
E. Bonelli (Ed.): 5th International Workshop
on Higher-Order Rewriting (HOR’10)
EPTCS 49, 2011, pp. 46–57, doi:10.4204/EPTCS.49.4

c© H. Zankl, N. Hirokawa & A. Middeldorp
This work is licensed under the
Creative Commons Attribution License.

Uncurrying for Innermost Termination and Derivational
Complexity∗

Harald Zankl,1 Nao Hirokawa,2 and Aart Middeldorp1

1 Institute of Computer Science, University of Innsbruck, Austria
{harald.zankl,aart.middeldorp}@uibk.ac.at

2 School of Information Science, Japan Advanced Institute of Science and Technology, Japan
hirokawa@jaist.ac.jp

First-order applicative term rewriting systems provide a natural framework for modeling higher-order
aspects. In earlier work we introduced an uncurrying transformation which is termination preserving
and reflecting. In this paper we investigate how this transformation behaves for innermost termina-
tion and (innermost) derivational complexity. We prove that it reflects innermost termination and
innermost derivational complexity and that it preserves and reflects polynomial derivational com-
plexity. For the preservation of innermost termination and innermost derivational complexity we
give counterexamples. Hence uncurrying may be used as a preprocessing transformation for inner-
most termination proofs and establishing polynomial upper and lower bounds on the derivational
complexity. Additionally it may be used to establish upper bounds on the innermost derivational
complexity while it neither is sound for proving innermost non-termination nor for obtaining lower
bounds on the innermost derivational complexity.

1 Introduction

Proving termination of first-order applicative term rewrite systems is challenging since the rules lack
sufficient structure. But these systems are important since they provide a natural framework for modeling
higher-order aspects found in functional programming languages. Since proving termination is easier
for innermost than for full rewriting we lift some of the recent results from [8] from full to innermost
termination. For the properties that do not transfer to the innermost setting we provide counterexamples.
Furthermore we show that the uncurrying transformation is suitable for proving upper bounds on the
(innermost) derivational complexity.

We remark that our approach on proving innermost termination also is beneficial for functional pro-
gramming languages that adopt a lazy evaluation strategy since applicative term rewrite systems mod-
eling functional programs are left-linear and non-overlapping. It is well known that for this class of
systems termination and innermost termination coincide (see [5] for a more general result).

The remainder of this paper is organized as follows. After recalling preliminaries in Section 2, we
show that uncurrying preserves innermost non-termination (but not innermost termination) in Section 3.
In Section 4 we show that it preserves and reflects derivational complexity of rewrite systems while
it only reflects innermost derivational complexity. Section 5 reports on experimental results and we
conclude in Section 6.

∗This research is supported by FWF (Austrian Science Fund) project P18763 and the Grant-in-Aid for Young Scientists
Nos. 20800022 and 22700009 of the Japan Society for the Promotion of Science.

http://dx.doi.org/10.4204/EPTCS.49.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

H. Zankl, N. Hirokawa & A. Middeldorp 47

2 Preliminaries

In this section we fix preliminaries on rewriting, complexity and uncurrying.

2.1 Term Rewriting

We assume familiarity with term rewriting [1, 17]. Let F be a signature and V a set of variables disjoint
from F . By T (F ,V) we denote the set of terms over F and V . The size of a term t is denoted |t|. A
rewrite rule is a pair of terms (`,r), written `→ r, such that ` is not a variable and all variables in r occur
in `. A term rewrite system (TRS for short) is a set of rewrite rules. A TRSR is said to be duplicating if
there exist a rewrite rule `→ r ∈R and a variable x that occurs more often in r than in `.

Contexts are terms over the signature F ∪{�} with exactly one occurrence of the fresh constant
� (called hole). The expression C[t] denotes the result of replacing the hole in C by the term t. A
substitution σ is a mapping from variables to terms and tσ denotes the result of replacing the variables
in t according to σ. Substitutions may change only finitely many variables (and are thus written as
{x1 7→ t1, . . . ,xn 7→ tn}). The set of positions of a term t is defined as Pos(t) = {ε} if t is a variable and
as Pos(t) = {ε}∪{iq | q ∈ Pos(ti)} if t = f(t1, . . . , tn). Positions are used to address occurrences of
subterms. The subterm of t at position p ∈ Pos(t) is defined as t|p = t if p= ε and as t|p = ti|q if p= iq.
We say a position p is to the right of a position q if p= p1ip2 and q = q1jq2 with p1 = q1 and i > j. For
a term t and positions p,q ∈ Pos(t) we say t|p is to the right of t|q if p is to the right of q.

A rewrite relation is a binary relation on terms that is closed under contexts and substitutions. For a
TRSR we define→R to be the smallest rewrite relation that containsR. We call s→R t a rewrite step if
there exist a context C, a rewrite rule `→ r ∈R, and a substitution σ such that s=C[`σ] and t=C[rσ].
In this case we call `σ a redex and say that `σ has been contracted. A root rewrite step, denoted by
s→ε

R t, has the shape s= `σ→R rσ= t for some `→ r ∈R. A rewrite sequence is a sequence of rewrite
steps. The set of normal forms of a TRSR is defined as NF(R) = {t∈ T (F ,V) | t contains no redexes}.
A redex `σ in a term t is called innermost if proper subterms of `σ are normal forms, and rightmost
innermost if in addition `σ is to the right of any other redex in t. A rewrite step is called innermost
(rightmost innermost) if an innermost (rightmost innermost) redex is contracted, written i→ and ri→,
respectively.

If the TRS R is not essential or clear from the context the subscript R is omitted in →R and its
derivatives. As usual,→+ (→∗) denotes the transitive (reflexive and transitive) closure of→ and→m its
m-th iterate. A TRS is terminating (innermost terminating) if→+ (i→+) is well-founded.

Let P be a property of TRSs and let Φ be a transformation on TRSs with Φ(R) = R′. We say Φ

preserves P if P(R) implies P(R′) and Φ reflects P if P(R′) implies P(R). Sometimes we call Φ P
preserving if Φ preserves P and P reflecting if Φ reflects P , respectively.

2.2 Derivational Complexity

For complexity analysis we assume TRSs to be finite and (innermost) terminating.

Hofbauer and Lautemann [10] introduced the concept of derivational complexity for terminating
TRSs. The idea is to measure the maximal length of rewrite sequences (derivations) depending on the size
of the starting term. Formally, the derivation height of a term t (with respect to a finitely branching and
well-founded order→) is defined on natural numbers as dh(t,→) = max{m ∈ N | t→m u for some u}.
The derivational complexity dcR(n) of a TRSR is then defined as dcR(n) = max{dh(t,→R) | |t|6 n}.

48 Uncurrying

Similarly we define the innermost derivational complexity as idcR(n)=max{dh(t, i→R) | |t|6n}. Since
we regard finite TRSs only, these functions are well-defined if R is (innermost) terminating. If dcR(n)
is bounded by a linear, quadratic, cubic, . . . function or polynomial, R is said to have linear, quadratic,
cubic, . . . or polynomial derivational complexity. A similar convention applies to idcR(n).

For functions f,g : N→ N we write f(n) ∈ O(g(n)) if there are constants M,N ∈ N such that
f(n)6M ·g(n)+N for all n ∈ N.

One popular method to prove polynomial upper bounds on the derivational complexity is via trian-
gular matrix interpretations [13], which are a special instance of monotone algebras. An F-algebra A
consists of a non-empty carrier A and a set of interpretations fA for every f ∈ F . By [α]A(·) we denote
the usual evaluation function of A according to an assignment α which maps variables to values in A.
An F-algebra A together with a well-founded order � on A is called a monotone algebra if every fA
is monotone with respect to �. Any monotone algebra (A,�) induces a well-founded order on terms:
s �A t if for any assignment α the condition [α]A(s) � [α]A(t) holds. A TRS R is compatible with a
monotone algebra (A,�A) if l �A r for all l→ r ∈R.

Matrix interpretations (M,�) (often just denotedM) are a special form of monotone algebras. Here
the carrier is Nd for some fixed dimension d ∈ N\{0}. The order � is defined on Nd as (u1, . . . ,ud) �
(v1, . . . ,vd) if u1 >N v1 and ui >N vi for all 2 6 i 6 d. If every f ∈ F of arity n is interpreted as
fM(~x1, . . . , ~xn)=F1 ~x1+ · · ·+Fn ~xn+ ~f where Fi ∈Nd×d for all 16 i6n and ~f ∈Nd then monotonicity
of � is achieved by demanding Fi(1,1) > 1 for any 16 i6 n. Such interpretations have been introduced
in [2].

A matrix interpretation where for every f ∈ F all Fi (16 i6 n where n is the arity of f) are upper
triangular is called triangular (abbreviated by TMI). A square matrix A of dimension d is of upper
triangular shape if A(i,i) 6 1 and A(i,j) = 0 if i > j for all 16 i, j 6 d. The next theorem is from [13].

Theorem 1. If a TRSR is compatible with a TMIM of dimension d then dcR(n) ∈ O(nd).

Recent generalizations of this theorem are reported in [14, 18].

2.3 Uncurrying

This section recalls definitions and results from [8].

An applicative term rewrite system (ATRS for short) is a TRS over a signature that consists of
constants and a single binary function symbol called application which is denoted by the infix and left-
associative symbol ◦. In examples we often use juxtaposition instead of ◦. Every ordinary TRS can be
transformed into an ATRS by currying. Let F be a signature. The currying system C(F) consists of the
rewrite rules

fi+1(x1, . . . ,xi,y)→ fi(x1, . . . ,xi)◦y

for every n-ary function symbol f ∈ F and every 06 i < n. Here fn = f and, for every 06 i < n, fi is
a fresh function symbol of arity i. The currying system C(F) is confluent and terminating. Hence every
term t has a unique normal form t↓C(F). For instance, f(a,b) is transformed into f a b. Note that we
write f for f0.

Next we recall the uncurrying transformation from [8]. Let R be an ATRS over a signature F . The
applicative arity aa(f) of a constant f ∈ F is defined as the maximum n such that f ◦ t1 ◦ · · · ◦ tn is
a subterm in the left- or right-hand side of a rule in R. This notion is extended to terms as follows:

H. Zankl, N. Hirokawa & A. Middeldorp 49

R U(R) R↓U(R) Rη Rη↓U(R)

id x→ x id◦x→ id1(x) id1(x)→ x id x→ x id1(x)→ x

f x→ id f x id1(x)◦y→ id2(x,y) f1(x)→ id2(f,x) f x→ id f x f1(x)→ id2(f,x)

f ◦x→ f1(x) id x y→ x y id2(x,y)→ x◦y

Table 1: Some (transformed) TRSs

aa(t) = aa(f) if t is a constant f and aa(t1)− 1 if t = t1 ◦ t2. Note that aa(t) is undefined if the head
symbol of t is a variable. The uncurrying system U(R) consists of the rewrite rules

fi(x1, . . . ,xi)◦y→ fi+1(x1, . . . ,xi,y)

for every constant f ∈ F and every 0 6 i < aa(f). Here f0 = f and, for every i > 0, fi is a fresh
function symbol of arity i. We say that R is left head variable free if aa(t) is defined for every non-
variable subterm t of a left-hand side of a rule in R. This means that no subterm of a left-hand side in
R is of the form t1 ◦ t2 where t1 is a variable. The uncurrying system U(R), or simply U , is confluent
and terminating. Hence every term t has a unique normal form t↓U . The uncurried system R↓U is
the TRS consisting of the rules `↓U → r↓U for every `→ r ∈ R. However the rules of R↓U are not
enough to simulate an arbitrary rewrite sequence in R. The natural idea is now to add U(R), but still
R↓U(R)∪U(R) is not enough as shown in the next example from [8].
Example 2. Consider the TRS R in Table 1. Based on aa(id) = 2 and aa(f) = 1 we get three rules in
U(R) and can computeR↓U(R). The TRSR is non-terminating butR↓U(R)∪U(R) is terminating.

Let R be a left head variable free ATRS. The η-saturated ATRS Rη is the smallest extension of R
such that ` ◦x→ r ◦x ∈ Rη whenever `→ r ∈ Rη and aa(`) > 0. Here x is a variable that does not
appear in `→ r. In the following we write U+

η(R) forRη↓U(R)∪U(R). Note that applicative arities are
computed before η-saturation.
Example 3. Consider again Table 1. Since aa(id) = 2 but aa(id x) = 1 for the rule id x→ x in R this
explains the rule id x y→ x y inRη. Note that U+

η(R) is non-terminating.

For a term t over the signature of the TRS U+
η(R), we denote by t↓C′ the result of identifying different

function symbols in t↓C that originate from the same function symbol inF . For a substitution σ, we write
σ↓U for the substitution {x 7→ σ(x)↓U | x ∈ V}.

From now on we assume that every ATRS is left-head variable free.

We conclude this preliminary section by recalling some results from [8].

Lemma 4 ([8, Lemma 20]). Let σ be a substitution. If t is head variable free then t↓Uσ↓U = (tσ)↓U .

Lemma 5 ([8, Lemma 15]). IfR is an ATRS then→R =→Rη .

Lemma 6 ([8, Lemmata 26 and 27]). LetR be an ATRS. If s and t are terms over the signature of U+
η (R)

then (1) s→R↓U t if and only if s↓C′ →R t↓C′ and (2) s→U t implies s↓C′ = t↓C′ .

Lemma 7 ([8, Proof of Theorem 16]). LetR be an ATRS. If s→R t then s↓U →+
U+
η (R) t↓U .

Consequently our transformation is shown to be termination preserving and reflecting.
Theorem 8 ([8, Theorems 16 and 28]). LetR be an ATRS. The ATRSR is terminating if and only if the
TRS U+

η (R) is terminating.

50 Uncurrying

3 Innermost Uncurrying

Before showing that our transformation reflects innermost termination we show that it does not pre-
serve innermost termination. Hence uncurrying may not be used as a preprocessing transformation for
innermost non-termination proofs.

Example 9. Consider the ATRSR consisting of the rules

f x→ f x f→ g

In an innermost sequence the first rule is never applied and hence R is innermost terminating. The TRS
U+
η(R) consists of the rules

f1(x)→ f1(x) f→ g f1(x)→ g ◦x f ◦x→ f1(x)

and is not innermost terminating due to the rule f1(x)→ f1(x).

The next example shows that s i→R t does not imply s↓U i→+
U+
η (R) t↓U . This is not a counterexample

to soundness of uncurrying for innermost termination, but it shows that the proof for the “if-direction” of
Theorem 8 (which is based on Lemma 7) cannot be adopted for the innermost case without further ado.

Example 10. Consider the ATRSR consisting of the rules

f→ g a→ b g x→ h

and the innermost step s = f a i→R g a = t. We have s↓U = f ◦ a and t↓U = g1(a). The TRS U+
η(R)

consists of the rules

f→ g a→ b g1(x)→ h g ◦x→ g1(x)

We have s↓U i→U+
η (R) g ◦a but the step from g ◦a to t↓U is not innermost.

The above problems can be solved if we consider terms that are not completely uncurried. The next
lemmata prepare for the proof. Below we write sB t if t is a proper subterm of s.

Lemma 11. Let R be an ATRS. If s is a term over the signature of R, s ∈ NF(R), and s→∗U t then
t ∈ NF(Rη↓U).

Proof. From Lemma 6(2) we obtain s↓C′ = t↓C′ . Note that s↓C′ = s because s is a term over the signature
of R. If t /∈ NF(Rη↓U) then t→Rη↓U u for some term u. Lemma 6(1) yields t↓C′ →Rη u↓C′ and
Lemma 5 yields s→R u↓C′ . Hence s /∈ NF(R), contradicting the assumption. The proof is summarized
in the following diagram:

s t u

s↓C′ t↓C′ u↓C′

∗
U Rη↓U

Lemma 6(2)
=

Rη

Lemma 6(1)

R
Lemma 5

=
∗C′ ∗C′

H. Zankl, N. Hirokawa & A. Middeldorp 51

Lemma 12. →∗U ·B⊆B · →∗U

Proof. Assume s→∗U tB u. We show that sB · →∗U u by induction on s. If s is a variable or a constant
then there is nothing to show. So let s= s1 ◦s2. We consider two cases.

• If the outermost ◦ has not been uncurried then t = t1 ◦ t2 with s1 →∗U t1 and s2 →∗U t2. Without
loss of generality assume that t1 D u. If t1 = u then s B s1 →∗U t1. If t1 B u then the induction
hypothesis yields s1 B · →∗U u and hence also sB · →∗U u.

• If the outermost ◦ has been uncurried in the sequence from s to t then the head symbol of s1 cannot
be a variable and aa(s1) > 0. Hence we may write s1 = f ◦ t1 ◦ · · · ◦ ti and t = fi+1(t

′
1, . . . , t

′
i,s
′
2)

with tj →∗U t′j for all 16 j 6 i and s2→∗U s′2. Clearly, t′j D u for some 16 j 6 i or s′2 D t. In all
cases the result follows with the same reasoning as in the first case.

The next lemma states (a slightly more general result than) that an innermost root rewrite step in an
ATRSR can be simulated by an innermost rewrite sequence in U+

η(R).

Lemma 13. For every ATRSR the inclusion ∗
U← ·

i→ε
R ⊆

i→+
U+
η (R) ·

∗
U← holds.

Proof. We prove that s i→+
U+
η (R) r↓Uσ↓U

∗
U← rσ whenever s ∗U← `σ i→ε

R rσ for some rewrite rule `→ r

inR. By Lemma 4 and the confluence of U ,

s i→∗U (`σ)↓U = `↓Uσ↓U →U+
η (R) r↓Uσ↓U ∗U← rσ

It remains to show that the sequence s i→∗U (`σ)↓U and the step `↓Uσ↓U →U+
η (R) r↓Uσ↓U are innermost

with respect to U+
η(R). For the former, let s i→∗U C[u]

i→U C[u′] i→∗U (`σ)↓U with u i→ε
U u
′ and let t be

a proper subterm of u. Obviously `σ→∗U C[u] B t. According to Lemma 12, `σ B v→∗U t for some
term v. Since `σ i→ε

R rσ, the term v is a normal form ofR. Hence t ∈ NF(Rη↓U) by Lemma 11. Since
u i→ε

U u
′, t is also a normal form of U . Hence t ∈ NF(U+

η(R)) as desired. For the latter, let t be a proper
subterm of (`σ)↓U . According to Lemma 12, `σ B u→∗U t. The term u is a normal form of R. Hence
t ∈ NF(Rη↓U) by Lemma 11. Obviously, t ∈ NF(U) and thus also t ∈ NF(U+

η(R)).

The next example shows that it is not sound to replace i→ε
R by i→R in Lemma 13.

Example 14. Consider the ATRSR consisting of the rules

f→ g f x→ g x a→ b

Consequently the TRS U+
η(R) consists of the rules

f→ g f1(x)→ g1(x) a→ b f ◦x→ f1(x) g ◦x→ g1(x)

We have f1(a)
∗
U← f ◦ a i→R g ◦ a but f1(a)

i→+
U+
η (R) ·

∗
U← g ◦ a does not hold. To see that the latter

does not hold, consider the two reducts of g ◦ a with respect to →∗U : g1(a) and g ◦ a. We have neither
f1(a)

i→+
U+
η (R) g1(a) nor f1(a)

i→+
U+
η (R) g ◦a.

In order to extend Lemma 13 to non-root positions, we have to use rightmost innermost evaluation.
This avoids the situation in the above example where parallel redexes become nested by uncurrying.

Lemma 15. For every ATRSR the inclusion ∗
U← ·

ri→R ⊆ i→+
U+
η (R) ·

∗
U← holds.

52 Uncurrying

Proof. Let s ∗U← t = C[`σ] ri→R C[rσ] = u with `σ i→ε
R rσ. We use induction on C. If C = � then

s ∗U← t i→ε
R u. Lemma 13 yields s i→+

U+
η (R) ·

∗
U← u. For the induction step we consider two cases.

• Suppose C = � ◦ s1 ◦ · · · ◦ sn and n > 0. Since R is left head variable free, aa(`) is defined.
If aa(`) = 0 then s = t′ ◦ s′1 ◦ · · · ◦ s′n ∗U← `σ ◦ s1 ◦ · · · ◦ sn i→R rσ ◦ s1 ◦ · · · ◦ sn with t′ ∗U← `σ
and s′j

∗
U← sj for 1 6 j 6 n. The claim follows using Lemma 13 and the fact that innermost

rewriting is closed under contexts. If aa(`) > 0 we have to consider two cases. In the case where
the leftmost ◦ symbol in C has not been uncurried we proceed as when aa(`) = 0. If the leftmost
◦ symbol of C has been uncurried, we reason as follows. We may write `σ = f ◦ u1 ◦ · · · ◦ uk
where k < aa(f). We have t= f ◦u1 ◦ · · · ◦uk ◦s1 ◦ · · · ◦sn and u= rσ ◦s1 ◦ · · · ◦sn. There exists
an i with 1 6 i 6 min{aa(f),k+n} such that s = fi(u

′
1, . . . ,u

′
k,s
′
1, . . . ,s

′
i−k) ◦ s′i−k+1 ◦ · · · ◦ s′n

with u′j
∗
U← uj for 1 6 j 6 k and s′j

∗
U← sj for 1 6 j 6 n. Because of rightmost innermost

rewriting, the terms u1, . . . ,uk,s1, . . . ,sn are normal forms of R. According to Lemma 11 the
terms u′1, . . . ,u

′
k,s
′
1, . . . ,s

′
n are normal forms of Rη↓U . Since i−k 6 aa(`), Rη contains the rule

`◦x1◦· · ·◦xi−k→ r◦x1◦· · ·◦xi−k where x1, . . . ,xi−k are pairwise distinct variables not occurring
in `. Therefore τ = σ∪{x1 7→ s1, . . . ,xi−k 7→ si−k} is a well-defined substitution. We obtain

s i→∗U+
η (R) fi(u1↓U , . . . ,uk↓U ,s1↓U , . . . ,si−k↓U)◦s′i−k+1 ◦ · · · ◦s′n

i→U+
η (R) (r ◦x1 ◦ · · · ◦xi−k)↓Uτ↓U ◦s′i−k+1 ◦ · · · ◦s′n
∗
U← (r ◦x1 ◦ · · · ◦xi−k)τ ◦si−k+1 ◦ · · · ◦sn = rσ ◦s1 ◦ · · · ◦sn = t

where we use the confluence of U in the first sequence.

• In the second case we have C = s1 ◦C ′. Clearly C ′[`σ] ri→R C ′[rσ]. If aa(s1) 6 0 or if aa(s1)
is undefined or if aa(s1) > 0 and the outermost ◦ has not been uncurried in the sequence from
t to s then s = s′1 ◦ s′ ∗U← s1 ◦C ′[`σ] ri→R s1 ◦C ′[rσ] = u with s′1

∗
U← s1 and s′ ∗U← C ′[`σ].

If aa(s1) > 0 and the outermost ◦ has been uncurried in the sequence from t to s then we may
write s1 = f ◦u1 ◦ · · · ◦uk where k < aa(f). We have s = fk+1(u

′
1, . . . ,u

′
k,s
′) for some term s′

with s′ ∗U← C ′[`σ] and u′i
∗
U← ui for 1 6 i 6 k. In both cases we obtain s′ i→+

U+
η (R) ·

∗
U← C ′[rσ]

from the induction hypothesis. Since innermost rewriting is closed under contexts, the desired
s i→+

U+
η (R) ·

∗
U← u follows.

By Lemma 15 and the equivalence of rightmost innermost and innermost termination [16] we obtain
the main result of this section.

Theorem 16. An ATRSR is innermost terminating if U+
η (R) is innermost terminating.

4 Derivational Complexity

In this section we investigate how the uncurrying transformation affects derivational complexity for full
and innermost rewriting.

4.1 Full Rewriting

It is sound to use uncurrying as a preprocessor for proofs of upper bounds on the derivational complexity:

H. Zankl, N. Hirokawa & A. Middeldorp 53

Theorem 17. IfR is a terminating ATRS then dcR(n) ∈ O(dcU+
η (R)(n)).

Proof. Consider an arbitrary maximal rewrite sequence t0→R t1→R t2→R · · · →R tm which we can
transform into the sequence

t0↓U →+
U+
η (R) t1↓U →

+
U+
η (R) t2↓U →

+
U+
η (R) · · · →

+
U+
η (R) tm↓U

using Lemma 7. Moreover, t0 →∗U+
η (R) t0↓U holds. Therefore, dh(t0,→R) 6 dh(t0,→U+

η (R)). Hence
dcR(n)6 dcU+

η (R)(n) holds for all n ∈ N.

Next we show that uncurrying preserves polynomial complexity. Hence we disregard duplicating
(exponential complexity, cf. [9]) and empty (constant complexity) ATRSs. A TRS R is called length-
reducing if R is non-duplicating and |`| > |r| for all rules `→ r ∈ R. The following lemma is an easy
consequence of [9, Theorem 23]. Here for a relative TRS R/S the derivational complexity dcR/S(n) is
based on the rewrite relation→R/S which is defined as→∗S · →R · →∗S .

Lemma 18. LetR be a non-empty non-duplicating TRS over a signature containing at least one symbol
of arity at least two and let S be a length-reducing TRS. If R∪S is terminating then dcR∪S(n) ∈
O(dcR/S(n)).

Note that the above lemma does not hold if the TRSR is empty.

Theorem 19. LetR be a non-empty ATRS. If dcR(n) is inO(nk) then dcRη↓U/U (n) and dcU+
η (R)(n) are

in O(nk).

Proof. Let dcR(n) be in O(nk) and consider a maximal rewrite sequence of→Rη↓U/U starting from an
arbitrary term t0:

t0→Rη↓U/U t1→Rη↓U/U · · · →Rη↓U/U tm

By Lemma 6 we obtain the sequence t0↓C′ →R t1↓C′ →R · · · →R tm↓C′ . Thus, dh(t0,→Rη↓U/U) 6
dh(t0↓C′ ,→R). Because |t0↓C′ | 6 2|t0|, we obtain dcRη↓U/U (n) 6 dcR(2n). From the assumption the
right-hand side is in O(nk), hence dcRη↓U/U (n) is in O(nk). Since dcR(n) is in O(nk), R must be
non-duplicating and terminating. Because U is length-reducing, Lemma 18 yields that dcU+

η (R)(n) also
is in O(nk).

In practice it is recommendable to investigate dcRη↓U/U (n) instead of dcU+
η (R)(n), see [19]. The next

example shows that uncurrying might be useful to enable criteria for polynomial complexity.

Example 20. Consider the ATRSR consisting of the two rules

add x 0→ x add x (s y)→ s (add x y)

The system U+
η(R) consists of the rules

add2(x,0)→ x add2(x,s1(y))→ s1(add2(x,y))

add1(x)◦y→ add2(x,y) add◦x→ add1(x) s◦x→ s1(x)

54 Uncurrying

The 2-dimensional TMIM

add2M(~x,~y) = ◦M(~x,~y) =

(
11
01

)
~x+

(
11
01

)
~y add1M(~x) = s1M(~x) =

(
10
01

)
~x+

(
0
1

)
addM = sM = 0M =

(
0
1

)
orients all rules in U+

η(R) strictly, inducing a quadratic upper bound on the derivational complexity of
U+
η(R) according to Theorem 1 and by Theorem 17 also of R. In contrast, the TRS R itself does

not admit such an interpretation of dimension 2. To see this, we encoded the required condition as a
satisfaction problem in non-linear arithmetic over the integers. MiniSmt [20]1 can prove this problem
unsatisfiable by simplifying it into a trivially unsatisfiable constraint. Details can be inferred from the
website mentioned in Footnote 4.

4.2 Innermost Rewriting

Next we consider innermost derivational complexity. Let R be an innermost terminating TRS. From a
result by Krishna Rao [16, Section 5.1] which has been generalized by van Oostrom [15, Theorems 2
and 3] we infer that dh(t, i→R) = dh(t, ri→R) holds for all terms t.

Theorem 21. IfR is an innermost terminating ATRS then idcR(n) ∈ O(idcU+
η (R)(n)).

Proof. Consider a maximal rightmost innermost rewrite sequence t0
ri→R t1

ri→R t2
ri→R · · · ri→R tm.

Using Lemma 15 we obtain a sequence

t0
i→+
U+
η (R) t

′
1

i→+
U+
η (R) t

′
2

i→+
U+
η (R) · · ·

i→+
U+
η (R) t

′
m

for terms t′1, t
′
2, . . . , t

′
m such that ti→∗U t′i for all 16 i6m. It follows that dh(t0,

i→R) = dh(t0,
ri→R)6

dh(t0,
i→U+

η (R)) and we conclude idcR(n) ∈ O(idcU+
η (R)(n)).

As Example 9 showed, uncurrying does not preserve innermost termination. Similarly, it does not
preserve innermost polynomial complexity even if the original ATRS has linear innermost derivational
complexity.

Example 22. Consider the non-duplicating ATRSR consisting of the two rules

f→ s f (s x)→ s (s (f x))

Since the second rule is never used in innermost rewriting, idcR(n) ∈O(n) is easily shown by induction
on n. We show that the innermost derivational complexity of U+

η(R) is at least exponential. The TRS
U+
η(R) consists of the rules

f→ s f1(x)→ s1(x) f1(s1(x))→ s1(s1(f1(x))) f ◦x→ f1(x) s◦x→ s1(x)

and one can verify that dh(fn1 (s1(x)),
i→U+

η (R)) > 2n for all n > 1. Hence, idcU+
η (R)(n+3) > 2n for all

n> 0.

1http://cl-informatik.uibk.ac.at/software/minismt/

http://cl-informatik.uibk.ac.at/software/minismt/

H. Zankl, N. Hirokawa & A. Middeldorp 55

Table 2: Innermost termination for 213 ATRSs.

subterm matrix (1) matrix (2) matrix (3) matrix (4)
− /+ − /+ − /+ − /+ − /+
42 / 55 67 / 102 111 / 142 113 / 144 114 / 145

Table 3: (Innermost) derivational complexity for 195 (213) ATRSs.

TMI (1) TMI (2) TMI (3) TMI (4)
− /+ − /+ − /+ − /+

dc 3 / 4 10 / 14 12 / 26 12 / 28
idc 3 / 4 10 / 14 12 / 26 12 / 28

5 Experimental Results

The results from this paper are implemented in the termination prover TTT2 [12].2 Version 7.0.2 of
the termination problem data base (TPDB)3 contains 195 ATRSs for full rewriting and 18 ATRSs for
innermost rewriting. All tests have been performed on a single core of a server equipped with eight dual-
core AMD Opteron R© processors 885 running at a clock rate of 2.6 GHz and 64 GB of main memory.

Experiments4 give evidence that uncurrying allows to handle significantly more systems. For proving
innermost termination we considered two popular termination methods, namely the subterm criterion [7]
and matrix interpretations [2] of dimensions one to four. The implementation of the latter is based on
SAT solving (cf. [2]). For a matrix interpretation of dimension d we used 5−d bits to represent natural
numbers in matrix coefficients. An additional bit was used for intermediate results. Both methods are
integrated within the dependency pair framework using dependency graph reasoning and usable rules as
proposed in [3, 4, 6].

Table 2 shows the number of systems that could be proved innermost terminating. In the table + (−)
indicates that uncurrying has (not) been used as preprocessing step, e.g., for the subterm criterion the
number of successful proofs increases from 42 to 55 if uncurrying is used as a preprocessing transforma-
tion. For the setting based on matrix interpretations the gains are even larger. In the table, the numbers
in parentheses denote the dimensions of the matrices.

Table 3 shows how uncurrying improves the performance of TTT2 for derivational complexity. In this
table we used TMIs as presented in Theorem 1. Coefficients of TMIs are represented with max{2,5−d}
bits; again an additional bit is allowed for intermediate results. If uncurrying is used as preprocessing
transformation, TMIs can, e.g., show 14 systems to have at most quadratic derivational complexity while
without uncurrying the method only applies to 10 systems. Since TTT2 has no special methods for
proving innermost derivational complexity, the numbers in rows dc and idc coincide.

2http://cl-informatik.uibk.ac.at/software/ttt2/
3http://termination-portal.org/wiki/TPDB
4http://cl-informatik.uibk.ac.at/software/ttt2/10hor/

http://cl-informatik.uibk.ac.at/software/ttt2/
http://termination-portal.org/wiki/TPDB
http://cl-informatik.uibk.ac.at/software/ttt2/10hor/

56 Uncurrying

6 Conclusion

In this paper we studied properties of the uncurrying transformation from [8] for innermost rewriting and
(innermost) derivational complexity. The significance of these results has been confirmed empirically.

For proving (innermost) termination of applicative systems we mention transformation A [3] as
related work. The main benefit of the approach in [3] is that in contrast to our setting no auxiliary
uncurrying rules are necessary. However, transformation A only works for proper ATRSs without head
variables in the (left- and) right-hand sides of rewrite rules. Here proper means that any constant always
appears with the same applicative arity.

We are not aware of other investigations dedicated to (derivational) complexity analysis of ATRSs.
However, we remark that transformation A preserves derivational complexity.This is straightforward
from [11, Lemma 2.1(3)].

As future work we plan to incorporate the results for innermost termination into the dependency pair
processors presented in [8].

References

[1] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.

[2] J. Endrullis, J. Waldmann & H. Zantema (2008): Matrix Interpretations for Proving Termination of Term
Rewriting. Journal of Automated Reasoning 40(2-3), pp. 195–220. Available at http://dx.doi.org/10.
1007/s10817-007-9087-9.

[3] J. Giesl, R. Thiemann & P. Schneider-Kamp (2005): Proving and Disproving Termination of Higher-Order
Functions. In: Proc. 5th International Workshop on Frontiers of Combining Systems. LNCS 3717, pp. 216–
231. Available at http://dx.doi.org/10.1007/11559306_12.

[4] J. Giesl, R. Thiemann, P. Schneider-Kamp & S. Falke (2006): Mechanizing and Improving Dependency
Pairs. Journal of Automated Reasoning 37(3), pp. 155–203. Available at http://dx.doi.org/10.1007/
s10817-006-9057-7.

[5] B. Gramlich (1995): Abstract Relations between Restricted Termination and Confluence Properties of
Rewrite Systems. Fundamenta Informaticae 24(1-2), pp. 3–23.

[6] N. Hirokawa & A. Middeldorp (2005): Automating the Dependency Pair Method. Information and Compu-
tation 199(1-2), pp. 172–199. Available at http://dx.doi.org/10.1016/j.ic.2004.10.004.

[7] N. Hirokawa & A. Middeldorp (2007): Tyrolean Termination Tool: Techniques and Features. Information
and Computation 205(4), pp. 474–511. Available at http://dx.doi.org/10.1016/j.ic.2006.08.010.

[8] N. Hirokawa, A. Middeldorp & H. Zankl (2008): Uncurrying for Termination. In: Proc. 15th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning. LNCS (LNAI) 5330, pp. 667–
681. Available at http://dx.doi.org/10.1007/978-3-540-89439-1_46.

[9] N. Hirokawa & G. Moser (2008): Automated Complexity Analysis Based on the Dependency Pair Method.
In: Proc. 4th International Joint Conference on Automated Reasoning. LNCS (LNAI) 5195, pp. 364–380.
Available at http://dx.doi.org/10.1007/978-3-540-71070-7_32.

[10] D. Hofbauer & C. Lautemann (1989): Termination Proofs and the Length of Derivations. In: Proc. 3rd
International Conference on Rewriting Techniques and Applications. LNCS 355, pp. 167–177. Available at
http://dx.doi.org/10.1007/3-540-51081-8_107.

[11] R. Kennaway, J.W. Klop, M.R. Sleep & F.-J. de Vries (1996): Comparing Curried and Uncurried Rewriting.
Journal of Symbolic Computation 21(1), pp. 15–39.

http://dx.doi.org/10.1007/s10817-007-9087-9
http://dx.doi.org/10.1007/s10817-007-9087-9
http://dx.doi.org/10.1007/11559306_12
http://dx.doi.org/10.1007/s10817-006-9057-7
http://dx.doi.org/10.1007/s10817-006-9057-7
http://dx.doi.org/10.1016/j.ic.2004.10.004
http://dx.doi.org/10.1016/j.ic.2006.08.010
http://dx.doi.org/10.1007/978-3-540-89439-1_46
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/3-540-51081-8_107

H. Zankl, N. Hirokawa & A. Middeldorp 57

[12] M. Korp, C. Sternagel, H. Zankl & A. Middeldorp (2009): Tyrolean Termination Tool 2. In: Proc. 20th
International Conference on Rewriting Techniques and Applications. LNCS 5595, pp. 295–304. Available at
http://dx.doi.org/10.1007/978-3-642-02348-4_21.

[13] G. Moser, A. Schnabl & J. Waldmann (2008): Complexity Analysis of Term Rewriting Based on Matrix and
Context Dependent Interpretations. In: Proc. 28th International Conference on Foundations of Software
Technology and Theoretical Computer Science. LIPIcs 2, pp. 304–315. Available at http://dx.doi.org/
10.4230/LIPIcs.FSTTCS.2008.1762.

[14] F. Neurauter, H. Zankl & A. Middeldorp (2010): Revisiting Matrix Interpretations for Polynomial Deriva-
tional Complexity of Term Rewriting. In: Proc. 17th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning. LNCS (ARCoSS) 6397, pp. 550–564. Available at http:
//dx.doi.org/10.1007/978-3-642-16242-8_39.

[15] V. van Oostrom (2007): Random Descent. In: Proc. 18th International Conference on Rewriting
Techniques and Applications. LNCS 4533, pp. 314–328. Available at http://dx.doi.org/10.1007/
978-3-540-73449-9_24.

[16] M.R.K. Krishna Rao (2000): Some Characteristics of Strong Innermost Normalization. Theoretical Com-
puter Science 239, pp. 141–164. Available at http://dx.doi.org/10.1016/S0304-3975(99)00215-7.

[17] TeReSe (2003): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55, Cambridge
University Press.

[18] J. Waldmann (2010): Polynomially Bounded Matrix Interpretations. In: Proc. 21st International Conference
on Rewriting Techniques and Applications. LIPIcs 6, pp. 357–372. Available at http://dx.doi.org/10.
4230/LIPIcs.RTA.2010.357.

[19] H. Zankl & M. Korp (2010): Modular Complexity Analysis via Relative Complexity. In: Proc. 21st In-
ternational Conference on Rewriting Techniques and Applications. LIPIcs 6, pp. 385–400. Available at
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.385.

[20] H. Zankl & A. Middeldorp (2010): Satisfiability of Non-Linear (Ir)rational Arithmetic. In: Proc. 16th Inter-
national Conference on Logic for Programming, Artificial Intelligence and Reasoning. LNCS (LNAI) 6355,
pp. 481–500.

http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.1007/978-3-642-16242-8_39
http://dx.doi.org/10.1007/978-3-642-16242-8_39
http://dx.doi.org/10.1007/978-3-540-73449-9_24
http://dx.doi.org/10.1007/978-3-540-73449-9_24
http://dx.doi.org/10.1016/S0304-3975(99)00215-7
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.357
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.357
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.385

	1 Introduction
	2 Preliminaries
	2.1 Term Rewriting
	2.2 Derivational Complexity
	2.3 Uncurrying

	3 Innermost Uncurrying
	4 Derivational Complexity
	4.1 Full Rewriting
	4.2 Innermost Rewriting

	5 Experimental Results
	6 Conclusion

