1 

d
N′

1 ⊲R1, thereforeM =

M1M2 
p

N′
1M2 by Pat1.

Moreover asN′
1⊲R1 andM2⊲N2 henceN′

1M2⊲R1N2 = R, which concludes the proof for this
case.

• d ≪ M1 andp2 6≪ M2.

In this case onlyPCDataNo2 applies forM
int
⊲ p N, thereforeN = N1N2 with M1 ⊲N1 and

M2
int
⊲ p2 N2. By L. 4.2 and L. 4.3 respectively, we obtain bothd≪ N1 andp2 6≪N2. Moreover

N is a data term (as can be seen by L. 3.2) thus not having head redexes. Hence the only
possibility forN 

p
R is Pat2, thenR= N1R2 with N2 

p2
R2

We now use the IH onM2
int
⊲ p2 N2 

p2
R2 to getM2 

p2
N′

2⊲R2, and byPat2M =M1M2 
p

M1N′
2

We also useDApp onM1⊲N1 andN′
2⊲R2 to getM1N′

2⊲N1R2 = R, which concludes the proof
for this case.

• d ≪ M1, p2 ≪ M2 anddp2 6≪ M1M2.

d ≪ M1 implies (L 2.5:(b))M1 ∈ DataTerms so that fromM = M1M2
int
⊲ p N we can only

haveN = N1N2 with M1⊲N1 andM2⊲N2. L. 4.2 givesd ≪ N1 andp2 ≪ N2. L. 3.2:(b) gives
N ∈ DataTerms. To showN 

p
R we have three possibilities:PatHead is not possible since

N ∈ DataTerms (c.f. L 2.8:(a)),Pat1 is not possible sinced ≪ M1 (c.f. L 4.1),Pat2 is not
possible sincep2 ≪ N2 (c.f. L 4.1).

�

Corollary 6.2

Let M,N,R be terms such that M
int
⊲ N →

h
R. Then∃∃∃N′ s.t. M →

h

∗ N′ int
⊲ R.

Proof Immediate by L. 6.1 and Corollary 5.4. �
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Now we generalize the h-development concept to a sequence ofdevelopments. The name given to
Lemma 6.3 was taken from [2].

Lemma 6.3 (Bifurcation)

Let M,N be terms such that M⊲∗ N. Then M→
h

∗ R
int
⊲∗ N for some term R.

Proof Induction on the length ofM ⊲∗ N. If M = N the result holds trivially.

AssumeM ⊲Q⊲∗ N. By C. 5.4 and IH respectively, we obtainM →
h

∗ S
int
⊲ Q andQ →

h

∗ T
int
⊲∗ N for

some termsSandT. Now we use Corollary 6.2 (many times) onS
int
⊲ Q→

h

∗ T to getS→
h

∗ R
int
⊲ T.

ThereforeM →
h

∗ S→
h

∗ R
int
⊲ T

int
⊲∗ N as we desired. �

Using the previous results, the standardisation theorem admits a very simple proof.

Definition 6.4 (Standard reduction sequence)The standard reduction sequences are the sequences of
terms M1; . . . ;Mn which can be generated using the following rules.

M2; . . . ;Mk M1 →
h

M2
StdHead

M1; . . . ;Mk

M1; . . . ;Mk
StdAbs

(λ p.M1); . . . ;(λ p.Mk)

M1; . . . ;M j N1; . . . ;Nk
StdApp

(M1N1); . . . (M j N1);(M j N2); . . . ;(M j Nk)
StdVar

x

Theorem 6.5 (Standardisation)
Let M,N be terms such that M⊲∗ N. Then there exists a standard reduction sequence M; . . . ;N.

Proof By L. 6.3 we haveM →
h

∗ R
int
⊲∗ N; we observe that it is enough to obtain a standard reduction

sequenceR; . . . ;N, because we subsequently applyStdHead many times.
Now we proceed by induction onN

• N ∈Var; in this caseR= N and we are done.

• N = λ p.N1; in this caseR= λ p.R1 andR1⊲
∗ N1. By IH we obtain a standard reduction sequence

R1; . . . ;N1, then byStdAbs so isR= λ p.R1; . . . ;λ p.N1 = N.

• N = N1N2, so R= R1R2 and Ni ⊲
∗ Ri. We use the IH on both reductions to get two standard

reduction sequencesNi; . . . ;Ri , then we join them usingStdApp.

�

7 Conclusion and further work

We have presented an elegant proof of the Standardisation Theorem for constructor-based pattern calculi.
We aim to generalize both the concept of standard reduction and the structure of the Standardisation

Theorem proof presented here to a large class of pattern calculi, including both open and closed variants
as the Pure Pattern Calculus [7]. It would be interesting to have sufficient conditions for a pattern calculus
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to enjoy the standardisation property. This will be close inspirit with [8] where an abstract confluence
proof for pattern calculi is developed.

The kind of calculi we want to deal with imposes challenges that are currently not handled in the
present contribution, such as open patterns, reducible (dynamic) patterns, and the possibility of having
fail as a decided result of matching. Furthermore, the possibility of decidedfail combined with
compound patterns leads to the convenience of studying forms of inherently parallelstandard reduction
strategies.

The abstract axiomatic Standardisation Theorem developedin [5] could be useful for our purpose.
However, while the axioms of the abstract formulation of standardisation are assumed to hold in the proof
of the standardisation result, they need to be defined and verified for each language to be standardised.
This could be nontrivial, as in the case of TRS [6, 15], where ameta-level matching operation is involved
in the definition of the rewriting framework. We leave this topic as further work.
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